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Abstract

We report on a novel use of parallel coordinates as a ped-
agogical tool for illustrating the non-intuitive properties of
high dimensional spaces with special emphasis on the phe-
nomenon of Curse of Dimensionality. Also, we have collated
what we believe to be a representative sample of diverse ap-
proaches that exist in literature to conceptualize the Curse of
Dimensionality. We envisage that the paper will have peda-
gogical value in structuring the way Curse of Dimensionality
is presented in classrooms and associated lab sessions.

1 Introduction

Humans find it hard to imagine high dimensional spaces
since they are exclusively adapted to a world in three di-
mensions (3D). In practice, though immersed in a 3D world,
humans are more often experienced to living in two dimen-
sional (2D) world, and this can be appreciated from the way
we rely on 2D maps to localize ourselves. This is unlike
fishes which experience the 3D space of ocean completely.
Techniques like Flatland trick (Abbott 2006), require us to
construct a four dimensional (4D) picture from many 3D
projections by imagining how we are able to construct a
3D image in brain from multiple 2D projections. In spite
of this being a great introduction to imagining hyperspace,
it is quite challenging for anyone to extrapolate the ideas to
realistic high dimensional spaces. Students in Artificial In-
telligence (Al) and Machine Learning (ML) frequently en-
counter high dimensional design spaces in the form of mul-
tivariate data and complex models with large number of pa-
rameters. The phenomenon called Curse of Dimensionality
(COD)(Bellman 1961) which is unique to high dimensional
spaces could have profound effect on the design of search
algorithms in AL It is also one of the major challenges for
parameter estimation of learning algorithms in ML.

In this paper, we have attempted to collate what we be-
lieve to be a representative sample of diverse perspectives
that exist in literature for illustrating COD. These perspec-
tives are founded on either mathematical conclusions or
statistical comparisons. We will see in the following sec-
tion that while these approaches provide analytically useful
tools, they still leave a lot to imagination. This is because
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of our fundamental impairment in conceiving higher dimen-
sional spaces in a way that perceptually grounds its abstrac-
tions.

Inselberg’s novel contribution of Parallel Coordinates (In-
selberg 1985) makes some significant headway in overcom-
ing this limitation. We have created a novel use of Parallel
Coordinates as a pedagogical tool for visualizing the proper-
ties of high dimensional spaces and found it to be more con-
vincing in conveying the non-intuitive phenomena of COD
to students.

2 Perspectives on High Dimensional Spaces

In this section, we have presented the different perspectives
on COD in a sequence that will be of pedagogical value.
Firstly, there is an exponential increase in the volume of
space spanned by a hypercube as we go to higher dimen-
sions. Secondly, the volume of hypersphere approaches zero
as the number of dimensions increase. Another apparently
non-intuitive observation is that as we go to higher dimen-
sions, the hypercubes become spiky in shape. These obser-
vations have been elaborated upon in the following discus-
sion.

Observation 1 Richard Hamming gives a beautiful in-
troduction to n dimensional spaces in his book (Hamming
2003).
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Figure 1: Ants moving in a line could meet each other more
frequently than two men walking on the ground. Two fishes
swimming in an ocean or fish tank have even fewer chances

of meeting each other due to more number of degrees of
freedom available to them than men or ants.




Figure 1 is in line with Hamming’s introduction and high-
lights the fact that the chance of two living beings meeting
each other decreases with increase in the degrees of freedom
available to them for movement in their living space. This
effect is due to an exponential increase in the space (or vol-
ume) enclosed by a hypercube as the number of dimensions
increase.

Volume of a hypercube of edge length 27 in n dimensions,
Ven, 18 given by

Ven (27) (2r)" 1)

It can be seen from the above equation that the volume en-
closed by a hypercube increases exponentially with increas-
ing values of n.

Observation 2 Unlike hypercubes, hyperspheres exhibit a
curious behavior. Volume of a hypersphere in n dimensions,
Vin(r), is given by :
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Using the relation I'(n) = (n — 1)!, we get

n/2 ,.n
ey
Vin(r) = 3)

&)

In the above equation, the n! term in the denominator in-
creases rapidly in comparison to the numerator. This is so
because factorial function outgrows the exponential function
after a particular value of n, depending on the value of base
that we use in exponential functions. An unit hypersphere
grows in volume up to five dimensions and then begins to
shrink.

One motivation to study the behaviour of hyperspheres is
its application in range queries. Range queries involve iden-
tifying the objects located within a particular distance from
the given query. In general, a bounding rectangle around the
query is used as an approximation for range queries. As we
move to higher dimensions, for a given distance threshold,
the volume of the bounding rectangle keeps increasing expo-
nentially whereas the volume of the hypersphere approaches
ZErOo.

Another point to note is that most of the volume of a hy-
persphere is in a narrow annulus as explained below. Con-
sider a circle inscribed within a square as in Figure 2(a).
The area of the inscribed circle will be a constant fraction
of that of square. Similarly, for a sphere, the volume will be
a constant fraction of that of the circumscribing hypercube
(see Figure 2(b)). Therefore, the volume of a hypersphere in
n dimensions will be a constant fraction of the volume of the
circumscribing hypercube. This constant depends on n and

71_n/z

equals 72 which can be derived from Equation 3. Let C,,

denote this constant that is dependent on n.
Volume of hypersphere of radius r in n dimensions

=Cpr" “
Volume of hypersphere of radius r (1 — €) in n dimensions
=C,[r(1—¢]|" 5)
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Figure 2: Most of the volume of a sphere is in a narrow an-
nulus

where 0 <e <1.

The difference in volume between these two hyperspheres
given by Equation 6 will give the volume concentrated in the
region outer to the hypersphere of radius r (1 — €) and inner
to the hypersphere of radius r (see Figure 2(c)).

Cot" = Colr (1=¢)" = Cor"[1=(1-€)" (6

Cpr"—=Cpr(l—9]" = Cpr" @)
Even for very small values of €, the term (1 — €)™ in Equa-
tion 6 tends to 0 as n tends to oo. This means that in higher
dimensions, almost all of the volume of the hypersphere is
near the surface and there is negligible volume in the inte-
rior.

Observation 3 It is a hard to imagine fact that hypercubes
become spiky in their shape in high dimensions. Consider a
square of unit edge length placed at same origin as a circle
of unit radius shown in Figure 3. The maximum distance be-
tween any points within the unit square is equal to the length
of the diagonal which is v/2. In the unit circle, the maximum
distance between any two points is the diameter which is 2
units. Clearly, the corners of the square lie within the cir-
cle. When n 4, the diagonal of hypercube is of length

4% (1)2 = 2 units. The diameter of the hypersphere also
remains 2 units which means that the corners of the hyper-
cube touch the surface of hypersphere in four dimensions.
In higher dimensions, the corners of the hypercube extend
outside the hypersphere and hence becomes spiky in shape
as can be seen in Figure 3. A hypercube has almost no vol-
ume at the centre. Entire volume is contained in the corners
of the hypercube in higher dimensions.

Observation 4 We can derive the ratio of volume of an
inscribed hypersphere of radius r to the volume of the cir-
cumscribing hypercube of edge length 27 from Equations 2
and 1.

Vin w(n/2)

Ven 27 (n/2)!
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Figure 3: Adapted from (Hopcroft and Kannan 2014) illus-
trating a sphere enclosing a cube in 2,4 and n dimensions

As n goes to infinity, the volume of the hypersphere becomes
insignificant relative to that of the hypercube. This implies
the fact that almost the entire high dimensional volume is far
away from the center or in other words, near the corners of
the hypercube.

2.1 Manifestations of COD

We now discuss the manifestation of COD on nearest neigh-
bour search and training sample size required by learning
algorithms. These manifestations are directly related to the
observations made in the previous section.

On Nearest Neighbor Search The exponential increase
in volume of hypercube affects the nearest neighbour search
algorithms in higher dimensions. The manifestation of COD
on nearest neighbor search can also be illustrated using the
idea of a hypercubical neighborhood (Hastie et al. 2005) as
shown in Figure 4. Given a query point, the expected edge
length of the hypercubical neighborhood containing it such

1

that it covers a fraction r of the total observations is 7P
where p is the number of dimensions . As we go to higher
dimensions, this hypercubical neighborhood becomes very
large. For example, in ten dimensions, to cover 1% of the
observations, it is necessary to search 63% of the range of
each input variable which is a very large search space for
nearest neighbor search. This drives home the fact that it is
no longer possible to limit the number of candidates for dis-
tance calculation by pruning the search space to a smaller
bounding box around the query point

On Sample Size The same authors (Hastie et al. 2005)
have also used sampling density as a measure to explain
the exponential increase in the number of training samples
needed for machine learning algorithms as we move from
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Figure 4: Adapted from (Hastie et al. 2005) to illustrate the
exponential increase of search space in high dimensions.
The graph shows the edge length of the subcube needed to
capture a fraction of the volume of the data for different di-
mensions p. In ten dimensions we need to cover 80% of the
range of each coordinate to capture 10% of the data.

lower to higher dimensions. The sampling density is propor-

tional to NV b where N is the sample size. Thus, if N3 = 100
represents a dense sample for a single parameter model, then
Nigo = 100'° is the sample size required for the same sam-
pling density with 10 inputs which is very large. Also, since
more data points move towards the surface of the sphere,
extrapolation is needed instead of interpolation making the
task of prediction more difficult.

3 Parallel Coordinates as a Pedagogical Tool
for Conceptualizing COD

In order to make the phenomenon of COD easier to grasp
we have created visualization for some of the discussed per-
spectives through a novel use of parallel coordinates. Par-
allel coordinates is an interesting topic of research in itself.
However, for understanding the concepts explained in this
paper, it would suffice to know only the fundamentals dis-
cussed in Section 3.1. We have used version 2.2 of XDAT, a
free Parallel coordinates software, for our illustrations.

3.1 Parallel Coordinates (PC)

Parallel Coordinates(PC) is a novel contribution by Alfred
Inselberg (Inselberg 1985) for visualizing

1. Multivariate data
2. High dimensional geometry

To visualize a dataset of n dimensions, n parallel lines are
drawn on the plane which are typically vertical and equally
spaced as shown in Figure 5.
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Figure 5: The three orthogonal axes in Cartesian coordinates
become three parallel lines in Parallel coordinates.
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Figure 6: A point in Cartesian coordinates becomes a poly-
line in Parallel coordinates.

Point to Line Duality in Parallel Coordinates A point
in n dimensional space is represented as a polyline with i*
coordinate of the point on the i** parallel axis. An example
is shown in Figure 6.

A line in an n dimensional space is represented by the
point of intersection of the set of all polylines corresponding
to the infinite number of points on the line in 7 dimensional
space. An example is shown in Figure 7.
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Figure 7: A line in Cartesian coordinates becomes a point
(the point of intersection of all polylines) in Parallel coordi-
nates.

Plotting of Hypercube and Hypersphere in PC A n di-
mensional hypercube on Parallel coordinates is represented
by plotting the polylines corresponding to the corners of the
hypercube. In Figure 8, the square is represented by the four
polylines representing the four corners. A circle in Parallel
coordinates is represented by plotting the polylines corre-
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sponding to the infinite number of points on the circumfer-
ence of the circle and can be seen from Figure 8. A n dimen-
sional hypersphere is represented in Parallel coordinates by
n — 1 copies of a circle having the same radius and center as
the hypersphere. The Parallel coordinate plot for a sphere is
shown in Figure 8.
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Figure 8: Parallel coordinate plots of Square, Circle and
Sphere

3.2 Visualization of COD on Parallel Coordinates

Visual Area In order to illustrate the shrinking and expo-
nentially increasing volumes of hypersphere and hypercube
respectively, we introduce the novel concept of Visual Area.
Visual area of a set of polylines is defined as the area of
envelope of the set of polylines, i.e., area of the polygon
formed by the maximum and minimum of the plotted co-
ordinate values on each axis in the Parallel coordinates plot.
The visual areas corresponding to a square, circle and sphere
are as explained in Figure 8.

In the following discussion, we use 4 to denote the inter-
axis distance in Parallel coordinate plots. By placing a con-
straint on the distance between the parallel axes, it is possi-
ble to make the visual area proportional to the volume en-
closed by the n dimensional object. The formulation is ex-
plained below.
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Figure 9: Visual areas of cube and sphere in 3 dimensions

Hypercube Let 6. denote the distance between axes for
the parallel coordinate plot of hypercube of edge length 27.
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Figure 11: Visual areas of cube and sphere in 7 dimensions

In 2 dimensions, we need the visual area to be proportional
to the area of the square as shown in below equation.

2r % Ope o< (2r)? ©)

In 3 dimensions, we need the visual area to be proportional
to the volume of the cube.

2r % 20y oc (2r)° (10)
Generalizing the above idea to n dimensions,
2r % (n—1) dpe ox (2r)" 11
(gr)n—l
Ohe — 12
he X (1) (12)
Taking the proportionality constant as 1, . becomes

or)n—1 Cq . . . .
equal to % The rapid increase in the visual areas in

Figures 9 to 11 is analogous to the exponential increase in
the volume of hypercubes.
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Hypersphere Let 0, denote the distance between axes
for the parallel coordinates plot of hypersphere. The visual
area of the hypersphere of n dimensions is n — 1 times the
visual area of a circle of the same radius. From Figure 8§
we can say that the visual area of a circle of radius r is p
(0<p<1) times the visual area of a square of edge length 2r.
Proceeding in the same manner and using Equation 3, we
get
7.‘.n/ 2 pn—1

2p (5 +1) (n—1)
Taking the proportionality constant as 2p, and using the re-

7,l_n/2 -t AS

lation I'(n) = (n —1)!, we get 0y, equal to 7D T

n — 00, it can be seen from Equation 13 that §,; — 0.
This is in line with the shrinking of volume of a hypersphere
and can be appreciated from the shrinking of inter-axis dis-

tances in Figures 9 to 11.

5hs X (13)



Ratio of Inter-axis Distances Explaining COD Due to
the constraint placed on inter-axis distances, the visual areas
obtained will be proportional to the volumes. Hence, we can
use the ratio of inter-axis distances or ratio of visual areas
instead of the ratio of volumes to conceptualize COD.

Sns m(n/2)

Ope 2771 (n/2)!
In Equation 14, for large values of n, the numerator is very
small compared to the denominator indicative of the already
discussed fact that the proportion of volume occupied by a
hypersphere inscribed within a hypercube becomes insignif-
icant at high dimensions.

From the Figures 9 to 11, we can observe that the visual
area for hypercubes increases very rapidly as the number of
dimensions increase. On the other hand, the visual area of
hyperspheres shrinks and approaches zero in higher dimen-
sions which can be appreciated easily from Figures 9 to 11.
Hence, by placing appropriate constraints on the inter-axis
distances, visual area can be made a surrogate for volume
thereby helping to visualize the phenomenon of COD.

(14)

4 Topic Structuring

We propose the following ordering of observations for pre-
senting COD in class.

1. Motivate the need for studying the phenomena of COD
(Section 2.1 on Manifestations of COD).

2. Introduce the exponential increase in volume of a hyper-
cube with increase in dimensions. (Observation 1 in Sec-
tion 2).

3. Introduce the shrinking volume of hypersphere with in-
creasing dimensions (Observation 2 in Section 2).

. Discuss the moving of points towards the corners of hy-
percube (Observation 3 in Section 2).

5. Compare and contrast the behavior of the volume of a hy-
persphere to that of a hypercube (Observation 4 in Section
2).

6. Illustrate the above observation on the ratio of volume of
hypersphere to hypercube using Visual Area in Parallel
Coordinates (Section 3.2).

5 Conclusion

The diverse perspectives on the Curse of Dimensionality is
indicative of the effects that this phenomenon can have while
working with high dimensional data. For example, we have
seen from the discussion on COD that the data sample be-
comes sparse in high dimensions. This has its effect in Ma-
chine Learning in the process of model choice. Choosing a
model for the given data depends on the number of param-
eters to estimate for the model and the number of training
examples available. Similarly, the perspective that almost all
the volume is near the surface of the hypersphere, in other
words, towards the corners of the hypercube, has an adverse
effect on the search algorithms based on locality of search.
More such effects of COD can be seen in practice for the
other perspectives also.
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Many works exist in literature on using Parallel coordi-
nates for analyzing data. Our work is novel in that it provides
a way to visualize the search space itself. By equating vi-
sual area to volume, we could effectively see the COD being
manifested in high dimensions.We believe that our approach
to introduce, explain and illustrate the phenomena of Curse
of Dimensionality will have pedagogical value in conveying
the idea to the readers.
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