
–First Policies for Budget–Limited Multi-Armed Bandits

Long Tran-Thanh, Archie Chapman, Enrique Munoz de Cote, Alex Rogers, and Nicholas R. Jennings
School of Electronics and Computer Science,

University of Southampton,
Southampton, SO17 1BJ, UK.

ltt08r,acc,jemc,acr,nrj @ecs.soton.ac.uk

Abstract

We introduce the budget–limited multi–armed bandit (MAB),
which captures situations where a learner’s actions are costly
and constrained by a fixed budget that is incommensurable
with the rewards earned from the bandit machine, and then
describe a first algorithm for solving it. Since the learner has
a budget, the problem’s duration is finite. Consequently an
optimal exploitation policy is not to pull the optimal arm re-
peatedly, but to pull the combination of arms that maximises
the agent’s total reward within the budget. As such, the re-
wards for all arms must be estimated, because any of them
may appear in the optimal combination. This di erence from
existing MABs means that new approaches to maximising the
total reward are required. To this end, we propose an –first
algorithm, in which the first of the budget is used solely
to learn the arms’ rewards (exploration), while the remaining
1 is used to maximise the received reward based on those
estimates (exploitation). We derive bounds on the algorithm’s
loss for generic and uniform exploration methods, and com-
pare its performance with traditional MAB algorithms under
various distributions of rewards and costs, showing that it out-
performs the others by up to 50%.

1 Introduction

The multi–armed bandit (MAB) is a classical problem in de-
cision theory (Robbins 1952), and presents one of the clear-
est examples of the trade–o between exploration and ex-
ploitation in reinforcement learning. It models a machine
with k arms, each of which has a di erent and unknown ex-
pected reward. The goal of the agent (player) is to repeatedly
pull the optimal arm (i.e. the arm with the highest expected
reward) to maximise the expected total reward. However,
the agent does not know the rewards for each arm, so it must
sample them in order to learn which is the optimal one. In
other words, in order to choose the optimal arm (exploita-
tion) the agent first has to estimate the mean rewards of all
of the arms (exploration). In the standard MAB, this trade–
o has been e ectively balanced by decision–making poli-
cies such as upper confidence bound (UCB) and n-greedy
(Auer, Cesa-Bianchi, and Fischer 2002).

However, this standard MAB gives an incomplete de-
scription of the sequential decision–making problem fac-
ing an agent in many real–world scenarios. To this end, a
variety of other related models have been studied recently,

Copyright c 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and, in particular, a number of researchers have focussed on
MABs with a limited exploration budget. Specifically, they
consider cases where pulling an arm incurs a pulling cost,
whose currency is not commensurable with that of their re-
wards. The agent’s exploration budget then limits the num-
ber of times it can sample the arms, thus defining an ini-
tial exploration phase, during which the agent’s sole goal is
to determine the optimal arm to pull during the subsequent
cost–free exploitation phase. As for the standard MAB, sev-
eral exploration policies have been developed that maximise
the long–run expected reward of an agent faced with this
type of limit on its exploration, namely: (i) MAB with pure
exploration (Bubeck, Munos, and Stoltz 2009); (ii) budgeted
MAB (Guha and Munagala 2007); and (iii) MAB with max–
loss value–estimation (Antos, Grover, and Szepesvári 2008).

Building on these works, in this paper, we consider a fur-
ther extension of the MAB problem, in which pulling an arm
is costly, and both the exploration and exploitation phases
are limited by a single budget. This type of limitation is
well motivated by several real–world applications. For ex-
ample, consider a company that aimes to advertise itself
online. I so doing, it has a limited budget for renting on-
line advertising banners on any of a number of web sites,
each of which charges a di erent rental price. The com-
pany wishes to maximise the number visitors who click on
its banners, however, it does not know the click–through rate
for banners on each site. As such the company needs to es-
timate the click–through rate for each banner (exploration),
and then to choose the combination of banners that max-
imises the sum of clicks (exploitation). In terms of the model
described above, the price of renting an advertising banner
from a website is the pulling cost of an arm, and the click–
through rate of a banner on a particular website is the true
reward for pulling that arm, which is unknown at the out-
set of the problem. Now, because the budget is limited, both
the exploration and exploitation phases are budget limited as
well. This means previous MAB models cannot e ciently
deal with this problem.

In order to address this gap, in this paper we introduce
a new version of the MAB, a budget-limited MAB with an
overall budget (i.e. pulling an arm is costly, and both ex-
ploration and exploitation phases are budget–limited). The
overall budget limit di erentiates it from previous models
in that the overall number of arms pulled is finite. Conse-
quently, the optimal solution is not to repeatedly pull the op-

1211

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

timal arm ad infinitum, but to pull the combination of arms
that maximises the reward and fully exploits the budget. To
see this, first suppose the expected rewards for pulling the
arms are known. In this case, a MAB with an overall bud-
get limit reduces to an unbounded knapsack problem (An-
donov, Poirriez, and Rajopadhye 2000), as follows. Pulling
an arm corresponds to placing an item into the knapsack,
with the arm’s expected reward equal to the item’s value and
the pulling cost the item’s weight. The overall budget is then
the weight capacity of the knapsack. Given this, the optimal
combination of items for the knapsack problem is also the
optimal combination of pulls for our MAB problem. This
di erence in desired optimal solution from existing MAB
problems means that (now faced with unknown rewards),
when defining a decision–making policy for our problem,
we must be cognizant of the fact that an optimal policy will
involve pulling a combination of arms. As such, it is not suf-
ficient to learn the expected reward of only the highest–value
arm; we must also learn the other arms’ rewards, because
they may appear in the optimal combination. Importantly,
we cannot simply import existing policies that are based on
upper confidence bound or n–greedy arguments, because
they concentrate on learning only the value of the highest
expected reward arm, and so will not work in this setting.

For example, consider a three–armed bandit, with arms X,
Y and Z that have true expected reward–pulling cost value
pairs 9, 4 , 1.5, 1 and 2, 1 . Suppose the remaining bud-
get is 15. At this point, the optimal solution is to pull arms
X and Z three times each, giving an expected total reward of
33. Now consider the case where the estimates of expected
reward for arms Y and Z have been generated using a less
e cient exploration policy, and as such are not particularly
accurate (whereas the estimate of X is considerably more re-
fined). Specifically, imagine a situation where the estimates
are 1.76 and 1.74 for arms Y and Z, respectively. In this
case, the proposed best solution would be to pull arms X and
Y three times each, which on average returns a suboptimal
payment with real expected total reward of 31.5. It is clear
from this example that better estimates of the mean reward
of all arms would allow the agent to determine the optimal
combination of pulls. It is also evident that new techniques
must be developed for this new problem, which do consider
the combinatorial aspect of the optimal solution to the MAB
problem investigated in this paper.

Against this background, we propose a budgeted -first al-
gorithm for our MAB, in which the first of the overall bud-
get B is dedicated to exploration, and the remaining portion
is dedicated to exploitation. In more detail, we split the bud-
get into two parts, B reserved exclusively for exploration,
and (1)B for exploitation. In the exploration phase, the
agent estimates the expected rewards by uniformly sampling
the arms (i.e. the arms are sequentially pulled one after the
other). Then, in the exploitation phase, it calculates the op-
timal combination of pulls based on the estimates generated
during the exploration phase. The key benefit of this ap-
proach is that we can easily measure the accuracy of the es-
timates associated with a particular value of , because all of
the arms are sampled the same number of times. Hence, we
can control the expected loss (i.e. the di erence between the
optimal and the proposed combination of pulls) as a function

of , which gives us a method of choosing an optimal for
a given scenario. Furthermore, it also gives us a bound on
the performance of the -first approach to the MAB problem
with an overall budget.

Given this, the main contributions of this paper are:

We introduce a new version of MAB, in which each arm
has di erent pulling cost, and both exploration and ex-
ploitation phases are limited by a single overall budget.

We devise the first, theoretically proven upper bound for
the loss of a budgeted –first algorithm that uses any
generic exploration method for this problem.

We improve this upper bound for the case of budgeted –
first approach with uniform pull exploration, in which all
of the arms are uniformly pulled in the exploration phase.

The paper is organised as follows: Next we describe the
multi-armed bandit with an overall budget limit. We then
introduce our –first algorithm in Section 3. In Section 4
we derive an upper bound on the loss of the algorithm when
any generic method is used in the exploration phase, and a
refined bound for uniform pull exploration. Then Section 5
presents an empirical comparison of our –first algorithm
using the uniform pull and the UCB–based sampling meth-
ods with an n–greedy algorithm. Section 6 concludes.

2 Model Description

In this section, we describe the MAB with an overall budget
limit. In more detail, we consider a k–armed bandit problem,
in which only one arm can be pulled at any time by the agent.
Upon pulling arm i of the machine, the agent pays a pulling
cost, denoted ci, and receives a non–negative reward drawn
from a distribution associated with that specific arm. Note
that in our model, the only restriction on the distribution of
these rewards is that they have bounded supports. This as-
sumption is reasonable, since in real–world applications, re-
ward values are typically bounded. Given this, the agent’s
goal is to maximise the sum of rewards it earns from pulling
the arms of the machine. However, initially, the agent has
no knowledge about the mean value i of each arm i, so
must learn these values in order to deduce a policy that max-
imises its sum of rewards. Furthermore, in our model, the
agent has a cost budget B, which it cannot exceed during its
operation time. That is, the total cost of pulling arms cannot
exceed this budget limit. Given this, the agent’s objective is
to find the optimal sequence of pulls, that maximises the ex-
pectation of the total reward the agent can achieve, without
exceeding the cost budget B.

Formally, let A i (1) i (2) be a finite sequence of
pulls, where i (t) denotes the arm pulled at time t. The set
of possible sequences is limited by the budget. That is, the
total cost of the sequence A cannot exceed budget B:

i(t) A

ci(t) B

Let R (A) denote the total reward the agent receives by
pulling the sequence A. The expectation of R (A) is:

[R (A)]
i(t) A

i(t)

Then, let A denote the optimal sequence that maximises the
expected total reward, which can be formulated as follows:

1212

A arg max
A

[R (A)] arg max
A

i(t) A

i(t) (1)

Note that in order to determine A , we have to know the
value of i in advance, which does not hold in our case.
Thus, A represents a theoretical optimum value, which is
unachievable in general.

However, for any sequence A, we can define the loss (or
regret) for A as the di erence between the expected cumu-
lative reward for A and the theoretical optimum A . More
precisely, letting L (A) denote the loss function, we have:

L (A) [R (A)] [R (A)] (2)

Given this, our objective is to derive a method of generating
a sequence, A, that minimises this loss function for the class
of MAB problems defined above.

3 Budgeted –first Approach

In this section we introduce our –first approach for the
MAB with budget limits problem. The structure of the –
first approach is such that the exploration and exploitation
phases are independent of each other, so in what follows, the
methods used in each phase are discussed separately. Now,
several combinations of methods can be used for both explo-
ration and exploitation. However, due to space constraints,
in this work we investigate only one exploration and one ex-
ploitation method. For the former, we use a uniform pull
sampling method, in which all of the arms are uniformly
pulled until the exploration budget is exceeded, because we
can put a higher bound for the loss of an –first algorithm
using this exploration method than for other methods. In the
exploitation phase, due to the similarities of our MAB to un-
bounded knapsack problems when the rewards are known,
we use the reward–cost ratio ordered greedy method, a vari-
ant of an e cient greedy approximation algorithm for knap-
sack problems.

3.1 Uniform Pull Exploration

In this phase, we uniformly pull the arms, with respect to
the exploration budget B. That is, we sequentially pull all
of the arms, one after the other, until the budget is exceeded.
Letting ni denote the number of pulls of arm i, we have:

B
k
j 1 c j

ni

B
k
j 1 c j

1 (3)

The reason of choosing this method is that, in order to bound
the loss of the algorithm, since we do not know which arms
will be pulled in the exploitation phase, we need to treat the
arms equally in the exploration phase. Hereafter we refer to
the sequence sampled by the uniform algorithm as Auni.

3.2 Reward–Cost Ratio Ordered Exploitation

We first introduce the foundation of the method used in
this phase of our algorithm, the unbounded knapsack prob-
lem. We then describe an e cient approximation method
for solving this knapsack problem, which we subsequently
use in the second phase of our budgeted -first algorithm.

The unbounded knapsack problem is formulated as fol-
lows. Given k types of items, each type i has a corresponding
value vi, and weight wi. In addition, there is also a knapsack
with weight capacity B. The unbounded knapsack problem

selects integer units of those types that maximise the total
value of items in the knapsack, such that the total weight
of the items does not exceed the knapsack weight capac-
ity. That is, the goal is to find the non–negative integers
x1 x2 xk that

max

k

i 1

xivi s t

k

i 1

xiwi C

This problem is NP–hard, however, near–optimal approxi-
mation methods have been proposed to solve this problem.1

In particular, here we make use of a simple, but e -
cient approximation method, the density ordered greedy al-
gorithm, which has O k log k computational complexity,
where k is the number of item types (Kohli, Krishnamurti,
and Mirchandani 2004). This algorithm works as follows:
Let vi wi denote the density of type i. At the beginning, we
sort the item types in order of the value of their density. This
needs O k log k computational complexity. Then in the first
round of this algorithm, we identify the item type with the
highest density and select as many units of this item as are
feasible, without exceeding the knapsack capacity. Then,
in the second round, we identify the densest item among
the remaining feasible items (i.e. items that still fit into the
residual capacity of the knapsack), and again select as many
units as are feasible. We repeat this step in each subsequent
round, until there is no feasible item left. Clearly, the maxi-
mal number of rounds is k.

Now, we reduce the problem faced by an agent in the ex-
ploitation phase to the unbounded knapsack problem. Recall
that in the exploitation phase, the agent makes use of the ex-
pected reward estimates from the exploration phase. Let ˆ i

denote the estimate of i after the first phase. Given this we
aim to solve the following integer program:

max

k

i 1

xi ˆ i s t

k

i 1

xici (1) B

where xi is the number of pulls of arm i in the exploitation
phase. In this case, the ratio of an arm’s reward estimate to
its pulling cost, ˆ i ci, is analogous to the “density” of an item,
because it represents the reward for consuming one unit of
the budget, or one unit of the carrying capacity of the knap-
sack. As such, the problem is equivalent to the knapsack
problem above, and in order to solve it, we can use a reward–
cost ratio (density) ordered greedy algorithm. Hereafter we
refer to the sequence pulled by this algorithm as Agreedy.

Now, let x
greedy

i
denote the solution for arm i given by the

value density ordered algorithm. The expected total reward
is:

[R (A first)]

k

i 1

ni x
greedy

i i

where A first Auni Agreedy denotes the sequence of pulls
resulted by our proposed algorithm.

4 An Upper Bound for the Loss Function

In this section, we first derive an upper bound for any ex-
ploration policy and the reward–cost ratio ordered greedy

1A detailed survey of these algorithms can be found in An-
donov, Poirriez, and Rajopadhye (2000).

1213

exploitation algorithm (i.e. the upper bound is independent
of the choice of the exploration algorithm). We then refine
this bound for the specific case of uniform pull exploration,
in order to have a more practical and e cient bound.

Recall that both Auni and Agreedy together form sequence
A first, which is the policy generated by our -first algo-
rithm. The expected reward for this policy is then:

[R (A first)] [R (Auni)] R Agreedy (4)

which is the expected reward of the exploration phase plus
the expected reward of the exploitation phase.

In what follows, we derive lower bounds for [R (Auni)]

and R Agreedy independently. Then, putting these to-

gether, we have a lower bound for the expected reward of
A first. Following this, we derive an upper bound for the ex-
pected reward of the optimal sequence A . The di erence
between the lower bound of [R (A first)] and the upper
bound of [R (A)] then gives us the upper bound of the loss
function of our proposed algorithm. However, this bound
is constructed using Hoe ding’s inequality, so it is correct
only with a certain probability. Specifically, it is correct with

probability (1)k, where (0 1) is a predefined confi-
dence parameter (i.e. the confidence with which we want the
upper bound to hold) and k is the number of arms.

Given this, without loss of generality, for ease of expo-
sition we assume that the reward distribution of each arm
has support in [0 1], and the pulling cost ci 1 for each
i (our result can be scaled for di erent size supports and
costs as appropriate). We now define some terms. Let

Imax arg maxi
ˆ i

ci
denote the arm with the highest mean

value density estimate. Similarly, let imax and imin denote
the arm with the highest and the lowest real mean value den-
sities, respectively. Then, let Dmax denote the di erence be-
tween the highest and the lowest mean value densities, i.e.

Dmax
imax

cimax

imin

c
imin

. Finally, let Aarb be an arbitrary explo-

ration sequence of pulls. We say that Aarb exploits the bud-
get dedicated to the exploration if and only if after Aarb stops,
none of the arms can be additionally pulled without exceed-
ing the exploration budget. Given this, we now state the
main contribution of the paper.

Theorem 1 Suppose that Aarb is an arbitrary exploration
sequence, that exploits the given exploration budget, and
that within this sequence, each arm i is pulled ni times. Let
A denote the joint sequence of Aarb and Agreedy, where Agreedy

is as defined in Section 3.2. Then, for any k 1, B 0, and

0 1, with probability (1)k, the loss function of
sequence A is at most:

2 BDmax B
ln

nimax

ln

nImax

where nimax and nImax are the number of pulls of arms imax and
Imax, respectively.

A sketch of the proof is provided in the Appendix. Note that
this theorem is of no practical use, since it assumes knowl-
edge of imax and imin, which is unlikely in real applications.
However, it gives us a generic upper bound for the loss func-
tion that can be refined for specific exploration methods.

In particular, we now refine this upper bound for the case
of uniform pull exploration Auni. Since we uniformly pull

the arms, Auni exploits the exploration budget. Further-
more, according to Equation 3, each arm is pulled at least

B k
j 1 c j times. Thus, we can state the following:

Corollary 2 Let A first denote the pulling sequence of the
-first algorithm with uniform pull exploration and density

value–ordered greedy exploitation. For any k 1, B 0,

and 0 1, with probability (1)k, loss function of
A first is at most

L (A first) 2 BDmax 2B
(ln)

B k
j 1

c j

Apart from the uniform pull algorithm, other exploration
policies, such as UCB, or Boltzmann exploration (Cicirello
and Smith 2005), can be applied within our -first approach.
The upper bound given in Theorem 1 also holds for those
policies. However, refining this upper bound, as we did in
the case of the uniform pull algorithm, is a challenge. In par-
ticular, estimating the number of times each arm is pulled is
di cult in both UCB and Boltzmann explorations. Thus,
refined upper bounds cannot be derived for these policies
using the same technique as for the uniform pull policy. As
such, we must rely on empirical comparisons of –first with
uniform and non–uniform exploration policies.

5 Performance Evaluation

In this section, we evaluate our –first algorithm with uni-
form exploration and with UCB–based exploration, and
compare them to a modified version of the n–greedy algo-
rithm. The latter was originally proposed to solve the stan-
dard MAB problem, while UCB–exploration was developed
to solve the MAB with pure exploration. We compare these
algorithms in three scenarios, which highlight the benefits
of using an algorithm that is tailored to the budget–limited
MAB. However, before discussing the experiments, we first
describe the benchmark algorithms and explain why they
were chosen.

The n–greedy algorithm is designed for standard MABs.
It learns the values of all arms while still selecting the arm
with the highest reward infinitely more frequently than any
other, and can be described as follows: At each time–step n,
the arm with the highest expected reward estimate is pulled
with probability 1 n, otherwise a randomly selected arm is
pulled. The value of n is decreased over time, proportional
to O (1 n), starting from an initial value 0. However, since

n–greedy does not take pulling cost into account, we mod-
ify it to fit our model’s cost constraints. Specifically, the arm
with the highest reward value–cost ratio is pulled with prob-
ability 1 n, with any other randomly chosen arm pulled
with probability . Now, consider the case of a budget–
limited MAB when the budget B is considerably larger than
the pulling cost of each arm (e.g. B). In this situa-
tion, the di erence between the pulling cost of the arms are
not significant, and thus, this version of our problem could
be approximated by a standard MAB (without pulling cost).
However, when B is comparable to the arms’ pulling costs,
it is not obvious how traditional MAB algorithms, such as

n-greedy, behave.
Conversely, since our proposed -first approach relies sig-

nificantly on the e ciency of the exploration phase, it is not
obvious that uniformly pulling the arms is the best choice for

1214

Figure 1: Total loss of the algorithms in the case of 6-armed bandit machine, which has: (A) homogeneous
arms with expected reward value–cost parameter pairs 4 4 4 4 4 4 2 7 3 2 7 3 2 7 3 ; (B) diverse arms with pa-
rameter pairs 3 4 2 4 0 2 2 0 16 2 18 20 18 16 ; and (C) extremely diverse arms with with parameter pairs
0 44 5 0 4 4 0 2 3 0 08 1 14 120 18 150 .

exploration. Thus, there is a need to compare our proposed
algorithm with -first approaches that use di erent explo-
ration techniques. Given this, we choose an -first approach
with UCB–based exploration as the second benchmark al-
gorithm. The UCB exploration phase pulls the arm with the
highest upper confidence bound on the arm’s expected value,
in order to determine the arm with the highest expected re-
ward. Since UCB was proposed for MAB with non–costly
arms, we also have to modify its goal, similarly to the case
of n-greedy. Note that, according to Bubeck, Munos, and
Stoltz (2009), UCB typically results in better performance
in exploration than the uniform pull approach.

Now, recall that due to the limited budget, the optimal
solution of our MAB problem is not to repeatedly pull the
optimal arm, but to pull the optimal combination of arms.
However, our proposed exploitation algorithm, the reward–
cost ratio ordered greedy method, does not always return
an optimal combination, because it is an approximate algo-
rithm. Specifically, if the arms are homogeneous, that is,
the pulling costs do not significantly di er from each other,
then the reward–cost ratio ordered greedy typically results
in solely pulling the arm with highest reward estimate–cost
ratio. Consequently, it shows similarities to the n–greedy
policy in this case. On the other hand, when the arms are
more diverse, that is, the pulling costs are significantly dif-
ferent, the algorithm pulls more arms (for more details see
Kohli, Krishnamurti, and Mirchandani (2004)).

Given this, in order to measure the e ciency of the
reward–cost ratio ordered greedy in di erent situations, we
set three test cases, each of which considers a 6-armed ban-
dit machine which has: (i) homogenous arms; (ii) moder-
ately diverse arms; and (iii) extremely diverse arms. In the
moderately and extremely cases, two out of six arms have
moderately extremely more expensive pulling cost than the
others. Given this, the expected reward and cost values were
randomly chosen, with regard to these diversity properties.
Specifically, the distribution of the rewards are Gaussian,
with means given as the first element of the expected reward
value–cost pairs in the caption of Figure 1, with 0.1 variance
value , and supports [0 20]. The cost of each arm is given as
the second element of the expected reward value–cost pairs.
Finally, for all test cases, we run our simulation with di er-

ent budget values, from 400 to 4000. The numerical results
are depicted in Figure 1. Within this figure, the error bars
represent the 95% confidence intervals.

From Figure 1, we can see that in the homogeneous case,
both n-greedy and the -first with uniform exploration ap-
proach achieve similar e ciency. However, our algorithm
results in better performance when the arms are more di-
verse. In particular, the total loss of our algorithm is 50%
less in the diverse case, and 80% less in the extremely di-
verse case, than that of the n-greedy. In addition, despite the
better performance of UCB in exploration, the performance
of our algorithm surprisingly does not significantly di er
from that of the -first with UCB-based exploration, since
both uniform and UCB–based explorations can e ciently
determine those arms which are pulled in the reward–cost
ratio ordered greedy algorithm. In order to show this, and
to highlight the di erences of each algorithm’s behaviour as
well, consider a single run of the case of extremely diverse
arms, with budget B 3500. Figure 2 depicts the number of
pulls of each particular arm. Here, the optimal solution is to
pull arm 2 twelve times, arm 4 two times, and arm 6 twenty–
three times. We can see that both -first with uniform and
with UCB-based exploration show similar behaviour to the
optimal solution, however, n-greedy focuses on arms 2 and
5 instead, while arm 6 is not sampled at all. The reason is,
due to its nature, if n-greedy starts with a wrong arm (i.e.
not the best arm), it will stick with it for a while. Therefore,
in order to learn the best combination, it needs more time.
However, due to the limited budget, it does not have enough
time to do this.

6 Conclusions and Future Work

In this paper, we have introduced a new MAB model, the
budget-limited MAB with an overall budget, in which the
number of pulls is limited. Thus, di erent pulling behaviour
is needed within this model, in order to achieve maximal
expected total reward. Given this, we have proposed an -
first based approach that splits the overall budget into explo-
ration and exploitation budgets. Our algorithm uses a uni-
form pull policy for exploration, and the reward–cost ratio
ordered greedy algorithm for exploitation. Beside this, we
have devised a theoretical upper bound for the loss func-
tion of generic -first approaches with arbitrary exploration

1215

Figure 2: Number of pulls of each arm in the case of 6–armed
bandit with extremely diverse arms, and budget B 3500.

policies. We also have refined this upper bound to the spe-
cific case of uniform pull exploration. Finally, through sim-
ulation, we have demonstrated that the -first approaches
outperform the n-greedy method, an e cient algorithm for
standard MAB problems.

However, since it is di cult to estimate the number of
pulls of each arm, it is not trivial to refine the proposed
generic upper bound to other non–uniform exploration poli-
cies. Thus, new techniques are needed to provide bounds
for those methods. Therefore, as future work, we intend to
extend the analysis to other -first approaches with di erent
exploration and exploitation algorithms.

References
Andonov, R.; Poirriez, V.; and Rajopadhye, S. 2000. Unbounded
knapsack problem: dynamic programming revisited. European
Journal of Operational Research 123(2):394–407.

Antos, A.; Grover, V.; and Szepesvári, C. 2008. Active learning
in multi-armed bandits. In Proc. of 19th Int. Conf. on Algorithmic
Learning Theory 287–302.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time anal-
ysis of the multiarmed bandit problem. Machine Learning 47:235–
256.

Bubeck, S.; Munos, R.; and Stoltz, G. 2009. Pure exploration for
multi-armed bandit problems. Algorithmic Learning Theory 23–
37.

Cicirello, V. A., and Smith, S. F. 2005. The max k-armed bandit: a
new model of exploration applied to search heuristic selection. In
Proc. of AAAI’05 1355–1361.

Guha, S., and Munagala, K. 2007. Approximation algorithms for
budgeted learning problems. Proc. of STOC’07 104–113.

Kohli, R.; Krishnamurti, R.; and Mirchandani, P. 2004. Average
performance of greedy heuristics for the integer knapsack problem.
European Journal of Operational Research 154(1):36–45.

Padhy, P.; Dash, R. K.; Martinez, K.; and Jennings, N. R. 2006. A
utility-based sensing and communication model for a glacial sensor
network. In Proc. of AAMAS’06 1353–1360.

Robbins, H. 1952. Some aspects of the sequential design of exper-
iments. Bulletin of the AMS 55:527–535.

Appendix: Proof of Theorem 1
Before we prove it, let us prove the following auxiliary lemmas.

Lemma 3 Let Aarb denote an arbitrary exploration sequence that
exploits its exploration budget. Within this sequence, each arm i is

pulled ni times. Thus, we have k
i 1 ni i B imin c

imin 1

Lemma 4 If Agreedy is the density-ordered greedy exploitation al-

gorithm, then R Agreedy (1) B (Imax cImax) 1

Lemma 5 If A is the optimal sequence defined in equation (1),
then [R (A)] B (imax cimax)

Lemma 6 If a b 1, c d 2, a c, then d b 1 2

Proof of lemma 3. If Aarb exploits the budget for exploration, it is

true that for any c j,
k
i 1 nici B c j, since none of the arms can

be pulled after the stop of Aarb, without exceeding B. Furthermore,

i ci (i ci) ci imin c
imin . Since i 1, we have:

k

i 1

ni i

k

i 1

nici
imin

cimin

B cimin
imin

cimin

B imin

cimin

1

Proof of lemma 4. By just pulling arm Imax in the exploitation
phase, which is the first round of Agreedy, the expected reward we

can get there is
(1)B

cImax Imax . Since
(1)B

cImax

(1)B

cImax
1 , we have:

R Agreedy

(1) B

cImax

1 Imax (1)
B Imax

cImax

1

Proof of lemma 5. Suppose that in the optimal sequence, Ni is
the total number of pulls of arm i. Thus, the cost constraint can be

formulated as k
i 1 Nici B. Given this, we have:

[R (A)]

k

i 1

Ni i

k

i 1

Nici
i

ci

k

i 1

Nici
imax

cimax

B imax

cimax

Proof of lemma 6. Since a b 1, we have a b 1. Sim-
ilarly, we have d c 2. Since a c, we have the following:
d c 2 a 2 b 1 2.
Proof sketch of theorem 1. Let ni denote the number of pulls of
arm i in the exploration phase. Using Hoe ding’s inequality for
each arm i, and for any positive i, we have:

P
ˆ i

ci

i

ci
i exp ni

2
i c2

i (5)

By setting i
ln

nic
2
i

, it is easy to prove, that with probability

(1)k,
ˆ i

ci

i

ci
i holds for each arm i. Hereafter, we stricly

focus on this case. Given this, the reward collected in the explo-
ration phase can be calculated as follows:

[R (Aarb)]

k

i 1

ni i

B imin

cimin

1 (6)

The right side of equation (6) holds, due to lemma 3. Using lemma
4 and equation (6), we get the following:

[R (A)] [R (Aarb)] R Agreedy

B imin

cimin

(1)
B Imax

cImax

2 (7)

By denifition, we have Imax cImax imax cimax , and ˆ imax cimax

ˆ Imax cImax . Furthermore,
ˆ i

ci

i

ci
i holds for each arm i. Thus,

according to lemma 6, we have Imax cImax imax cimax imax Imax .
Substituting this into equation (7), we have:

[R (A)]
B imin

cimin

B
imax

cimax

B imax

cimax

(1) B (imax Imax) 2 (8)

According to lemma 5, [R (A)]
B imax

cimax
. Thus, by substitut-

ing it into equation (8), and using the definition of loss function in
equation (2), we have:

L (A) 2 BDmax B (imax Imax)

where Dmax (imax cimax) imin c
imin . Note that here we used the

fact that (1) 1. Thus, by replacing i
ln

nic
2
i

for i Imax

and i imax, and using the fact that ci 1 for each i, we get the
requested formula.

1216

