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Abstract

Many social Web sites allow users to annotate the content
with descriptive metadata, such as tags, and more recently
also to organize content hierarchically. These types of struc-
tured metadata provide valuable evidence for learning how a
community organizes knowledge. For instance, we can ag-
gregate many personal hierarchies into a common taxonomy,
also known as a folksonomy, that will aid users in visual-
izing and browsing social content, and also to help them in
organizing their own content. However, learning from so-
cial metadata presents several challenges: sparseness, ambi-
guity, noise, and inconsistency. We describe an approach to
folksonomy learning based on relational clustering that ad-
dresses these challenges by exploiting structured metadata
contained in personal hierarchies. Our approach clusters sim-
ilar hierarchies using their structure and tag statistics, then
incrementally weaves them into a deeper, bushier tree. We
study folksonomy learning using social metadata extracted
from the photo-sharing site Flickr. We evaluate the learned
folksonomy quantitatively by automatically comparing it to
a reference taxonomy. Our empirical results suggest that the
proposed framework, which addresses the challenges listed
above, improves on existing folksonomy learning methods.

Introduction

The social Web has changed the way people create and use
information. Sites like Flickr, Del.icio.us, YouTube, and
others, allow users to publish and organize content by an-
notating it with descriptive keywords, or tags. Some web
sites also enable users to organize content hierarchically.
The photo-sharing site Flickr, for example, allows users to
group related photos in sets, and related sets in collections.
Although these types of social metadata lack formal struc-
ture, they capture the collective knowledge of Social Web
users. Once extracted from the traces left by many users,
such collective knowledge will add a rich semantic layer to
the content of the Social Web that will potentially support
many tasks in information discovery, personalization, and
information management.

A community’s knowledge can be expressed through a
common taxonomy, also called a folksonomy, that is learned
from social metadata created by many users. Compared to
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existing classification hierarchies, such as Linnaean clas-
sification system or WordNet, automatically learned folk-
sonomies are attractive because they are (1) created from
collective agreement of many individuals; (2) relatively in-
expensive to obtain; (3) can adapt to evolving vocabularies
and communitys information needs; and (4) they are directly
tied to the annotated content. A learned folksonomy can fa-
cilitate users in browsing content produced collectively by
the community. It can also help users visualize where their
own content fits within the communitys and aid them in or-
ganizing it.

Learning a global folksonomy comes with a number of
challenges which arise when integrating structured metadata
created by diverse users, with each user freely annotating
data according to her own preferences. Consequently, social
metadata is noisy, shallow, sparse, ambiguous, conflicting,
multi-faceted, and expressed at inconsistent granularity lev-
els across many users.

We propose a novel approach to learn folksonomies by
exploiting structured social metadata in the form of tags and
user-specified shallow hierarchies. Our approach is driven
by a similarity measure that utilizes statistics of both kinds
of metadata to incrementally weave individual hierarchies
into a deeper, more complete global folksonomy. We pro-
vide empirical evaluation to demonstrate that the proposed
approach improves on the previous method to learn a folk-
sonomy from user-specified relations.

Structured Social Metadata

Structured data in a form of shallow hiearchies is ubiquitous
on the Social Web. On Flickr, users can arbitrarily group
related photos into sets and then group related sets in collec-
tions. Some users create multi-level hierarchies containing
collections of collections, etc., but the vast majority of users
who use collections create shallow hierarchies, consisting of
collections and their constituent sets. These personal hierar-
chies generally represents subclass and part-of relationships.

We formally define a sapling as a shallow tree represent-
ing a personal hierarchy which composed of a root node ri

and its children, or leaf, nodes 〈li1, ..l
i
j〉. The root node corre-

sponds to a user’s collection, and inherits its name, while the
leaf nodes correspond to the collection’s constituent sets and
inherit their names. We assume that hierarchical relations
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(a) Ambiguity

(b) Conflict

(c) Varying granularity

Figure 1: Schematic diagrams of personal hierarchies cre-
ated by Flickr users. (a) Ambiguity: the same term may have
different meaning (“turkey” can refer to a bird or a country).
(b) Conflict: users’ different organization schemes can be
incompatible (china is a parent of travel in one hierar-
chy, but the other way around in another). (c) Granularity:
users have different levels of expressiveness and specificity,
and even mix different specificity levels within the same hi-
erarchy (Scotland (country) and London (city) are both
children of UK). Nodes are colored to aid visualization.

between a root and its children, ri → lij , specify broader-
narrower relations.

Flickr users can attach tags only to photos. A sapling’s
leaf node corresponds to a set of photos, and the tag statis-
tics of the leaf are aggregated from that set’s constituent
photos. Tag statistics are then propagated from leaf nodes
to the parent node. We define a tag statistic of node x as
τx := {(t1, ft1), (t2, ft2), · · · (tk, ftk

)}, where tk and ftk

are tag and its frequency respectively. Hence, τri is aggre-
gated from all τli

j
s. These tag statistics can also be used as a

feature for determining if two nodes are similar (of the same
concept).

Challenges in Learning from

Structured Metadata

Learning folksonomies from social metadata, specifically,
from structured metadata, presents a number of challenges.
We divide these challenges into five categories, as described
below.
Sparseness: Social metadata is usually very sparse. Users
provide 4 –7 tags per bookmark on Delicious (Plangpra-
sopchok and Lerman 2010) and 3.74 tags per photo on
Flickr (Rattenbury, Good, and Naaman 2007). Sparseness
is also manifested in the hierarchical organization created

by an individual. In our Flickr data set, we found only
600 out of 21, 792 users — approximately 0.02 percent —
who created multi-level (collections of collections) hierar-
chies. Most users define shallow (single-level) hierarchies.
Among these shallow hierarchies, moreover, few users ex-
press “similar” organization. For instance, of the 433 users
who created an animal collection, only a few created com-
mon child sets, such as bird, cat, dog or insect. In
order to learn a deeper, more complete folksonomy, we have
to aggregate social metadata from many different users.

Noisy vocabulary: There are two main types of noise in
social metadata: vocabulary and structure noise, which we
explain later in this section. Vocabulary noise has several
sources. One common source is variations and errors in
spelling. We can mitigate some of the noise by lowercas-
ing and stemming terms in metadata. Noise also arises
from users’ idiosyncratic naming conventions. While id-
iosyncratic terms may be meaningful to image owner and
her narrow interest group, they are relatively meaningless to
other users. We consider as noise tags such as not sure,
pleaseaddthistothethemecomppoll, mykid4 or
an image
owner’s name, often added as a tag.

Ambiguity: An individual tag is often ambiguous (Mathes
2004; Golder and Huberman 2006). For example, the tag
jaguar can be used to refer to either a mammal or a luxury
car. Similarly, terms that are used to name photo collections
and sets can refer to different concepts. Consider the hier-
archy in Figure 1 (a), where a collection turkey could be
about a bird or a country. Similarly, victoria can either
be a place in Canada or Australia. When combining meta-
data to learn common folksonomies, we need to be aware of
its meaning. Contextual information may help disambiguate
metadata.

Structural noise and conflicts: Like vocabulary noise,
structural noise has a number of sources and can lead to
inconsistent or conflicting structures. Structural noise can
arise as a result of variations in individuals’ organization
preferences. Suppose that, as shown in Figure 1 (b), user A
organizes photos first by activity, creating a collection called
travel, and as part of this collection, a set called china, for
photos of her travel in China. Meanwhile, user B organizes
photos by location first, creating a collection china, with
constituent sets travel, people, food, etc. In one hierarchy,
therefore, travel is more general than china, and in the
second hierarchy, it is the other way around.

Sometimes conflicts are caused by vocabulary differences
among individual users. For example, to some users a bug
is a “pest,” a term broader than insect, but to others it
is a subclass of insect. As a result, some users may ex-
press bug → insect, while the others express an inverse
relation. An automatic folksonomy integration should be
able to deal with these types of conflicts. Another source of
structural noise is variations in degree of knowledge about a
topic. Many users, for example, assemble images of spiders
in a set called spiders and assign it to an insect collection,
while others correctly assign spiders to arachnid.

Varying granularity level: Differences in users’ level of
expertise and expressiveness may lead to relatively impre-
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cise metadata. Experts may use specific breed names to tag
dog photos, while non-experts will simply use the tag dog
to annotate them(Golder and Huberman 2006). In addition,
one user may organize photos first by country and then by
city, while another organizes them by country, then subre-
gion and then city, as shown in Figure 1 (c). Combining data
from these users potentially generate multiple paths from
one concept to another.

Learning Folksonomies from Structured

Metadata with Relational Clustering

We propose a simple, yet effective approach to combine
many personal hierarchies into a global folksonomy that also
takes the above challenges into account. Basically, we need
to aggregate saplings both horizontally and vertically. By
horizontal aggregation,we mean merging saplings with sim-
ilar roots, which expands the breadth of the learned tree by
adding leaves to the root. By vertical aggregation, we mean
merging one saplings leaf to the root of another, extending
the depth of the learned tree. The approach we use exploits
contextual information from neighbors in addition to local
features to determine which saplings to merge. The ap-
proach is similar to relational clustering (Bhattacharya and
Getoor 2007) and its basic element is the similarity measure
between a pair of nodes.

We define a similarity measure between nodes in different
saplings, which combines heterogeneous evidence available
in the structured social metadata, and is a combination of
local similarity and structural similarity. The local similar-
ity between two nodes a and b, localSim(a, b), is based on
the intrinsic features of a and b, such as their names and tag
distributions. The structural similarity, structSim(a, b) is
based on features of neighboring nodes. If a is a root of a
certain sapling, its neighboring nodes are all of its children.
If a is a leaf node, the neighboring nodes are its parent and
siblings. The similarity between nodes a and b is:

nodesim(a, b) = α × localSim(a, b) (1)

+ (1 − α) × structSim(a, b),

where 0 ≤ α ≤ 1 is a weight for adjusting contributions
from localSim(, ) and structSim(, ).
Local Similarity The local similarity of nodes a and b, has
two components: (1) name similarity, and (2) tag distribu-
tion similarity. Name similarity can be any string similarity
metric, which returns value ranging from 0 to 1. For tag
similarity, it can be a simple function that, e.g., checks the
number of common tags in the top K tags of a and b, and
returns 1 if this number is greater than J; otherwise, it re-
turns 0. We use a logistic function to smooth the step func-
tion. The local similary, which is a weighted combination
between name and tag similarities, is defined as follows:

localSim(a, b) = β × nameSim(a, b) (2)

+ (1 − β) ×
1

1 + e−2(|τa∩τb|+K)
.

Tag similarity helps address the ambiguity challenge de-
scribed earlier. For example, top tags of the node turkey
that refers to a type of bird include “bird”, “beak”, “feed”,

while top tags of turkey that refers to a country include
different terms about places and attractions within this coun-
try.
Structural Similarity The structural similarity between two
nodes depends on position of the nodes within the saplings.
We define two versions: structSimRR(, ) which computes
the structural similarity between two root nodes (root-to-root
similarity), and structSimLR(, ) which evaluates struc-
tural similarity between a root of one sapling and the leaf
of another (leaf-to-root similarity).

Root-to-Root similarity: Two saplings A and B are likely
to describe the same concept if their root nodes rA and
rB share the same (stemmed) name, and some of their leaf
nodes also have the same names. In this case, there is no
need to compute tagSim(, ) of these leaf nodes. Structural
similarity between two root nodes is defined as follows:

structSimRR(rA, rB) (3)

= max

{ 1
Z

∑
i,j δ(stem(lAi ), stem(lBj ))

tagsim(L̀A
tag, L̀

B
tag)

where δ(., .) returns 1 if the both arguments are exactly the
same; otherwise, it returns 0. stem(lAi ) is a function that re-

turns stem name of a leaf node lAi of sapling A, and L̀
A
tag

is an aggregation of tag distributions of all lAi , at which

stem(lAi ) �= stem(lBj ) for any leaf node lBj of the sapling

B. Meanwhile, L̀B
tag is defined in the similar way. In par-

ticular, we compute similarity based on: (1) how many of
their children have common stem name (they match); (2) the
tag distribution similarity of those that do not have the same
name. The second one is an optimistic estimate that child
nodes of the two saplings refer to the same concept while
having different names. We simply use max(, ) function to
choose the higher score.

The normalization coefficient, Z , can be min(|lA|, |lB|),
where |lA| is a number of child nodes of A. We use min(, )
instead of union. The reason is that saplings aggregated from
many small saplings will contain a large number of child
nodes. When merging with a relatively small sapling, the
fraction of common nodes may be very low compared to
total number of child nodes. Hence, the normalization co-
efficient with the union (Z = union(lA, lB)), as defined in
Jaccard similarity, results in penalizing small saplings too
much. min(, ), on the other hand, seems to correctly con-
sider the proportion of children of the smaller sapling that
overlap with the larger sapling.

When we decide that root rA of sapling A and rB of
sapling B are similar, we merge A and B with the merge-
ByRoot(A, B) operation. This operation creates a new
sapling, M , which combines structures and tag statistics of
saplings A and B. Particularly, the tag statistics of the root
of M is a combination of those from rA and rB . The leaves
of M , lM , are from a union of lA and lB. If there are leaves
from A and B that share the same stemmed name, their tag
statistics will be combined and attached to the correspond-
ing leaf in M .

The width of the newly merged sapling will increase as
more saplings are merged. Also, since we simply merge leaf
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nodes with similar names, and their roots also have similar
names, leaf-to-leaf structural similarity structSimLL(, ) is
not required. This operation addresses the sparseness chal-
lenge.

Root-to-Leaf similarity Merging the root node of one
sampling with the leaf node of another sapling is an impor-
tant operation for extending the depth of the learned folk-
sonomy. Since we consider a pair of nodes with different
roles, their neighboring nodes also have different roles. This
would appear to make them structurally incompatible. How-
ever, in many cases, some overlap between siblings of one
sapling and children of another sapling exists. Formally,
suppose that we are considering similarity between leaf lAi
of sapling A and root rB of sapling B. There might be some
lAk �=i of A similar to lBj of B. Consider Figure 1 (c). Suppose

that we have already merged uk saplings. Now, there are
two saplings uk→{scotland, glasgow, edinburgh,
london} and scotland → {glasgow, shetland},
and we would like to merge the two scotlands. Since
both uk and scotland saplings have glasgow in com-
mon, and the user placed glasgow under uk instead of
scotland, this shortcut contributes to the similarity be-
tween scotland nodes. The structural similarity between
leaf and root nodes that takes this type of shortcut into con-
sideraion is:

structSimLR(lAi , rB) = structSimRR(rA, rB). (4)

Specifically, this is simply the root-to-root structural sim-
ilarity of rA and rB , which measures overlap between sib-
lings of lAi and children of rB . For the case when there is no
shortcut, the similarity from this part will be dropped out;
hence, the Eq. 1 will only be based on the local similarity.

SAP: Growing a Tree by Merging Saplings

Now that we have describe the similarity scores and the ba-
sic merge operations, we next introduce SAP, our algorithm
which uses the operations defined above to incrementally
grow a deeper, bushier tree by merging saplings created by
different users. In order to learn a folksonomy correspond-
ing to some concept, we start by providing a seed term,
the name of that concept. The seed term will be the root
of the learned tree. We cluster individual saplings whose
roots have the same name as the seed by using the simi-
larity measures Eq. 1, Eq. 2 and Eq. 3 to identify similar
saplings. Saplings within the same cluster are merged into a
bigger sapling using the mergeByRoot(, ) operation. Each
merged sapling corresponds to a different sense of the seed
term.

Next, we select one of the merged saplings as the starting
point for growing the folksonomy for that concept. For each
leaf of the initial sapling, we use the leaf name to retrieve all
other saplings whose roots are similar to the name. We then
merge saplings corresponding to different senses of this term
as described above. The merged sapling whose root is most
similar to the leaf (using similarity measures Eq. 1, Eq. 2
and Eq. 4), is then linked to the leaf. In the case that several
saplings match the leaf, we merge all of them together before

linking. Clustering saplings into different senses, and then
merging relevant saplings to the leaves of the tree proceeds
incrementally until some threshold is reached.

Suppose we start with saplings shown in Figure 1(c),
and the seed term is uk. The process will first cluster uk
saplings. Suppose, for illustrative purposes, that there is
only one sense of uk, resulting in a single sapling with root
uk. Next, the procedure selects one of the unlinked leaves,
say glasgow, to work on. All saplings with rootglasgow
will be clustered, and the merged glasgow sapling that is
sufficiently similar to the glasgow leaf of the uk sapling
will then be linked to it at the leaf, and so on.

Handling Shortcuts Attaching a sapling A to the learned
tree F can result in structural inconsistencies in F . One type
of inconsistency is a shortcut, which arises when a leaf of
A is similar to a leaf of F . In the illustration above, at-
taching the scotland sapling to the uk tree will gener-
ate a shortcut, or two possible paths from uk to glasgow
(ruk → luk

glassgow and ruk → luk
scotland → lscotland

glasgow ). Ide-

ally, we would drop the shorter path and keep the longer one
which captures more specific knowledge.

There are cases where the decision to drop the shorter
path cannot be made immediately. Suppose we have uk →
{london, england, scotland} as the current learned
tree is about to attach london → {british museum,
dockland, england} sapling to it. Unfortunately, some
users placed england under london, and attaching this
sapling will create a shortcut to england. The decision
to eliminate the shorter path to england cannot be made
at this point, since we have no information about whether
attaching the england sapling will also create a shortcut
to london from the root (uk). We have to postpone this
decision until we retrieve all relevant saplings that can be at-
tached to the present leaf (luk

london) and its siblings (luk
england

and luk
scotland).

Suppose that luk
england does match the root of sapling

england → {london, manchester, liverpool}.
Mutual shortcuts to england and london would unde-
sirably appear once all the saplings are attached to the tree.
Hence, the decision to drop luk

england or luk
london must be

made. We base the decision on similarity. Intuitively,
a sapling that is more similar, or “closer,” to ruk should
be linked to the tree. Formally, the node to be kept is
luk
x̂ where x̂ = argmaxx{nodesim(ruk, rx)} and x =
{england, london}, while the other will be dropped. This
is illustrated in Figure 2.

Handling Loops Attaching a sapling to a leaf of the
learned tree F can result in another undesirable structure,
a loop. Suppose that we are about to attach a sapling A to
the leaf lFi of F . A loop will appear if there exists a leaf

lAj of A with the same name as some node in the path from

root to lFi in F . In order to make the learned tree consis-

tent, we must remove lAj before attaching the sapling. For
instance, suppose we decide to attach London sapling to
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Figure 2: Appearance of mutual shortcuts between London
and England when merging London and England saplings.
To resolve them, we compare the similarity between UK-
London and UK-England sapling pairs. Since England
sapling is closer to UK than London sapling, we simply at-
tach England sapling to the tree; while ignoring London leaf
under UK.

the England sapling in Figure 2 at its London node, we
have to remove England node of London sapling first.

In some cases, loops indicate synonymous concepts. In
our data set, we found that there are users who specify the
relation animal→ fauna, and those who specify the in-
verse fauna→ animal. Since animal and fauna have
similar meaning, we hypothesize that this conflict appears
because of variations in users’ expertise and categorization
preferences.

To determine whether a loop is caused by a syn-
onym, we check the similarity between rA and rF . If
it is high enough, we simply remove lFj from F , for

which stem(lFj ) = stem(lAj ); then, merge rA and rF .
The similarity measure is based on Eq. 1. More strin-
gent criteria are required since rA and rF have differ-
ent names. Specifically, we modify tagSim(X, Y ) to

tagSimsyn(X, Y ), which instead evaluates
|τX∩τY |

min(|τX |,|τY |)
,

and modify structSim(X, Y ) to structSimsyn(X, Y ),
which only evaluates 1

Z

∑
i,j δ(stem(lXi ), stem(lYj )).

Mitigating Other Structural Noise The similarity mea-
sure between root-to-leaf defined earlier is only based on
contextual information from adjacent saplings. Hence, at
a distant leaf node, far from the root of the tree, the mea-
sure may consider merging some sapling sense, that is rel-
evant to the leaf, but irrelevant to the tree root. To illus-
trate, suppose we have the following hierarchy, flower
→ rose → black & white. There is a chance that
the sapling, black & white → {macro, portrait,
landscape} will be judged relevant to the leaf white
of the tree, since they share enough common tags such as
macro, white, etc. When deciding to attach this sapling
to the tree, we could end up with a tree that mixes concepts
from “flower” and “portraiture.”

We use a continuity measure to check whether the sense
of the sapling we are considering attaching is relevant to the
ancestors of the leaf. Recall that the root node inherits tags

from all of its decendents. We examine the tag overlap and
do not attach the sapling if it has less than L tags in com-
mon with the grand parent node. In addition, we only attach
new saplings to leaf nodes which are the result of input from
more than one user.

Mitigating Noisy Vocabularies As mentioned earlier,
noisy nodes appear from idiosyncratic vocabularies, used by
a small number of users. For a certain merged sapling, we
can identify these nodes by the number of users who speci-
fied them. Specifically, we use 1% of the number of all users
who “contribute” to this merged sapling as the threshold. We
then remove leaves of the sapling, that are specified by fewer
number of users than the threshold.

Empirical Results

(a)

(b)

Figure 3: Folksonomies learned for (a) bird and (b)
sport

We constructed a data set containing collections and their
constituent sets (or collections) created by a subset of Flickr
users who are members of seventeen public groups devoted
to wildlife and nature photography (Plangprasopchok and
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Lerman 2009). These users had many other common inter-
ests, such as travel and sports, arts and crafts, and people and
portraiture. We extracted all the tags associated with images
in the set, and retrieved all other images that the user anno-
tated with these tags. We constructed personal hierarchies,
or saplings, from this data, with each sapling rooted at one
of user’s top-level collections. We ignore collections with
composite names. This reduces the size of the data set to
20, 759 saplings created by 7, 121 users. A small number of
these saplings are multi-level.

The folksonomy learning approach described in this pa-
per, namely SAP, has a number of parameters. We explored
a range of parameter values; due to space limitations, we do
not include the complete set of results. Here, we report re-
sults obtained through a combination that resulted in good
performance: we set α = 0.4 the weight of the structural
similarity for root-to-root, and 0.6 for root-to-leaf similarity,
we use 0.5 as the similarity threshold for deciding whether to
merge nodes, the number of top tags retained in each node
is K = 20, the number of common tags used to compute
tag similarity is J = 0.10K, and the number of tags used
in continuity checking was L = 0.05K. The rationale for
selecting the different values for α is that, the merging of
roots is based more on overlap between child nodes; hence,
we can rely more on the structural similarity. In the case of
root-to-leaf, we instead set more weight on local similarity
of common tags.

We compare SAP against the folksonomy learning method,
SIG, described in (Plangprasopchok and Lerman 2009).
Briefly, SIG first breaks a given sapling into (collection-set)
relations. With the assumption that the nodes with the same
(stemmed) name refer to the same concept, the approach em-
ploys hypothesis testing to identify the most informative re-
lations. Informative relations are then linked into a deeper
folksonomy. We used a significance test threshold of 0.01.

We quantitatively evaluate the induced folksonomies by
automatically comparing them to a reference hierarchy. For
the reference hierarchy, we use the hierarchy from the Open
Directory Project(ODP).1 We use methodology described in
(Plangprasopchok and Lerman 2009) to automatically eval-
uate the quality of the learned folksonomies. Although ODP
and saplings are generated from different sources, there is
substantial vocabulary overlap that makes them comparable.
Since the ODP hierarchy is relatively large and composed of
many topics, we had to carve out the “relevant” portion for
comparison. First, we specified a seed, S, which is the root
of the learned folksonomy F and the reference hierarchy to
which it is compared. Next, the folksonomy is expanded two
levels along the relations in F. The nodes in the second level
are added as leaf candidates, LC. If the spanning stops after
one level, we also add this node’s name to LC. Given S and
LC, we identify leaf candidates, LCD, that also appear in
ODP, D. All paths from S to LCD in D will constitute the
reference hierarchy for the seed S.

S is used as seed for learning the folksonomy associ-
ated with this concept. In SIG, S and LC are both used to
learn the folksonomy. The maximum depth of learned trees

1http://rdf.dmoz.org/, as of September 2008

is limited to 4. The metrics to compare the learned folk-
sonomies to the reference are Lexical Recall (Maedche and
Staab 2002) and the modified Taxonomic Overlap defined in
(Plangprasopchok and Lerman 2009), mTO. Lexical Re-
call measures the overlap between the learned and reference
taxonomies, independent of their structure. mTO measures
the quality of structural alignment of the taxonomies. Here,
we report the harmonic mean, fmTO instead, because of
mTO’s asymmetry. Since the proposed approach generates
bushy folksonomies whose leaf nodes may not appear in the
reference taxonomy, the mTO metric may unfairly penal-
ize the learned folksonomy. Instead, we only consider the
paths of the learned folksonomy that are comparable to the
reference hierarchy. Specifically, for each leaf l in LCD, we
select the path S → l in the learned folksonomy and com-
pare it to one in the reference hierarchy. If there are many
comparable paths existing in the reference, we select the one
that has the highest LR to compare.

Comparison with ODP

#Ovlp Leaves fmTO LR

seeds SIG SAP SIG SAP SIG SAP

anim 68 87 0.602 0.684 0.281 0.307

bird 20 22 0.760 0.773 0.281 0.272

invertebr 3 5 0.762 0.800 0.250 0.412

vertebr 1 0 1.000 n/a 0.600 0.200

insect 5 5 0.924 0.924 0.857 0.857

plant 6 5 0.613 0.707 0.250 0.182

flora 6 18 0.483 0.483 0.130 0.352

fauna 9 10 0.463 0.396 0.113 0.111

flower 1 1 0.379 1.000 0.267 0.250

reptil 2 3 0.625 0.622 0.500 0.667

countri 2 4 0.447 0.592 0.143 0.172

africa 23 27 0.773 0.895 0.508 0.531

asia 80 88 0.734 0.783 0.396 0.453

europ 165 305 0.619 0.661 0.236 0.380

s. africa 3 3 0.431 0.600 0.444 0.444

n. america 67 95 0.545 0.594 0.165 0.201

s. america 12 14 0.706 0.846 0.415 0.400

c. america 1 3 0.631 0.725 0.417 0.500

unit kingdom 31 69 0.787 0.706 0.099 0.181

unit state 35 62 0.620 0.782 0.130 0.199

world 191 392 0.476 0.463 0.085 0.153

craft 1 1 0.603 0.603 0.056 0.050

sport 19 19 0.693 0.690 0.091 0.052

australia 12 29 0.354 0.661 0.123 0.222

canada 11 16 0.620 0.635 0.158 0.173

Table 1: This table presents empirical validation on folk-
sonomies induced by the proposed approach, SAP, compar-
ing to the baseline approach, SIG. The metrics are modi-
fied Taxonomic Overlap (fmTO) (averaged using Harmonic
Mean), Lexical Recall (LR), where their scales are ranging
from 0.0 to 1.0 (the more the better).

In Table 1, we compare the quality of the folksonomy
learned for each seed by SAP, and the previous state-of-
theart, SIG. Generally, SAP produced bushier trees; and re-
covers a larger number of concepts, relative to ODP, as indi-
cated by the numbers of overlapping leaves (in 90% of the
cases) and better LR scores (in 65.2% of the cases). SAP
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produces bushier trees because individual saplings will be
judged relevant using structural information, rather than fre-
quencies of relations as in SIG. Although SIG can remove
many idiosyncratic relations, it also removes many of in-
formative ones too. SAP produces shallower trees than SIG.
Nevertheless, SAP can produce trees with higher quality, rel-
ative to the ODP, as indicated by fmTO score (in 76.1% of
the cases).

After closely inspecting the learned trees, we found that
SAP demonstrates its advantage over the baseline in disam-
biguating and correctly attaching relevant saplings to appro-
priate induced trees. For instance, bird tree produced by
SAP does not includes Istanbul or other Turkey locations,
as shown in Figure 3 (a). In the sport tree, SAP does not
include any concept about the sky (Note that skies and ski-
ing share common stemmed name). In addition, there are no
concepts about irrelevant events like birthdays and parades
appearing in the tree, as shown in Figure 3 (b). There are
some cases, e.g., dog and cat, where we could not com-
pute the hand labeling scores because these trees often con-
tained pet names, rather than breeds.

In all, the proposed approach has several advantages over
baseline. First, it combines relevant saplings, based on con-
textual evidence, which can resolve ambiguity of the con-
cept names. Second, only a seed is required to incrementally
build a tree, while both seed and leaf nodes are required by
the SIG method. Third, it allows similar concepts to appear
multiple times within the same hierarchy. For example, SAP

allows the anim folksonomy to have both anim → pet

→ cat and anim → mammal → cat paths, while only
one of these paths is retained by SIG. Last, SAP can identify
synonyms from structure (loops). We learned the following
synonyms from Flickr data: {anim, creatur, critter,
all anim, wildlife} and {insect, bug}.

Related work
Constructing ontological relations from text has long inter-
ested researchers, e.g., (Hearst 1992; Cimiano, Hotho, and
Staab 2005; Snow, Jurafsky, and Ng 2006; Yang and Callan
2009). Many of these methods exploit linguistic patterns to
infer if two keywords are related under a certain relationship.
For instance, “such as” can be used to identify hyponym re-
lations. However, these approaches are not applicable to so-
cial metadata. Such metadata is usually ungrammatical and
much more inconsistent than natural language text.

Several researchers have investigated various techniques
to construct conceptual hierarchies from social metadata.
Most of the previous work utilizes tag statistics as evi-
dence. Mika (Mika 2007) uses a graph-based approach to
construct a network of related tags, projected from either
a user-tag or object-tag association graphs; then induces
broader/narrower relations using betweenness centrality and
set theory. Other works apply clustering techniques to tags,
and use their co-occurrence statistics to produce concep-
tual hierarchies (Brooks and Montanez 2006). Heymann
and Garcia-Molina (Heymann and Garcia-Molina 2006) use
centrality in the similarity graph of tags. The tag with the
highest centrality is considered more abstract than one with
a lower centrality; thus it should be merged to the hierarchy

first, to guarantee that more abstract nodes are closer to the
root. Schmitz (Schmitz 2006) applied a statistical subsump-
tion model (Sanderson and Croft 1999) to induce hierarchi-
cal relations among tags. Since these works are based on
tag statistics, they are likely to suffer from the “popularity
vs generality” problem, where a tag may be used more fre-
quently not because it is more general, but because it is more
popular among users. Plangprasopchok and Lerman (Plang-
prasopchok and Lerman 2009) proposed approach that in-
duces folksonomies from user-specified relations. Specifi-
cally, it filters out conflicting and noisy relations based on
parent and child nodes’ co-occurrence statistics; then, com-
bines these relations into a larger folksonomy. Although this
approach can bypass the “popularity vs generality” problem,
like all prior approaches to learning folksonomies from so-
cial metadata, it does not address the ambiguity problem.

The sapling merging approach described in this paper
is an extension of collective relational clustering approach
used for entity resolution (Bhattacharya and Getoor 2007).
That work proposed a method to identify and disambiguate
entities, such as authors, that utilizes two types of evidences:
intrisic and extrinsic features. Intrinsic features are asso-
ciated with specific instances, such as author names, while
extrinsic features derived from structural evidence, e.g., co-
authors in a citations database. Intuitively, two names refer
to the same author if they are similar and their co-author
names refer to the same set of authors. Analogously, we
identify and disambiguate concept names from names and
tags (intrinsic) and neighboring nodes’ features (extrinsic).
However, for efficiency reason, we use the naive version of
the relational clustering, where we simply directly use the
features from neighbors as the extrinsic features, rather than
cluster labels.

Handling mutual shortcuts by keeping the sapling which
is more similar to the ancestor is similar in spirit to the
minimum evolution assumption in (Yang and Callan 2009).
Specifically, a certain hierarchy should not have any sud-
den changes from a parent to its child concepts. Our ap-
proach is also similar to several works on ontology align-
ment (e.g. (Udrea, Getoor, and Miller 2007)). However, un-
like those works, which merge a small number of deep, de-
tailed and consistent concepts, we merge large number of
noisy and shallow concepts, which are specified by different
users.

Conclusion
This paper describes an approach which incrementally com-
bines a large number of shallow hierarchies specified by
different users into common, denser and deeper “folk-
sonomies.” The approach addresses the challenges of learn-
ing folksonomies from social metadata and demonstrates
several advantages over the previous work: disambiguating
concepts and allowing similar concepts to appear at mul-
tiple places within the same folksonomy. Empirical re-
sults demonstrate that our approach can induce quite de-
tailed folksonomies, which are also more consistent with
taxonomies of the Open Directory Project. Additionally, it
is general enough for other domains, such as tags/bundles in
Delicious and files/folders in personal workspaces.
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For the future work, in addition to automatically separat-
ing broader/narrower from related-to relations, we would
like to develop a systematic way to handle individual
saplings whose child nodes are from different facets. This
will improve the quality of the learned folksonomies by not
mixing concepts from different facets. We are also working
on combining more sources of evidence such as geographi-
cal information for learning accurate folksonomies. Lastly,
we would like to frame the approach in a fully probabilistic
way (Plangprasopchok, Lerman, and Getoor 2010), which
provides a systematic way to combine heterogeneous evi-
dences, and takes into account uncertainties on similarities
between concepts and relations.
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