FParallel Algorithms and Applications, Vol. 3, pp. 135-143 (©)1994 Gordon and Breach Science Publishers S.A.
Reprints available directly from the publisher Printed in the United Statcs of America
Photocopying, permitied by license only

EXACT SOLUTION OF LINEAR EQUATIONS ON
DISTRIBUTED-MEMORY MULTIPROCESSORS

C. K. KOG, A. GUVENG and B. BAKKALOGLU

Department of Electrical and Computer Engineering, Oregon State University,
Corvallis, OR 97331, USA

(Received October 11, 1993)

We present two new parallel algorithms for exact (error-free) solution of a system of linear equations on a
distributed-memory multiprocessor. The exact solution is obtained using the congruence technique which
consists of two steps: First, the system of linear equations is converted to systems ol linear congruence
equations with respect to several prime moduli, and each of these systems is solved on a separate proces-
sor. Then, these solutions are combined using the mixed-radix conversion algorithm to obtain the exact
solution. The first step is completely (embarrassingly) parallel with no communication requirements
among the processors. We improve our previous work and describe two cfficient parallel algorithms for
the second step. We present the results of our experiments on an Intel iPSC/860 with 8 processors. A
lincar system of dimension 128 with integer entries as large as 10°77 is solved in about 195 seconds on 8
processors with an efficiency of 99.76%.

KEY WORDS: Congruence technique, parallel algorithm, mixed-radix conversion, single-node and
multi-node broadcast.

C.R. CATEGORIES: FE2.1, G.1.0, G.13.

1. INTRODUCTION

Exact solutions of a system of linear equations with integer or rational number
entries can be found by using Gaussian elimination and multiple-precision arith-
metic. However, this method breaks down even for systems of moderate size due
to the so-called intermediary coefficients swell, i.e., excessive growth of the interme-
diate results even though the initial values as well as the final result have manage-
able size. Such situations often arise in scientific computing [2, 14] and in digital
signal processing [5], where systems of equations with integer or rational number
matrices need to be solved. Roundoff errors may make it impossible to solve an
ill-conditioned problem, or it may cause a real-time digital signal processing system
to be unstable. There are two viable techniques for dealing with such problems: the
congruence technique and the p-adic expansions. Although some algorithmic ques-
tions remain, the basic mathematics of residue number and p-adic arithmetic are
both well-known [7, 4, 14]. Efficient sequential algorithms and software for solving
linear equations using the residue [12, 6, 2] and the p-adic [3] techniques have been
developed in the last twenty years. Recently, parallel algorithms for exact solution
of linear systems using the congruence [10, 8] and the p-adic techniques [13] have
also been designed and implemented.

135

136 C. K. KOG, A. GUVENC AND B. BAKKALOGLU

In this paper, we extend our previous work [10, 8] on parallelization of the con-
gruence technique, and describe efficient parallel algorithms suitable for implemen-
tation on distributed-memory multiprocessors.

We consider the solution of the system of linear equations

Ax = b, (1)

where A is a k x k invertible matrix and b is a k vector with all integer entries.
Since the solution vector x will in general have rational number entries, we utilize
the following trick of solving the linear system

Az = db, 2)

where d = det(A). In this case, the entries of the solution vector z will be integers,
and the final solution vector x is obtained using floating-point arithmetic:
1
X ==L 3
. 3)

2. THE CONGRUENCE TECHNIQUE

In order to solve for Equation (2), we pick n prime numbers my,ms,..., M, such
that their product M is larger than the largest entry of the matrix A. The congruence
method consists of two main steps:

1. Solve the n systems Ay; =b (mod m;) using Gaussian elimination and also
compute the determinant d; = det(A) (mod m;) for i = 1,2,...,n. The solution of
Equation (2) modulo m; is obtained as z; = d;y; for i = 1,2,...,n.

2. Use the mixed-radix conversion algorithm to combine the solution vectors z;
into a single vector z such that z = z; (mod m;) for i = 1,2,...,n. The solution of
Equation (1) is then obtained as x = (1/d)z.

The first step of the congruence technique is completely parallel since the solution
of equation
Ayi =b (mod m;)

is independent for every i = 1,2,...,n. Assuming the number of processors p is
equal to n, we allocate processor i for modulo m; computations: Processor i solves
the system Ay; = b (mod ;) and computes the determinant d; = det(A) (mod m;),
and then proceeds to compute z; = d;y; (mod m;). This computation is simultane-
ously performed by all processors for i = 1,2,...,n. In general, given p < n proces-
sors, we partition the moduli set in such a way that each processor receives at most
g moduli where g = [n/p]. The above computations are then repeated g times.
Since Gaussian elimination on a matrix of dimension k requires O(k?) arithmetic
steps, we have the following theorem:

THEOREM 1 Given p < n processors, Step 1 of the congruence method requires
O(k3n/ p) arithmetic steps.

PARALLEL CONGRUENCE ALGORITHM 137

At the end of Step 1, we will have a k vector z; and an integer d; in processor i
for all i = 1,2,...,n. We now need to apply the mixed-radix conversion algorithm to
compute a k vector z and an integer d. Let the (k + 1) vector u; be

oo [i)

We use the mixed-radix conversion algorithm to compute the (k + 1) vector u such
that
u =1 (IT]Od m,—).

The mixed-radix conversion algorithm returns the vector u, from which we extract
the value of the determinant d and the elements of the vector z. The final solution
vector x is then computed using Equation (3).

3. MIXED-RADIX CONVERSION

Given the n vectors u; (of dimension k + 1) fori = 1,2,...,n, the vector mixed-radix
conversion algorithm computes a single vector u (of dimension k + 1) such that

u=uw; (mod my)

for i =1,2,...,n. This is achieved in two steps. First, the values u; are updated
according to the following recursion:

The Sequential MRC Algorithm

for j=1ton—1do
fori=j+1tondo

u; i= (—uj)c;; (mod myj)

where ¢;; are the multiplicative inverses of m; modulo m; for 1 <i < j < n, com-
puted using the extended Euclidean algorithm [7, 11]. After the above update pro-
cess, the elements of the vectors u; are the mixed-radix coefficients of the elements
of the final vector u. Thus, the final vector u is obtained by computing

u = w + muy + MU+ MMMt H IR Y s Py Uy (4)

Since the mixed-radix conversion of n integers requires O(n?) arithmetic operations
[7, 11], we obtain the following result:

THEOREM 2 The number of arithmetic operations reguired by the sequential MRC
algorithm is O(kn?).

The data dependences among the computations required to obtain the final vector
u lend themselves to systolic implementation. This is achieved by first forming the
data dependence graph of the algorithm, and then embedding this graph in space-

138 C. K. KOG, A. GUVENG AND B. BAKKALOGLU

time in order to obtain time-optimal and spacetime-optimal systolic schedules. Sev-
eral systolic schedules with the above properties are described in [9]. The parallel
algorithms given in [10, 8] are derived from these systolic schedules. Although these
algorithms were implemented on an Intel iPSC1 hypercube, they require only linear
or ring connectivity among the processors, and therefore, do not fully exploit the
hypercube connectivity. In the following, we describe two new parallel algorithms
which are particularly suitable for implementation on distributed-memory architec-
tures.

4. PARALLEL ALGORITHMS

We will describe two parallel algorithms which are termed as the Single-Node Broad-
cast (SNB) algorithm and the Multi-Node Broadcast (MNB) algorithm. Step 1 of
the congruence method is parallelized exactly the same way for both of these algo-
rithms. These algorithms differ only in the way the computational and communica-
tion requirements of Step 2 of the congruence method are handled.

4.1. Single-Node Broadcast

At the end of Step 1, we have the vector u; in processor { for all i =1,2,...,n.
The SNB algorithm is a direct parallel implementation of the sequential MRC algo-
rithm, and goes through n — 1 steps for j = 1,2,...,n — 1 where at step j processor J
broadcasts its vector u; to all processors whose index is larger than j. These proces-
sors update their u vectors with the vector u; received. When the update process is
completed, the last processor contains a copy of each of the w; vectors for { =
1,2,...,n. This processor then uses Equation (4) and Equation (3) in floating-point
arithmetic to compute the vector x. The pseudocode below describes these oper-
ations:

The SNB Algorithm

for j=1ton—1do
begin
PROC j: send u; to PROC j+1,...,n
PROC i: u; := (u; —uj)c;; (mod m;)
(i=j+1,...,n) end
PROC n: compute x using Egs. (4) and (3)

This way we parallelize the i-loop of the sequential MRC algorithm, and obtain the
following result:

THEOREM 3 The SNB algorithm requires O(kn) arithmetic steps with n processors.

PARALLEL CONGRUENCE ALGORITHM 139

In order to calculate the communication penalty, we notice that at each step a
single-node broadcast of a vector of dimension k + 1 is performed. It is well-known
that a single-node broadcast operation requires log, p routing steps on a hypercube
architecture with p processors [1]. The algorithm is based on the spanning tree of
the hypercube graph, rooted at the node which broadcasts its data. At each step a
single-node broadcast of a vector of dimension k + 1 is performed, however, the
number of processors, to which the data is sent, decreases by one. Thus, we obtain
the communication penalty of the SNB algorithm as

1
(k+1) Z [log,i] = O(knlogn).

i=n—1

THEOREM 4 The SNB algorithm requires O(knlogn) routing steps on a hypercube
with n processors.

4.2. Multi-Node Broadcast

The SNB algorithm interleaves the computational and communication steps of the
mixed-radix conversion algorithm. The MNB algorithm first performs all necessary
communications; it then proceeds to compute the elements of the u vector using
the sequential MRC algorithm with the locally available data. In the beginning of
the multi-node broadcast we have w; in processor i for i = 1,2,...,n. At the end, all
processors have all of the vectors u;. If K = n = p, then processor i picks the ith
and the last element (corresponding to the determinant) of the vectors uy,uz,...,Us,
and then performs two sequential scalar mixed-radix conversion operations in order
to obtain the mixed-radix coefficients of the element z[i] and the determinant d,
respectively. It then computes x[i] using Equations (4) and (3) in floating-point
arithmetic. '

The MNB Algorithm
r for j =1to ndo —‘

PROC j: send uj to PROC 1,...,n except |
PROC i : compute z[{] using sequential MRC

(i=1,...,n) compute d using sequential MRC

compute x[{] using Eqgs. (4) and (3) B

If k > n = p, then processor i performs [k /n] mixed-radix conversions and ob-
tains as many elements of the vector z. Thus, the number of mixed-radix conversions
to be performed by processor i is equal to [k/n] + 1, which gives the total number
of arithmetic operations as O(n’k /n) = O(kn).

THEOREM 5 The MNB algorithm requires Q(kn) arithmetic steps with n processors.

140 C. K. KOG, A. GUVENG AND B. BAKKALOGLU

Table 1 Data Distribution in the Multi-Node Broadcast Algorithm

PROC. 000 001 010 011 100 101 110 111
Initial a b c d ¢ f g h
Step 1 a a c c c [g 2
b b d d f f h h
Step 2 a a a a e ¢ e e
b b b b f [f f
[o c c g 2 g g
d d d d h h h h
Step 3 a a a a a a a a
b b b b b b b b
C C c c c C c c
d d d d d d d d
c [[+ (& c [e [+
[f £ f [f f f
B B B g 8 g g B
h h h h h h h h

Furthermore, the MNB algorithm needs to perform n broadcast operations in or-
der to distribute the data to all processors. A naive method of accomplishing this
task is to perform n sequentially-arranged single-node broadcast operations. A bet-
ter strategy is to perform simultaneous broadcast operations in order to achieve
maximum concurrency. Details of the multi-node broadcast operation on a hyper-
cube computer can be found in [1]. We briefly explain the algorithm here: We as-
sume the nodes of the d-dimensional hypercube are indexed using the binary num-
bers (aias---aq) for a; € {0,1}. The multi-node broadcast algorithm completes in
d steps for j = 1,2,...,d. At step j, the nodes with indices (al"'aj_loaj+1"'ﬁd)
exchange all of their data with the nodes whose indices are (ai---aj_1laj+1- - aq)-
That is, at step j, all the nodes whose binary indices differ in the jth bit exchange
all of their data. As an example, let d = 3. In step j =1, the following pairs of
processors exchange their data: (000,001), (010, 011), (100,101), and (110,111). In
step j = 2, the amount of the data to be exchanged is doubled and the following
pairs are exchanging: (000,010), (001,011), (100,110, and (101, 111). Finally, in step
j = 3, pairs of processors exchanging their data are (000,100), (001, 101), (010,110),
and (011,111). The data distribution at the end of each step is illustrated in Table 1.
Since there are exactly ¢ steps and the amount of the data exchanged is doubled at
each step, the total number of routing operations required to broadcast all vectors
w; 1s found as

d
(k +1) 2% = O(kn).
k=1

THEOREM 6 The MNB algorithm requires O(kn) routing sieps on a hypercube with
1 processors.

PARALLEL CONGRUENCE ALGORITHM 141

Table 2 Timings [or the Sequential Algorithm

e n—8 16 32 64 128

8 49 122 344 1100 3959

16 258 563 1313 3405 10136
EY) 1691 3470 7305 16123 38699
64 12315 24807 50332 103645 220005
128 94226 188802 379031 763978 1553183

Table 3 Timings for the SNB Algorithm

k n—8 16 32 64 128

8 663 1268 2550 5198 10459
16 690 1377 2703 5458 11177
32 878 1752 3487 7066 14670
64 2209 4428 8879 18003 38033
128 12458 24950 50006 100832 207179

5. IMPLEMENTATION AND RESULTS

We have implemented the above algorithms on an Intel iPSC/86() multiprocessor
with 8 processors, running the NX/860 operating system. The front-end processoris
a 386-based computer that runs the UNIX System V operating system, augmented
with iPSC system extensions and the networking software. The nodes of the system
are equipped with 8 MBytes of memory each. Even though the architecture is based
on the hypercube, with the Direct-Connect Module, it can be viewed as an ensemble
of fully connected nodes with a uniform message latency. When a node sends a
message to another node, the message goes directly to the receiving node without
disturbing any of the other nodes. The message passing does not require any “store
and forward.”

In our experiments, we solve integer linear systems of equations with dimensions
k =8, 16, 32, 64, and 128. The number of prime moduli takes the values n =8,
16, 32, 64, and 128. The prime numbers are selected such that the basic arithmetic
operations {+,—,x} can be performed in single-precision integer arithmetic. Since
the largest single-precision signed integer is equal to 231 _ 1, we choose m; < 2" in
order to perform a modular multiplication operation. When the number of primes
is equal to 128, the entries of the matrix A and the vector b can be as large as
215x128 _ 1920 o, 1577,

The values given in Tables 2, 3, and 4 are the average timings in milliseconds for
the sequential algorithm, the SNB algorithm, and the MNB algorithm, respectively.
The sequential time is found by running the congruence algorithm on a single node.
A linear system of dimension 128 with integer entries as large as 10°77 is solved
in approximately 194.6 seconds by the MNB algorithm, while it is solved in 1,553.2
seconds by the sequential algorithm. This represents a speedup of 7.9815, or an
efficiency of 99.76%. In Table 5, we list the efficiency values as a function of n

142 C. K. KOG, A. GUVENG AND B. BAKKALOGLU

Table 4 Timings for the MNB Algorithm

k n—8 16 32 64 128

8 264 277 318 470 1067
16 290 331 438 756 1794
32 470 695 1148 2343 5350
64 1796 3360 6560 13268 28015
128 12035 23858 47645 95802 194621

Tabhle 5 Efficiency as a Function of n for £ = 128

n SNB MNB
8 0.9454 0.9787
16 0.9459 0.9892
32 0.9475 0.9944
64 0.9471 0.9968
128 0.9371 0.9976

Table 5 Elficiency as a Function of k for n = 128

n SNB MNB
8 0.0473 0.4638
16 0.1134 0.7062
32 0.3298 0.8975
64 0.7231 0.9816
128 0.9371 0.9976

(the number of moduli) by fixing the system size at k = 128. Similarly, in Table 6,
the efficiency values are listed as a function of k when n is fixed at 128. These
efficiency values indicate the MNB algorithm as the fastest algorithm.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods, En-
glewood Cliffs, NJ: Prentice-Hall, 1989,

[2] S. Cabay and T. P. L. Lam, Congrucnce techniques for the exact solution of integer systems of linear
equations, ACM Transactions on Mathematical Software 3, 4 (December 1977), 386-397.

[3] J. D. Dixon, Exact solution of lincar equations using p-adic cxpansions, Numerische Mathematik 40,
1 (1982), 137-141.

[4] R. T. Gregory and E. V. Krishnamurthy, Methods and Applications of Error-Free Computation, New
York, NY: Springer-Verlag, 1984.

[5] B. Harms and S. Keller-McNulty, Error-free solution to a Toeplitz system of equations, IEEE Tians-
actions on Signal Processing 39, 5 (May 1991), 1212-1215.

[6] J. A. Howell and R. T. Gregory, An algorithm for solving linear algebraic cquations using residue
arithmetic I-11, BIT 9, 34 (1969), 200-224 and 324-337.

[7] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Vol. 2, Reading, MA:
Addison-Wesley, Second edition, 1981.

[8] C. K. Kog, A parallel algorithm for cxact solution of lincar equations via congruence technique,
Computers and Mathematics with Applications 23, 12 (1992), 13-24.

PARALLEL CONGRUENCE ALGORITHM 143

[9] C. K. Kogand B Cappello, Systolic arrays for integer Chinese remaindering. In M. D. Ercegovac and
E. Swartzlander, eds., Proceedings, 9th Symposium on Computer Arithmetic, pages 216-223, Sanla
Monica, CA, September 6-8, 1989, Los Alamitos, CA: IEEE Computer Socicty Press.

[10] €. K. Kog and R. M. Picdra, A parallcl algorithm for exact solution of linear equations. In Pro-
ceedings of International Conference on Parallel Processing, Volume 111, pages 1-8,5t. Charles, 1L,
August 12-16, 1991. Boca Raton, FL: CRC Press.

[11] J. D. Lipson, Elements of Algebra and Algebraic Computing, Reading, MA: Addison-Wesley, 1981,

[12] M. Newman, Solving equations exactly, Journal of Research of the National Bureau of Standards T1B,
4 (Oct—Dec. 1967), 171-179.

[13] G. Villard, Exact parallel solution of lincar systems. In J. Della Dora and J. Fitch, eds., Compiiter
Algebra and Parallelism, pages 197-205. New York, NY: Academic Press, 1989.

[14] D. M. Young and R. T. Gregory, A Survey of Numerical Mathematics, volume 2. New York, NY:
Dover Publications, 1988.

