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Abstract   Artists express emotions through art. To accomplish this they rely on 
lines, shapes, textures, color, light, sounds, music, words and the body. The virtual 
humans field has been neglecting the kind of expression we see in the arts. In fact, 
researchers tend to focus on gesture, face and voice for the expression of emo-
tions. But why limit ourselves to the body? In this context, drawing on the accu-
mulated knowledge from the arts, this chapter describes an evolutionary model for 
the expression of emotions in virtual humans using lights, shadows, filters and 
composition. Lighting expression relies on a local pixel-based model supporting 
light and shadows parameters regularly manipulated in the visual arts. Screen ex-
pression uses filters and composition to manipulate the virtual human’s pixels 
themselves in a way akin to painting. Emotions are synthesized using the OCC 
model. Finally, to learn mappings between affective states and lighting and screen 
expression, an evolutionary model which relies on genetic algorithms is proposed. 
The model generates alternatives using crossover and mutation and selects alterna-
tives based on feedback from artificial and human critics. 

1 Introduction 

“The anger which I feel here and now (...) is no doubt an instance of anger (...); but it is 
much more than mere anger: it is a peculiar anger, not quite like any anger that I ever felt 
before” 

In this passage by Collingwood (1938), the artist is trying to express an emotion. 
But, this isn’t just any emotion. This is a unique emotion. As he tries to make 
sense of it, he shall express it using lines, shapes, textures, color, light, sound, mu-
sic, words and the body. The perspective of art as the creative expression of emo-
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tions is not new and exists, at least, since the Romanticism (Oatley 2003; Sayre 
2007). The idea is that when the artist is confronted with unexpected events, emo-
tions are elicited and a creative response is demanded (Averill et al. 1995). Thus, 
through the creative expression of its feelings, the artist is trying to understand 
their peculiarity. But art is not simply an outlet for the artist’s emotions. From the 
perspective of the receiver, through its empathic emotional response to a work of 
art, it is also seen as a means to learn about the human condition (Elliot 1966; Oat-
ley 2003). Emotions are, therefore, intrinsically related to the value of art. 

Affective computing has been neglecting the kind of expression we see in the 
arts. The state-of-the-art in the related virtual humans field is a case in point. Vir-
tual humans are embodied characters which inhabit virtual worlds and look, think 
and act like humans (Gratch et al. 2002). Thus far, researchers tended to focus on 
gesture (Cassell 2000), face (Noh and Neumann 1998) and voice (Schroder 2004) 
for emotion expression. But, in the digital medium we need not be limited to the 
body.  

In this context, drawing on accumulated knowledge from art theory, this work 
proposes to go beyond embodiment and synthesize expression of emotions in vir-
tual humans using lights, shadows, composition and filters. This approach, there-
fore, focuses on two expression channels: lighting and screen. In the first case, the 
work inspires on the principles of lighting, regularly explored in theatre or film 
production (Alton 1949; Malkiewicz and Grybosky 1986; Millerson 1999; Birn 
2006), to convey the virtual human’s affective state through the environment’s 
light sources. In the second case, the work acknowledges that, at the meta level, 
virtual humans are no more than pixels in the screen which can be manipulated, in 
a way akin to the visual arts (Birn 2006; Gross 2007; Zettl 2008), to emotions. 
Now, having defined which expression channels to explore, what remains to be 
defined is how to map affective states into lighting and screen expression. 

This work explores genetic algorithms (GAs) (Mitchell 1999) to learn the map-
pings between affective states and the expression channels. Genetic algorithms 
seem appropriate for several reasons. First, there are no available datasets exem-
plifying what correct expression of emotions using lights or screen is. Thus, stan-
dard supervised machine learning algorithms, which rely on a teacher, seem un-
suitable. Furthermore, art varies according to time, individual, culture and what 
has been done before (Sayre 2007). Therefore, the artistic space should be ex-
plored in search of creative - i.e., new and aesthetic - expression. Genetic algo-
rithms, defining a guided search, are, thus, appropriate. Second, the virtual hu-
mans field is new and novel forms of expression are available. Here, the GAs clear 
separation between generation and evaluation of alternatives is appropriate. Alter-
natives, in this new artistic space, can be generated using biologically inspired op-
erators - selection, mutation, crossover, etc. Evaluation, in turn, could rely on fit-
ness functions drawn from art theory. Finally, it has been argued that art is 
adaptive as it contributes to the survival of the artist (Dissanayake 1987). This, of 
course, meets the GAs biological motivation. 
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The remainder of the chapter is organized as follows. Section 2 provides back-
ground on virtual humans and describes the digital medium’s potential for expres-
sion of emotions, focusing on lighting and screen expression. Section 3 describes 
the virtual human model, detailing the lighting and screen expression channels. 
Section 4 describes the evolutionary approach which maps affective states into the 
expression channels. Section 5 describes some of the results. Finally, section 6 
draws some conclusions and discusses future work. 

2 Background 

2.1 Expression in the Arts 

There are several conceptions about what expression in the arts is. First, it relates 
to beauty as the expression of beauty in nature (Batteux 1969). Second, it relates 
to culture as the expression of the values of any given society (Geertz 1976). 
Third, it relates to individuality as the expression of the artists’ liberties and values 
(Kant 1951). Finally, it relates to emotions as the expression of the artists’ feel-
ings. In fact, many acknowledge the importance of emotions for appreciating and 
attributing value to the arts. From the perspective of the creator, expression is seen 
as a way of understanding and coming to terms with what he is experiencing af-
fectively (Collingwood 1938). From the perspective of the receiver, through its 
empathetic emotional responses to a work of art, it is seen as means to learn about 
the human condition (Elliot 1966; Oatley 2003). Finally, Artistic expression is a 
creative endeavor (Kant 1951; Gombrich 1960; Batteux, 1969; Sayre 2007). Art is 
not a craft were artists can simply follow a set of rules to reach a result (Colling-
wood 1938) and, according to the Romanticism’s view, art is the creative expres-
sion of latent affective states (Oatley 2003). In fact, Gombrich (1960) argues that 
this idiosyncrasy is inescapable as the artist’s visual perceptions are necessarily 
confronted with its mental schemas, including ideas and preconceptions. This 
work tries to explore the kind of expression we see in the arts in the context of vir-
tual humans. Furthermore, a simple rule-based approach is avoided and, instead, a 
machine-learning approach, which is more likely to be able to adapt to dynamic 
artistic values, is pursued to learn mappings between emotional states and light 
and screen expression. 



4  

2.2 Expression of Emotions in the Digital Medium 

Digital technology is a flexible medium for the expression of emotions. In virtual 
worlds, inhabited by virtual humans, besides embodiment, at least four expression 
channels can be identified: camera, lights, sound, and screen. The camera defines 
the view into the virtual world. Expressive control, which inspires on cinema and 
photography, is achieved through selection of shot, shot transitions, shot framing 
and manipulation of lens properties (Arijon 1976; Katz 1991; Block 2001; 
Malkiewicz and Mullen 2005). Lights define which areas of the scene are illumi-
nated and which are in shadow. Furthermore, lights define the color in the scene. 
Expressive control, which inspires in the visual arts, is achieved through manipu-
lation of (Alton 1949; Malkiewicz and Grybosky 1986; Millerson 1999; Birn 
2006): light type, placement and angle; shadow softness and falloff; color proper-
ties such as hue, brightness and saturation. Sound refers to literal sounds (e.g., dia-
logues), non-literal sounds (e.g., effects) and music. Expressive control, which in-
spires in drama and music, is achieved through selection of appropriate content for 
each kind of sound (Juslin and Sloboda 2001; Zettl 2008). Finally, the screen is a 
meta channel referring to the pixel-based screen itself. Expression control, which 
inspires on cinema and photography, is achieved through manipulation of pixel 
properties such as depth and color (Birn 2006; Zettl 2008). This work focuses on 
lighting and screen expression. 

2.3 Expression of Emotions in Virtual Humans 

Virtual humans are embodied characters which inhabit virtual worlds (Gratch et 
al. 2002). First, virtual humans look like humans. Thus, research draws on com-
puter graphics for models to control the body and face. Second, virtual humans 
think and act like humans. Thus, research draws on the social sciences for models 
to produce synchronized verbal and nonverbal communication as well as convey 
emotions and personality. Emotion synthesis usually resorts to cognitive appraisal 
theories of emotion, being the Ortony, Clore and Collins (OCC) theory (Ortony et 
al. 1988) one of the most commonly used. Emotion expression tends to focus on 
conveying emotions through synchronized and integrated gesture (Cassell 2000), 
facial (Noh and Neumann 1998) and vocal (Schroder 2004) expression. In con-
trast, this work goes beyond the body using lights, shadows, composition and fil-
ters to express emotions. 

A different line of research explores motion modifiers which add emotive quali-
ties to neutral expression. Amaya (Amaya et al. 1996) uses signal processing tech-
niques to capture the difference between neutral and emotional movement which 
would, then, be used to confer emotive properties to other motion data. Chi and 
colleagues (Chi et al. 2000) propose a system which adds expressiveness to exis-
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tent motion data based on the effort and shape parameters of a dance movement 
observation technique called Laban Movement Analysis. Hartmann (Hartmann et 
al. 2005) draws from psychology six parameters for gesture modification: overall 
activation, spatial extent, temporal extent, fluidity, power and repetition. Finally, 
de Melo (de Melo and Paiva 2005) proposes a model for expression of emotions 
using the camera, light and sound expression channels. However, this model did 
not focus on virtual humans, used a less sophisticated light channel than the one 
proposed here, did not explore screen expression and used simple rules instead of 
an evolutionary approach. 

2.4 Expression of Emotions using Light 

This work explores lighting to express virtual humans’ emotions. Lighting is the 
deliberate control of light to achieve expressive goals. Lighting can be used for the 
purpose of expression of emotions and aesthetics (Alton 1949; Malkiewicz and 
Grybosky 1986; Millerson 1999; Birn 2006). To achieve these goals, the follow-
ing elements are manipulated (Millerson 1999; Birn 2006): (a) type, which defines 
whether the light is a point, directional or spotlight; (b) direction, which defines 
the angle. Illumination at eye-level or above is neutral, whereas below eye-level is 
unnatural, bizarre or scary; (c) color, which defines color properties. Color defini-
tion based on hue, saturation and brightness (Hunt 2004) is convenient as these 
are, in Western culture, regularly manipulated to convey emotions (Fraser 2004); 
(d) intensity, which defines exposure level; (e) softness, which defines how hard 
or soft the light is. Hard light, with crisp shadows, confers a harsh, mysterious, 
environment. Soft light, with soft transparent shadows, confers a happy, smooth, 
untextured environment; (f) decay, which defines how light decays with distance; 
(g) throw pattern, which defines the shape of the light. Shadows occur in the ab-
sence of light. Though strictly related to lights, they tend to be independently con-
trolled by artists. Shadows can also be used to express emotions and aesthetics 
(Alton 1949; Malkiewicz and Grybosky 1986; Millerson 1999; Birn 2006) through 
manipulation of the following elements: (a) softness, which defines how sharp and 
transparent the shadow is. The denser the shadow, the more dramatic it is; (b) size, 
which defines the shadow size. Big shadows confer the impression of an ominous, 
dramatic character. Small shadows confer the opposite impression. Lighting tran-
sitions change the elements of light and shadow in time. Transitions can be used to 
express the mood of the scene (Millerson 1999; Birn 2006). Digital lighting pro-
vides more expressive control to the artist as, besides giving free control of all 
light and shadow elements, the image’s pixels can now be manipulated in a way 
akin to painting. 
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2.5 Expression of Emotions using Pixels 

At a meta level, virtual humans and virtual worlds can be seen as pixels in a 
screen. Thus, as in painting, photography or cinema, it is possible to manipulate 
the image itself for expressive reasons. In this view, this work explores composi-
tion and filtering for the expression of emotions. Composition refers to the process 
of arranging different aspects of the objects in the scene into layers which are then 
manipulated and combined to form the final image (Birn 2006). Here, aspects re-
fer to the ambient, diffuse, specular, shadow, alpha or depth object components. 
Composition has two main advantages: increases efficiency as different aspects 
can be held fixed for several frames; and, increases expressiveness as each aspect 
can be controlled independently. Composition is a standard technique in film pro-
duction. Filtering is a technique where the scene is rendered into a temporary tex-
ture which is then manipulated using shaders before being presented to the user 
(Zettl 2008). Shaders replace parts of the traditional pipeline with programmable 
units (Moller and Haines 2002). Vertex shaders modify vertex data such as posi-
tion, normal and texture coordinates. Pixel shaders modify pixel data such as color 
and depth. Filtering has many advantages: has constant performance independ-
ently of scene complexity; can be very expressive due to the variety of available 
filters (St-Laurent 2004); and, is scalable as several filters can be concatenated. 

2.6 Evolutionary Approaches 

We are not aware of any prior attempt to use evolutionary algorithms to express 
emotions in virtual humans. Nevertheless, they have been widely explored in com-
puter graphics. Karl Sims (Sims 1991) explores a genetic programming approach 
using symbolic lisp expressions to generate images, solid textures and animations. 
The artist Steven Rooke (World 1996) uses a set of low and high-level primitives 
to guide his genetic programming approach to generate images within his own 
style. Contrasting to the previous approaches, genetic algorithms have been used 
to evolve shaders (Lewis 2001), fractals (Angeline 1996), animations (Ventrella 
1995) and complex three-dimensional objects (Todd and Latham 1992). In all pre-
vious systems, the user interactively guides the evolution process. However, at-
tempts have been made to automate this process. Representative is the NEvAr sys-
tem (Machado 2006) which proposes an artificial critic which, first, extracts 
features from the images in the population and, then, applies a neural network, 
trained with appropriate examples, to select the fittest. This project explores both 
the interactive and artificial critic approaches. In the latter case, the critic is based 
on rules from art theory. 
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3 The Model 

The virtual human model is summarized in Fig.1. The virtual human itself is struc-
tured according to a three-layer architecture (Blumberg and Galyean 1995; Perlin 
and Goldberg 1996). The geometry layer defines a 54-bone human-based skeleton 
which deforms the skin. The skin, in turn, is divided into body groups – head, 
torso, arms, hands and legs. The animation layer defines keyframe and procedural 
animation mechanisms. The behavior layer defines speech and gesticulation ex-
pression and supports a language for multimodal expression control. Finally, sev-
eral expression modalities are built on top of this layered architecture. Bodily ex-
pression manipulates face, postures and gestures. Further details on bodily 
expression, which will not be addressed here, can be found in (de Melo and Paiva 
2006a; de Melo and Paiva, 2006b). Lighting expression explores the surrounding 
environment and manipulates lights and shadows. Screen expression manipulates 
the virtual human pixels themselves. These expression channels are detailed next. 
 

 

3.1 Lighting Expression 

Lighting expression relies on a local pixel-based lighting model. The model sup-
ports multiple sources, three light types and shadows using the shadow map tech-
nique (Moller and Haines 2002). The detailed equations for the lighting model can 
be found in (de Melo and Paiva 2007). Manipulation of light and shadow elements 
(subsection 2.4) is based on the following parameters: (a) type, which defines 
whether to use a directional, point or spotlight; (b) direction and position, which, 
according to type, control the light angle; (c) ambient, diffuse and specular colors, 
which define the color of each of the light’s components in either RGB (red, 
green, blue) or HSB (hue, saturation and brightness) space; (d) ambient, diffuse 
and specular intensity, which define the intensity of each of the components’ 
color. Setting intensity to 0 disables the component; (e) attenuation, attnPower, 
attnMin, attnMax, which simulate light falloff. Falloff is defined as attenuation-
attnPower and is 0 if the distance is less than attnMin and 1 beyond a distance of 
attnMax; (f) throw pattern, which constraints the light to a texture using compo-
nent-wise multiplication; (g) shadow color, which defines the shadow color. If set 
to grays, shadows become transparent; if set to white, shadows are disabled; (h) 
shadow softness, which defines the falloff between light and shadow areas. Fi-
nally, sophisticated lighting transitions, such as accelerations and decelerations, 
are based on parametric cubic curve interpolation of parameters (Moller and 
Haines 2002). 
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3.2 Screen Expression 

Screen expression explores composition and filtering. Filtering consists of render-
ing the scene to a temporary texture, modifying it using shaders and, then, present-
ing it to the user. Several filters have been explored in the literature (St-Laurent 
2004) and this work explores some of them: (a) the contrast filter, Fig.2-(b), 
which controls virtual human contrast and can be used to simulate exposure ef-
fects; (b) the motion blur filter, Fig.2-(c), which simulates motion blur and is usu-
ally used in film to convey nervousness; (c) the style filter, Fig.2-(d), which ma-
nipulates the virtual human’s color properties to convey a stylized look; (d) the 
HSB filter, which controls the virtual human hue, saturation and brightness. Filters 
can be concatenated to create compound effects and its parameters interpolated us-
ing parametric cubic curve interpolation (Moller and Haines, 2002). 

Composition refers to the process of (Birn 2006): arranging different aspects of 
the objects in the scene into layers; independently manipulating the layers for ex-
pressive reasons; combining the layers to form the final image. A layer is charac-
terized as follows: (a) is associated with a subset of the objects which are rendered 
when the layer is rendered. These subsets need not be mutually exclusive; (b) can 
be rendered to a texture or the backbuffer. If rendered to a texture, filtering can be 
applied; (c) has an ordered list of filters which are successively applied to the ob-
jects. Only applies if the layer is being rendered to a texture; (d) is associated with 
a subset of the lights in the scene. Objects in the layer are only affected by these 
lights; (e) defines a lighting mask, which defines which components of the associ-
ated lights apply to the objects; (f) can render only a subset of the virtual human’s 
skin body groups. Finally, layer combination is defined by order and blending op-
eration. The former defines the order in which layers are rendered into the back-
buffer. The latter defines how are the pixels to be combined. 
 

3.3 Synthesis of Emotions 

Virtual human emotion synthesis is based on the Ortony, Clore and Collins (OCC) 
model (Ortony et al. 1988). All 22 emotion types, local and global variables are 
implemented. Furthermore, emotion decay, reinforcement, arousal and mood are 
also considered. Emotion decay is, as suggested by Picard (1997), represented by 
an inverse exponential function. Emotion reinforcement is, so as to simulate the 
saturation effect (Picard 1997), represented by a logarithmic function. Arousal, 
which relates to the physiological manifestation of emotions, is characterized as 
follows: is positive; decays linearly in time; reinforces with emotion eliciting; and, 
increases the elicited emotions’ potential. Mood, which refers to the longer-term 
effects of emotions, is characterized as follows: can be negative or positive; con-
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verges to zero linearly in time; reinforces with emotion eliciting; if positive, in-
creases the elicited emotions’ potential, if negative, decreases it. Further details 
about this model can be found in (de Melo and Paiva 2005). 

3.4 Expression of Emotions 

A markup language, called Expression Markup Language (EML), is used to con-
trol multimodal expression. The language supports arbitrary mappings of emo-
tional state conditions and synchronized body, light and screen expression. The 
language is structured into modules. The core module defines the main elements. 
The time and synchronization module defines multimodal synchronization mecha-
nisms based on the W3C’s SMIL 2.0 specification1. The body, gesticulation, voice 
and face modules control bodily expression. The light module controls light ex-
pression, supporting modification of light parameters according to specific transi-
tion conditions. The screen module controls screen expression, supporting modifi-
cation of the composition layers’ filter lists. Finally, the emotion module supports 
emotion synthesis and emotion expression. Regarding emotion synthesis, any of 
the OCC emotion types can be elicited. Regarding emotion expression, the module 
supports the specification of rules of the form:  

 
{emotionConditions}∗  → {bodyAc | lightAc | screenAc | emotionAc}* 

 
where: emotional conditions – emotionConditions – evaluate mood, arousal or ac-
tive emotions’ intensity or valence; expressive actions – bodyAc, lightAc and 
screenAc – refer to body, light or screen actions as defined by its respective mod-
ules; and, emotion actions – emotionAc – elicit further emotions. 

Even though convenient, the definition of rules is unlikely to capture the way 
artistic expression works (subsection 2.1). There are, in fact, several rules and 
guidelines for effective artistic expression available in the literature. However, the 
expression of emotions in the arts is essentially a creative endeavor and artists are 
known to break these rules regularly (Sayre 2007). Thus, a better approach should 
rely on machine learning theory, which would support automatic learning of new 
rules and more sophisticated mappings between emotional states and bodily, envi-
ronment and screen expression. In the next section an approach for learning such 
mappings which is based on genetic algorithms is described. 

                                                           
1 SMIL: Synchronized Multimedia Integration Language (SMIL). 

http://www.w3.org/AudioVideo/ 

http://www.w3.org/AudioVideo/
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4 Evolutionary Expression of Emotions 

In this section an evolutionary model which learns mappings between affective 
states and multimodal expression is presented. The model revolves around two 
key entities: the virtual human and the critic ensemble. The virtual human tries to 
evolve the best way to express some affective state. For every possible state, it be-
gins by generating a random set of hypotheses, which constitute a population. The 
population evolves resorting to a genetic algorithm under the influence of feed-
back from the critic ensemble. The ensemble is composed of human and artificial 
critics. The set of evolving populations (one per affective state) are kept on the 
working memory. The genetic algorithm only operates on populations in working 
memory. These can be saved persistently in the long-term memory. Furthermore, 
high fitness hypotheses (not necessarily from the same population) are saved in 
the long-term memory’s gallery. Hypotheses from the gallery can, then, provide 
elements to the initial population thus, promoting high fitness hypotheses evolu-
tion. This model is summarized in Fig.3 and detailed in the following sections. 

4.1 Genetic Algorithm 

At the core of the model lies a standard implementation of the genetic algorithm 
(Mitchell 1999). The algorithm’s inputs are: 
• the critic ensemble for ranking candidate hypotheses; 
• stopping criteria to end the algorithm. This can be a number of iterations, a 

fitness threshold or both;  
• the size of the population, p, to be maintained; 
• the selection method, SM, to select probabilistically among the hypotheses in 

a population. Two methods can be used: roulette wheel, which selects a hy-
pothesis according to the ratio of its fitness to the sum of all hypotheses fit-
ness, see (1); tournament selection, which selects with some probability p′ the 
most fit of two hypotheses selected according to (1). Tournament selection of-
ten yields a more diverse population than roulette wheel (Mitchell 1999); 
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• r, the crossover rate; 
• m, the mutation rate; 
• e, the elitism rate. 

 
The algorithm begins by setting up the initial population. This can be generated 

at random or loaded from long-term memory (subsection 4.4). Thereafter, the al-
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gorithm enters an infinite loop, evolving populations, until the stopping criterion is 
met. At each iteration, first, (1−r)p percent of the population is selected for the 
next generation; second, rp/2 pairs of hypotheses are selected for crossover and 
the offspring are added to the next generation; third, m percent of the population 
are randomly mutated; fourth, e percent of hypotheses from the population are 
copied unchanged to the next generation. The rationale behind elitism is to avoid 
losing the best hypotheses when a new generation is evolved (Mitchell 1999). 
Evaluation, throughout, is based on feedback from the critic ensemble (subsection 
4.5). The algorithm is summarized as follows: 
 
GA(criticEnsemble, stoppingCriteria, p, sel, r, m, e) 
// criticEnsemble: A group of fitness functions  
// stoppingCriteria: Criteria to end the algorithm 
// (no. of iterations or threshold) 
// p: The number of hypothesis per population 
// SM: The selection method (roulette wheel or tournament selection) 
// r: The crossover rate 
// m: The mutation rate 
// e: The elitism rate 
{ 
 Initialize population: P := Generate p hypotheses  

 at random or load from LTM 
 Evaluate: For each h in P, compute fitness(h) 

 
 while(!stop) 
 { 

Create a new Generation, Ps 
Select prob. according to SM, (1-r)p members of P to add to Ps 
Crossover rp/2 prob. selected pairs and add offspring to Ps 
Mutate m percent of Ps 
Select probabilistically e percent of P and replace in Ps 
Update P := Ps 
Evaluate, according to criticEnsemble, each h in P 

 } 
} 

4.2 Hypotheses 

The hypothesis encoding is structured according to expression modalities, see 
Fig.4. At the top level the virtual human hypothesis is subdivided into the lighting, 
screen and body hypotheses. The lighting hypothesis refers to a three-point light-
ing configuration (Millerson 1999; Birn 2006). This technique is composed of the 
following light roles: (a) key light, which is the main source of light; (b) fill light, 
which is a low-intensity light that fills an area that is otherwise too dark; (c) back 
light, which is used to separate the character from the background. In this case, 
only the key and fill lights are used, as these define the main illumination in the 
scene (Millerson 1999) and the back light can be computationally expensive (Birn 
2006). Both lights are modeled as directional lights and only the key light is set to 
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cast shadows, according to standard lighting practice (Birn 2006). Only a subset of 
the parameters, defined in subsection 3.1, is evolved: (a) direction, which corre-
sponds to a bidimensional float vector corresponding to angles about the x and y 
axis w.r.t. the camera-character direction. The angles are kept in the range [-75.0; 
75.0] as these correspond to good illumination angles (Millerson, 1999); (b) dif-
fuse color, which corresponds to a RGB vector; (c) Kd, which defines the diffuse 
color intensity; (d) Ks, which defines the specular color intensity; (e) shadow 
opacity, which defines how transparent the shadow is. Finally, the fill light pa-
rameters are similar to the key light’s, except that all shadow parameters are ig-
nored. The screen hypothesis is structured according to the virtual human’s skin 
body groups. For each body group, a sequence of filters is applied. Filters were 
defined in subsection 3.2. For each filter, a field is defined for each of its parame-
ters, including whether it is active. Filters are applied to the body groups in the or-
der they appear. Notice order is subject to change through the crossover operation. 
 

4.3 Operators 

This work makes use of two genetic operators, Fig.5: crossover and mutation. 
Crossover takes two parent hypotheses from the current generation and creates 
two offspring by recombining portions of the parents. Recombination is parame-
ter-wise. The parent hypotheses are chosen probabilistically from the current 
population. Thus, the idea is to combine highly fit parents to try to generate off-
spring with even higher fitness. The percentage of the current population which is 
subjected to crossover is defined by the crossover rate, r. Mutation exists to pro-
vide a continuous source of variation in the population. This operator essentially 
randomizes the values of a random number of the hypothesis’ parameters. The op-
erator is constrained to generate within-domain values for each parameter. The 
percentage of the current population which is subjected to mutation is defined by 
the mutation rate, m. 

4.4 Working and Long-Term Memory 

Ultimately, the evolutionary model tries to learn multiple mappings relating mul-
timodal expression and affective states. Therefore, the virtual human needs to 
keep track of several populations, one per affective state, even though only a sin-
gle one is evolving at any instant of time. The working memory keeps the current 
state of evolving populations. In real life, creating an artistic product may take a 
long time (Sayre 2007). Therefore, to accommodate this characteristic, the whole 
set of evolving populations can be saved, at any time, in long-term memory. Im-
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plementation-wise this corresponds to saving all information about the population 
in XML format. Furthermore, the interaction between working and long-term 
memory provide the foundations for life-long learning. Finally, a gallery is saved 
in long-term memory to accommodate the higher fitness hypotheses, independ-
ently of the population they originated from. The gallery can be used afterwards to 
feed some hypotheses to the initial population, thus, promoting rapid generation of 
highly fit hypotheses. More importantly, the gallery is a dataset which could be 
used to learn models using supervised learning. This use of the gallery is not cur-
rently implemented and is further addressed in the future work section. 

4.5 Critic Ensemble 

The critic ensemble defines several critics per affective state. Critics can be artifi-
cial, in which case fitness is inspired on art theory, or human, in which case fitness 
reflects the subjective opinion of the critic. An artificial critic consists of a set of 
population fitness functions and a set of hypothesis fitness functions. A population 
fitness function calculates the hypothesis’ fitness with respect to the others in the 
population. A hypothesis fitness function assigns an absolute fitness to each hy-
pothesis, independently of the others. Both kinds of fitness function are normal-
ized to lie in the range [0.0;1.0]. As the critic may define several functions, 
weights are used to differentiate their relative importance. Thus, for each kind, the 
set fitness is the weighted average among all constituent functions, as in (2). Fi-
nally, the final fitness is the weighted combination of the population and hypothe-
sis functions sets, as in (3). Section 5 presents one example of an artificial critic. 

 

∑
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The model supports interactive evolution where humans can influence the se-

lection process by assigning subjective fitness to the hypotheses. There are several 
advantages to bringing humans into the evaluation process (Sayre 2007): (a) art 
literature is far from being able to fully explain what is valued in the arts; (b) art is 
dynamic and values different things at different times. Furthermore, bringing hu-
mans into the evaluation process accommodates individual, social and cultural dif-
ferences in expression of emotions (Keltner et al. 2003; Mesquita 2003). Further-
more, as discussed in future work, if the fitness functions are unknown, then the 
model might be made to learn from human experts. Two disadvantages are that 
humans may reduce variety in the population, causing convergence to a specific 
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style, and that the evolution process becomes much slower. For these reasons, the 
human fitness function (as well as any other) may be selectively deactivated. 

5 Results 

This work proposes a model which can evolve expression of emotions in virtual 
humans using lighting and screen expression. In this section this model is used to 
learn a mapping between the emotion ‘anger’ and lighting expression. Having de-
scribed the lighting expression hypothesis encoding (subsection 4.2), what is 
needed is to define the set of critics which will guide the selection process. In this 
example, human critics are ignored and an artificial critic is defined. To build an 
artificial critic it is necessary to define an appropriate set of population and hy-
pothesis fitness functions which reflect the expression of anger as well as their 
weights (subsection 4.5). However, to demonstrate the flexibility of the current 
approach, besides aiming at effective expression of anger, we’ll also add fitness 
functions which reflect lighting aesthetics. In both cases, these fitness functions 
shall try to reflect guidelines from art theory regarding the expression of anger, ef-
fectively and aesthetically, through lighting. In some cases, these functions might 
be conflicting, which is perfectly acceptable in art production (Sayre, 2007). Con-
flicts are handled by assigning appropriate weights to the functions.  

Six hypothesis fitness functions and one population fitness function are pro-
posed. The hypotheses set weight is set to 0.75 and the population set weight to 
0.25. The fitness functions are as follows:  
• The red color function, with weight 4.0, assigns higher fitness the smaller the 

Euclidean distance between the light’s diffuse color to pure red, as in (4). This 
function is applied both to the key and fill lights. Red was chosen because, in 
Western culture, red tends to be associated with excitation or nervousness 
(Fraser and Banks 2004); 

 

1
1

+
=

dist
f  

(4) 

 
• The low-angle illumination function, with weight 1.5, assigns higher fitness 

the closer the Euclidean distance between the key light’s angle about the x 
axis to 20o. The rationale is that illumination from below is unnatural, bizarre 
and frightening (Millerson 1999); 

• The opaque shadow function, with weight 1.0, assigns higher fitness the 
closer the key light’s shadow opacity parameter is to 0. This favors darker 
shadows. The rationale is that hard, crisp shadows convey a mysterious and 
harsh character (Millerson 1999; Birn 2006);  
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• The low complexity function, with weight 0.5, assigns higher fitness to less 
complex hypotheses. The rationale is that humans naturally value artifacts 
which can express many things in a simple manner (Machado 2006). What 
constitutes low complexity in lighting is hard to define but, here, will define a 
low complexity hypothesis as having: diffuse color equal to a grayscale value 
(i.e. with equal R,G,B components); Kd equal to 2.0, giving a neutral diffuse 
component; and Ks equal to 0.0, giving a null specular component;  

• The key high-angle function, with weight 0.5, assigns higher fitness the closer 
the Euclidean distance between the key light’s angle about the x axis to ±30o. 
This is a standard guideline for good illumination (Millerson 1999). Notice, 
first, this is an aesthetics function and, second, it contradicts the low-angle il-
lumination function;  

• The key-fill symmetry function, with weight 0.5, which assigns higher fitness 
if the fill light angles are symmetrical to the key light’s. This is also a stan-
dard guideline for good illumination (Millerson 1999); 

• The novelty function, with weight 0.5, which assigns higher fitness the more 
novel the hypothesis is w.r.t. the rest of the population. This is, therefore, a 
population fitness function. The rationale in this case is that novelty is usually 
appreciated in the arts (Sayre, 2007). Notice also that this function puts some 
internal pressure on the population, forcing the hypotheses to keep changing 
to differ from each other.  

5.1 Parameters Selection 

Having defined the critics, before actually running the genetic algorithm, it is nec-
essary to configure the following parameters: p, the population size; r, the cross-
over rate; m, the mutation rate; e, the elitism rate; and, SM, the selection method. 
As the value chosen for these parameters influences the speed and efficacy of the 
evolution, it is important to choose optimal values. In this sense, we began by run-
ning the genetic algorithm, for a small number of iterations, with typical values of 
these parameters (Mitchell, 1999): p in {25,50}; r in {0.6,0.7}; m in {0.0,0.1,0.2}; 
e in {0.0,0.1}; and, SM in {roulette wheel, tournament selection}. This amounts to 
48 different configurations. Each configuration was ran for 10 iterations and 
ranked according to the best population value among all iterations. Population 
value is defined as follows: 

 

GHDAFHFvalue −−∗+∗= 22  (5) 

 
where HF is the highest fitness hypothesis, AF is the average fitness, HD is the 
highest hypothesis dominance, which refers to the ratio of number of occurrences 
of a certain hypothesis to population size, and G is the ratio between generation 
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number and maximum number of generations. Thus, population value favors 
populations with highly fit hypotheses, low dominance and from earlier genera-
tions. The top 20 parameter configurations are shown in Table 1. Looking at the 
results, it is possible to observe that the optimal configuration is: p = 50, r = 0.70, 
m = 0.00, e = 0.10 and SM = tournamentSelection. Notice that, in this case, the 
mutation rate is 0 and the 19 best results use tournament selection. 

5.2 Evolution Analysis 

Having determined the optimal parameters for the proposed fitness functions, the 
genetic algorithm was run for 50 iterations. A graph showing the evolution of the 
population value, average fitness and highest fitness is shown in Fig.6. Looking at 
the graph, it is possible to see that the value and fitness increase quickly up until 
approximately the 25th iteration. After this point, the highest fitness is already 
close to 1.0, however, it is still slowly improving. The actual values for the top 20 
generations, with respect to population value, are shown in Table 2. Looking at the 
results it is clear that the populations with the best value occur mostly in later it-
erations. In fact, the 44th generation was evaluated as having the best value of 
2.3324, with its best hypothesis having a fitness of 0.9005. Table 3 details the top 
20 hypotheses, with respect to fitness, for the 44th population.  

Visual inspection of the evolving hypotheses shows that the hypotheses were 
accurately reflecting the fitness functions. This evolution is clearly shown in Fig.7, 
which shows five of the initial populations’ hypotheses as well as five of the hy-
potheses in the 44th generation. The first population, which was randomly gener-
ated, has high variance and most hypotheses have relatively low fitness. Evolu-
tion, which in this case relied mostly on the crossover operation, successively 
combined hypotheses which best reflected the fitness functions. In the 44th genera-
tion, which had the best population value, most hypotheses illuminate the charac-
ter with a red color, from below and with opaque shadows. Even so, the hypothe-
ses still differ from each other, perhaps, reflecting the novelty function. 

The highest fit hypothesis belongs to the 48th generation and had a fitness of 
0.9181. Visually it is similar to the one at the bottom right in Fig.7. The exact hy-
pothesis’ parameters are: (a) diffuse color (RGB) = (0.99, 0.08, 0.234); (b) direc-
tion (XY) = (−43.20o, 25.65o); (c) Kd= 2.32; (d) Ks = 1.30; (e) shadow opacity = 
0.54. However, the importance of the best hypothesis should be deemphasized in 
favour of a set of highly fit hypotheses. This set is likely to be more useful be-
cause, aside from reflecting the emotion in virtue of high fitness, it allows for va-
riety in conveying the emotion. This set could be constructed using the gallery in 
the long-term memory (subsection 4.4). 

Overall, the model seems to be able to evolve appropriate population of hy-
potheses which reflect the fitness functions. However, the success of the mappings 
hinges on the quality of the critics’ feedback. If it is clear that the final hypotheses 



17 

in Fig.7 reflect the fitness functions, it is not that these functions actually reflect 
anger. The selection of appropriate fitness functions as well as accommodating 
feedback from human critics is the subject of our future work.  

6 Conclusions and Future Work 

Drawing on accumulated knowledge from the arts, this work proposes a virtual 
human model for the expression of emotions which goes beyond the body and 
uses lights, shadows, composition and filters. Lighting expression relies on a 
pixel-based lighting model which provides many of the light and shadow parame-
ters regularly used in the visual arts. Screen expression explores filtering and 
composition. Filtering consists of rendering the scene to a temporary texture, ma-
nipulating it using shaders and, then, presenting it to the user. Filters can be con-
catenated to generate a combined effect. In composition, aspects of the scene are 
separated into layers, which are independently manipulated, before being com-
bined to generate the final image. Regarding emotion synthesis, the Ortony, Clore 
and Collins emotion model is integrated. 

To learn mappings from affective states to multimodal expression, an evolu-
tionary approach is proposed based on genetic algorithms. Hypotheses encode a 
three-point lighting configuration and a set of filters which are to be applied to the 
virtual human’s skin body groups. The initial population is either created ran-
domly or loaded from long-term memory into working memory. One population is 
maintained for each affective state. Generation of alternatives is achieved through 
the crossover and mutation operators. Selection of alternatives is supervised by a 
critic ensemble composed of both human and artificial critics. The latter consist of 
a set of fitness functions which should be inspired on art theory. Several parame-
ters influence the genetic algorithm search: population size, crossover rate, muta-
tion rate, elitism rate, selection method, fitness functions and fitness function 
weights. Finally, a gallery is maintained with very high fitness hypotheses. These 
can, later, be fed into the current population to promote the generation of new 
highly fit offspring. 

This work has demonstrated the evolutionary model for the case of learning 
how to express anger using lighting expression. By visual inspection it is clear that 
the evolution is reflecting the fitness functions. However, the following questions 
arise: Do the fitness functions reflect the intended affective states? What about the 
fitness functions’ weights? These issues need to be addressed in the near future. 
First, the results should be confronted with people’s intuitions about the expres-
sion of emotions, perhaps in the form of inquiries. Furthermore, it seems clear that 
the art literature is insufficient to provide a comprehensive set of fitness functions. 
Thus, second, human critics should be brought into the evolution loop. Both regu-
lar people and artists should be involved. In this setting, the system could be made 
to learn new fitness functions from human feedback and the existent fitness func-
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tions’ weights could be updated, perhaps using a reinforcement learning mecha-
nism. It would, of course, be interesting to expand the mappings to the six basic 
emotions (Ekman 1999) – anger, disgust, fear, joy, sadness and surprise – and, fur-
thermore, explore more complex affective states. The gallery could also be used to 
feed supervised learning algorithms to generate models which explain highly fit 
hypotheses. These models could, then, feed a self-critic which would, in tandem 
with the artificial and human critics, influence the selection process. Finally, an 
obvious extension to this work is exploring the camera and sound expression 
channels of which much knowledge already exists in the arts (Sayre 2007). 
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Fig. 1. The virtual human model 

Fig. 2. Filtering manipulates the virtual human pixels. In (a) no filter is applied. In (b) the con-
trast filter is used to reduce contrast and create a more mysterious and harsh look. In (c) the mo-
tion blur is used to convey nervousness. In (d) the style filter, which is less concerned with 
photorealism, conveys an energetic look 

Fig. 3. The evolutionary model for expression of emotions in virtual humans 

Fig. 4. Hypotheses encoding 

Fig. 5. The crossover and mutation genetic operators 

Fig. 6. Value and fitness evolution of a 50-iteration run with optimal parameters 

Fig. 7. The initial and 44th generation of a 50-iteration run using optimal parameters 
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Table 1. Top 20 parameter configurations 

R (p, r, m, e, SM) HF AF V AV 
1 (50, 0.70, 0.00, 0.10, TS) 0.86 0.59 3.01 2.51 
2 (25, 0.70, 0.00, 0.00, TS) 0.84 0.59 2.97 2.47 
3 (50, 0.60, 0.00, 0.10, TS) 0.85 0.59 2.97 2.47 
4 (50, 0.60, 0.00, 0.00, TS) 0.85 0.59 2.97 2.47 
5 (25, 0.60, 0.00, 0.00, TS) 0.85 0.58 2.96 2.45 
6 (50, 0.70, 0.10, 0.10, TS) 0.86 0.57 2.95 2.45 
7 (50, 0.70, 0.00, 0.00, TS) 0.84 0.60 2.95 2.48 
8 (25, 0.70, 0.00, 0.10, TS) 0.85 0.57 2.91 2.43 
9 (25, 0.70, 0.20, 0.00, TS) 0.84 0.58 2.90 2.42 
10 (25, 0.70, 0.10, 0.00, TS) 0.83 0.58 2.89 2.40 
11 (50, 0.70, 0.10, 0.00, TS) 0.83 0.58 2.88 2.44 
12 (50, 0.70, 0.20, 0.00, TS) 0.83 0.58 2.87 2.44 
13 (50, 0.70, 0.20, 0.10, TS) 0.84 0.56 2.87 2.40 
14 (50, 0.60, 0.20, 0.10, TS) 0.85 0.55 2.86 2.40 
15 (50, 0.60, 0.10, 0.00, TS) 0.84 0.55 2.86 2.37 
16 (25, 0.60, 0.20, 0.00, TS) 0.83 0.56 2.85 2.38 
17 (25, 0.60, 0.10, 0.00, TS) 0.82 0.56 2.83 2.38 
18 (25, 0.70, 0.10, 0.10, TS) 0.82 0.55 2.83 2.36 
19 (50, 0.60, 0.20, 0.00, TS) 0.83 0.56 2.82 2.38 
20 (50, 0.60, 0.10, 0.00, RW) 0.83 0.54 2.82 2.36 

R - rank; SM - selection method; TS - tournament selection; RW - roulette wheel; HF - highest 
fitness; AF - average fitness; V - value; AV - average value 
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Table 2. Top 20 generations of a 50-iteration run using optimal parameters 

G PHF PAF PV 
44 0.9005 0.7857 2.3324 
48 0.9181 0.7492 2.2947 
46 0.9106 0.756 2.2933 
34 0.9083 0.7338 2.2441 
26 0.8941 0.7353 2.2188 
49 0.9106 0.7136 2.1884 
33 0.9061 0.7124 2.1771 
36 0.9138 0.6914 2.1704 
42 0.9095 0.6944 2.1677 
23 0.9113 0.6921 2.1667 
17 0.8958 0.7005 2.1525 
31 0.9129 0.6808 2.1473 
37 0.8983 0.711 2.1386 
35 0.9118 0.6814 2.1263 
25 0.9038 0.6886 2.1249 
16 0.903 0.6884 2.1229 
19 0.9114 0.6759 2.1146 
38 0.8903 0.6961 2.1129 
43 0.9171 0.6784 2.1112 
18 0.9001 0.6704 2.101 

G - generation; PHF - population highest fitness; PAF - population average fitness; PV - popula-
tion value 
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Table 3. Top 20 hypotheses from the 44th generation population of the 50-iteration run using op-
timal parameters 

HF HC HD 
0.9001 1 0.02 
0.8979 1 0.02 
0.8974 1 0.02 
0.8974 1 0.02 
0.8974 1 0.02 
0.8890 1 0.02 
0.8512 1 0.02 
0.8512 1 0.02 
0.8512 1 0.02 
0.8512 1 0.02 
0.8512 1 0.02 
0.8485 2 0.04 
0.8485 1 0.02 
0.8485 1 0.02 
0.8485 1 0.02 
0.8460 1 0.02 
0.8460 1 0.02 
0.8460 1 0.02 

HF - hypotheses fitness; HC - number of times the hypothesis occurs in the population; HD – 
hypothesis dominance, i.e., the ratio of HC over population size 
 


