DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Condition-Task-Store: A Declarative Abstraction for
Microtask-based Complex Crowdsourcing

Kenji Gonnokami
University of Tsukuba

Atsuyuki Morishima
University of Tsukuba

Hiroyuki Kitagawa
University of Tsukuba

s$1320687@u.tsukuba.ac.jp mori@slis.tsukuba.ac.jp kitagawa@cs.tsukuba.ac.jp

ABSTRACT

Microtasks have been widely adopted by many crowdsourc-
ing platforms as a unit for human computation. Recently,
tools to support programmers to implement complex crowd-
sourcing applications with microtasks have been proposed.
One approach is to provide a library of functions that can
be called by programs written in imperative programming
languages. Another approach is to allow SQL queries to
invoke microtasks. The former approach provides large ex-
pressive power, while the latter allows declarative descrip-
tions with limited expressive power. This paper proposes
the Condition-Task-Store (CTS) abstraction, which is an al-
ternative declarative approach to implement complex data-
centric crowdsourcing with microtasks. The CTS abstrac-
tion is unique in that it has all the following features: (1)
it naturally extends the task template adopted by many
crowdsourcing platforms to define microtasks, (2) it allows
declarative descriptions of crowdsourcing systems, and (3)
it has large expressive power.

1. INTRODUCTION

As computer network technologies evolved, crowdsourc-
ing became popular in many application domains. Software
systems that take the crowdsourcing approach are called
crowdsourcing systems [2].

Crowdsourcing systems are often constructed on crowd-
sourcing platforms, which provide fundamental functions
for implementing crowdsourcing systems. For example, the
Amazon Mechanical Turk (MTurk) [3] is a crowdsourcing
platform that provides a market in which workers perform
microtasks (called HITs in MTurk) with a small payment
amount per task. Crowdsourcing platforms often provide
APIs for requesters to register microtasks in the platforms.

Because there are frequent patterns appearing in pro-
grams for crowdsourcing systems, software tools have been
developed to support the implementation of complex crowd-
sourcing systems. For example, Turkit [4] provides a library
of functions to define and call tasks from general-purpose
programming languages and introduces the crash-and-rerun

Copyright (C) 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

20

programming model for minimizing the cost of re-running
programs. Recently, the declarative approach to the develop-
ment of crowdsourcing systems has emerged because declar-
ative abstractions have an affinity toward crowdsourcing ap-
plications. Declarative descriptions do not impose unneces-
sary timing constraints, and we can adopt many well-known
optimization techniques. For example, there are proposals
that use SQL-like languages to describe data-centric crowd-
sourcing systems [7] [8] [13]. However, they provide limited
expressive power (see Section 4).

In this paper, we offer the following two key contributions:
(1) Alternative approach to declarative crowdsourc-
ing. We first introduce the Condition-Task-Store (CTS)
abstraction, which is an alternative declarative approach for
implementing complex data-centric crowdsourcing with mi-
crotasks. The CTS abstraction describes a crowdsourcing
system as a set of CTS rules, each of which is a natural
extension of task template adopted by many crowdsourc-
ing platforms to define microtasks. Therefore, programmers
who are familiar with task templates can easily write simple
programs with the CTS abstraction.

The CTS abstraction is unique in that it has all the follow-

ing features: (1) it naturally extends the task template, (2)
it allows declarative descriptions of crowdsourcing systems,
and (3) it has large expressive power.
(2) Novel criterion for the expressive power of lan-
guages. Next, we discuss the expressive power of the CTS
abstraction. We introduce a novel criterion to measure the
expressive power of programming languages for crowdsourc-
ing; the criterion focuses on the class of interactions with
humans we can implement with the language. The crite-
rion is important for the following two reasons. First, com-
plex crowdsourcing often requires various types of interac-
tions with humans. For example, one of such interactions
of crowdsourcing is the iterative collaboration [11], which is
not necessarily supported by every existing framework. Sec-
ond, the class of interactions is closely related to the class of
games in game theory: because human behavior is affected
by the incentives and rules defined by the game structure,
the class represents the size of mechanism design space, i.e.,
the set of possible mechanisms we can implement to ex-
ploit the wisdom of the crowd. In fact, the change of game
structure affects the quality of the data produced by crowd-
sourcing systems [5]. Our examples in Sections 3 and 4 also
suggest how game structure is important in crowdsourcing.
Then, we theoretically show that our CTS abstraction is not
only Turing complete, but can also support a wide range of
game structures.

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

The remainder of the paper is organized as follows. Sec-
tion 2 explains related work. Section 3 introduces the CTS
abstraction. Section 4 discusses its expressive power. Sec-
tion 5 explains a prototype to support the software develop-
ment using the CTS abstraction. Section 6 is the summary.

2. RELATED WORK

Many approaches to support the development of complex
crowdsourcing systems have been proposed. They differ
from one another in the abstraction they use to describe
crowdsourcing systems.

(1) Imperative programming languages. TurKit [4]
provides a function library for implementing crowdsourcing,
which can be used via codes written in imperative program-
ming languages. It supports the crash-and-rerun model to
avoid re-performing costly operations.

(2) MapReduce-like abstraction. CrowdForge [14] is
a MapReduce-like framework for describing complex tasks
on MTurk. It models a crowdsourcing system as a set of
tasks to implement partition, map, and reduce functions.
As we discuss in Section 4.3, the expressive power of the
CTS abstraction is larger than that of CrowdForge.

(3) Control/data flows. CrowdLang [11] is a language
for describing crowdsourcing systems in terms of basic op-
erators, data items, and control flow constructs. Currently,
it seems that CrowdLang is used as a language for writing
crowdsourcing systems at a high-abstraction level and that
it does not provide the means to describe the details required
to directly execute the code.

(4) Rule-based abstraction. The CTS abstraction is not
the first rule-based abstraction. CyLog [9] is a Datalog-like,
rule-based language for describing crowdsourcing systems.
A weakness of CyLog is that it requires programmers to be
familiar with programming by Horn clauses even for simple
crowdsourcing. In contrast, the core component of the CTS
abstraction is a task template. Therefore, although the CTS
abstraction borrows concepts from logic-based languages,
programmers can start with a set of simple task templates
and then naturally proceed to more complex crowdsourcing.
(5) SQL-like abstraction. CrowdDB [8], Qurk [7], and
Deco [13] use SQL to describe crowdsourcing systems. They
propose novel query processing and optimization schemes
and we believe that some of the proposed techniques can be
applied to the CTS abstraction. As shown in Section 4.3,
the expressive power of the CTS abstraction is larger.

To our knowledge, this paper is the first to investigate the
CTS abstraction. The abstraction models crowdsourcing
systems as a set of CTS rules, each of which is similar to a
task template. Technically, a CTS rule can be implemented
by combining two ECA rules [12]: one generates microtasks
and the other stores results in the database (and can be
implemented by using imperative languages). The CTS ab-
straction provides a higher-level, user-friendly abstraction
designed for describing crowdsourcing systems, which has a
well-defined semantics and proven large expressive power.

Our discussion on the expressive power is related to game
theory. Recently, the literature on algorithmic game the-
ory has addressed various aspects involving both algorithms
and games, such as complexities of computing equilibrium
of games [15]. To our knowledge, our paper is the first to
discuss classes of games that can be implemented by ab-
stractions for crowdsourcing.

3. THE CTS ABSTRACTION

21

<QuestionForm xmlns="http://mechanicalturk.
amazonaws .com/AWSMechanicalTurkDataSchemas/
2005-10-01/QuestionForm.xsd">
<Question>
<QuestionIdentifier>1</QuestionIdentifier>
<QuestionContent>

<Text>How many movies have you seen this month?</Text>

</QuestionContent>
<AnswerSpecification>
<FreeTextAnswer/>
</AnswerSpecification>
</Question>
</QuestionForm>

Figure 1: Example of a task template

In this section, we first explain task templates. Then, we
show examples to give an intuitive explanation of the CTS
abstraction. Finally, we explain formal definitions.

3.1 Task Templates

The task template is a popular form for defining and reg-
istering microtasks into crowdsourcing platforms. Figure 1
shows an example of a task template in XML format for
microtasks (HITs) of MTurk, which asks a worker to enter
how many movies he or she watched in a month. The es-
sential components of a task template are the question to
be shown (QuestionContent) and the type of the values to
be received by workers (AnswerSpecification). Task tem-
plates can contain variables (called placeholders) with which
we can define many microtasks that are based on the same
template but differ in the values bound to the variables.

Requesters first write task templates to define and insert
microtasks into the task pool. Then, workers perform the
tasks that exist in the task pool.

3.2 Overview of the CTS Abstraction

In the CTS abstraction, a crowdsourcing system is de-
scribed by a set of CTS rules. We assume that there exists
a relational database. CTS rules read and write data to and
from the database.

A CTS rule is the fundamental building block of the CTS
abstraction. We first give a simple example and next show
another example that requires more than one CTS rule.

Example 1. A Simple Crowdsourcing System
We use the task shown in Figure 2 to ask workers to tag
books. The details are as follows:

e The database has the Book(bid, title, author) rela-
tion to store book information.

e For each book stored in the Book relation, tags are given
by three workers.

e The result is stored in the Tag(bid, tag) relation.

e Workers are paid 10 (cents or any currency) per task, if
any other workers entered the same tag.

The crowdsourcing system can be described only by the
CTS rule in Figure 3. A CTS rule consists of three parts:
condition, task, and store. We explain each part below.
The condition part: We write the condition to generate
and insert a task into the task pool. The condition specifies
what tuples need to exist in the database for generating a
task. For example, the condition in Figure 3 states that a
task is generated for each tuple existing in the Book relation.
The task part: We write a task template that contains a
question to be posed to workers. The question can contain

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Please tag the book "The Catcher in the Rye"
written by "J.D. Salinger"

Tag

Submit

Figure 2: Example of a microtask

Please enter the name of a good restaurant

Restaurant Name Submit

Figure 4: Example of a microtask: Task 1

Please rate the restaurant "McDonald's" on a 5-point scale.

Condition || Book(bid, title, author)
Task Question | Please tag the book "$title" .
written by "$author" 10203 04 05 | submit
Generator | Entry(desc:"Tag", var:tag, Figure 5: Example of a microtask: Task 2
type:text)
Count 3
Payoff PayIf(count(Tag(bid, tag))>=2, 10) Task1:
Store Tag(bid, tag) Condition
Figure 3: Example of a CTS rule Task Question | Please enter the name of a good
restaurant
variables (such as $author and $title) bound to values in Generator| Entry(desc:"Restaurant Name", var:
the condition (i.e., the variables are replaced with values Count rname, type: text)
gach tlm_e_the tgsk is gepera‘Fed). The task p{lrt also spec- Payoll Paylf (avg (Rating (rname, value))>3, 10)
ifies additional information, including the variables and its Store Restaurant (xname)
associated types, to store entered values. Task2:
Because there are frequently occurring patterns that ap- Condition || Restaurant (rname)
pear in task template specifications, we provide template Task Question | Please rate the restaurant
s s ¢‘$rname’’ on a 5-point scale.
generators that allow users to describe task templates with- - -
e . . Generator | Choice(var: value, type: int,
out specifying implementation details such as HTML tags. items: [1, 2, 3, 4, 51)
The task part in Figure 3 states that we use the Entry tem- Count 3
plate generator with the following parameters: (1) the in- Payoff Pay (10)
put field is labeled as “Tag,” (2) the entered value is to Store Rating(rname, value)

be stored in the tag variable, and (3) the type of tag is
text. Count is the number of tasks to be generated for the
same value. Payoff describes how much is paid to workers
per task. For example, PayIf (count(Tag(bid, tag)) >=
2, 10) states that 10 cents will be paid if there are other
workers that entered the same tag to the same book.
The store part: We specify the relations and attributes
in which the entered values will be stored. The store part
in Figure 3 states that we use the Tag relation to store bid
and the entered tag. o
As the example above suggests, a CTS rule is a natural
extension of the widely-used task template. Because we can
omit the condition and task parts, a CTS rule can be used
to describe the following four types of processing.

1. Generate a task when the condition is satisfied, and
store the result into the database.

2. If the condition part is omitted, generate a task with
no condition, and store the result into the database.

3. If the task part is omitted, compute and store values
into the database when the condition is satisfied.

4. If both of the condition and task parts are omitted,
store values into the database with no condition.

Example 2. More Complex Crowdsourcing.

We consider a crowdsourcing system to rate restaurants,
in which workers perform the following two types of tasks:
Task 1: Enter names of restaurants (Figure 4). A 10 cent

payment is paid if the average rating by others is higher
than 3.

Task 2: Enter an evaluation rating (1 to 5) for the given
restaurant (Figure 5). Three workers perform this task
for each restaurant, and they receive 10 cents per task.

We assume that the results of Task 1 are stored in

Restaurant (rname), and that those of Task 2 are stored

in Rating(rname, value). Then, Figure 6 shows CTS rules

for Tasks 1 and 2.

22

Figure 6: CTS rules for Example 2.

The CTS rule for Task 1 has no condition: thus, the task is
unconditionally generated. Unless the count number is spec-
ified, the number of generated tasks is determined as follows:
(1) if the key of the predicate (rname of Restaurant (rname))
is bound to values by the condition, the task is generated
only once for each case in which the condition is satisfied; (2)
otherwise the same task is repeatedly generated everytime
the task is performed and removed from the task pool.

The condition of the CTS rule for Task 2 states that it
generates a task for each tuple stored in Restaurant relation.
Thus, the task is generated for each restaurant entered in
Task 1. Workers receive 10 cents for performing a task. O
Discussion. As the examples above suggest, the descrip-
tion is declarative, and each rule is invoked when its condi-
tion is satisfied. Compared to the code written in imperative
programming languages, CTS rules naturally describe the
parallel and asynchronous processing of computation involv-
ing human workers. On the other hand, the CTS abstraction
is more expressive than the declarative query languages that
do not support the transitive closure, because it essentially
supports a loop with a dynamic condition check [1].

An important point is that the incentive structure plays
a critical role to appropriately exploit the wisdom of crowd
and (at least theoretically) ensure data quality. Because the
incentive structure and rules involving multiple humans can
be modeled as games, we can use game theory to discuss
their behaviors. For example, with a simple game-theoretic
analysis, the incentive structure of Example 1 guarantees
that rational workers enter tags that others can easily come
up with. Similarly, the incentive structure of Example 2
guarantees that rational workers for Task 1 enter the names
of restaurants that are likely to receive high ratings.

3.3 Formal Definition

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

This section first defines the CTS rules and then explains
the syntactic sugar for the concise description of rules.

3.3.1 Definition of CTS Rules

Definition 1. A program of the CTS abstraction is a
set of CTS rules, each of which is modeled as a triple
R; = (C;, T3, S;), running over a relational database schema.
Here, T; is a task template, C; is the condition to generate
a task using T;, and S; is the description of how to store
the result in the database. The database contains a pre-
defined relation with the schema Worker (pid, payoff) to
store information on workers and the accumulated values of
the payoffs they received so far.

e C;isasequence Pi(T11,...,%1ny)s---s Pm(Tmi, ...
of zero or more atoms. Some of the atoms can be arith-
metic atoms, such as x1; = 3.

e T; is either a triple (q, Z, §) or null. Here, ¢ is a question
for workers, Z is a sequence of variables bound by Cj,
and ¢ is a sequence of variables to store the results of
performing the task.

e S;isasequence Qi(Yi1,---,Ying)s---> @mYmi,- .-
of one or more atoms, where each y;, is any of a vari-
able bound by C}, a variable that appears in g, or a
constant. Each atom can be followed by either /update
or /delete. o

3.3.2 Syntactic Sugar

We introduce the following variety of syntactic sugars to
make the rule description concise.
(1) Attributes of atoms. The notation of atoms, which
appear in the condition and store part of CTS rules, are
essentially the same as those of Prolog and Datalog. A
key difference is that they explicitly specify attribute names
for their parameters. Each parameter is specified in the
form attribute:variable or attribute:constant. For example,
Restaurant (name:x, zip:305) is an atom.

There are cases in which parameters and attributes can
be omitted in each atom, as described below.

e We can omit a parameter if the rule does not con-
sume the value of the bounded variable. For example,
Restaurant (name:x) is an atom that omits zip.

e We can omit an attribute name if the attribute name
is the same as the variable name. For example,
Restaurant (name:name, zip:y) can be represented
as Restaurant(name, zip:y) because the attribute
and the variable have the same name.

(2) Task part. Because we have frequently occuring pat-
terns in the description, we introduce task-template gener-
ators and the following three fields for the task part.

e Generator is the name of a task-template generator, as-
sociated with its parameters. For example, Entry and
Choice in Figure 6 are task-template generators. They
generate actual task templates based on the given pa-
rameters and the sentence written in the Question
field. These allow users to define task templates with-
out specifying implementation details (such as HTML
tags). The Crapid system (Section 5) implements var-
ious task-template generators.

e Count specifies the number of generated tasks. Let N
be the number specified in the field. For every case in

y Tmmng,)

aymnm)

23

which the condition holds, the same task is generated
N times and N tuples are inserted into the relation.
This is implemented by adding the count attribute
to the schema of the relation in the store part, and
copying the CTS rule N times in the program.

e Payoff specifies a function to compute payoff values
given to workers. If a function is specified, rules to
update Worker(pid, payoff) are automatically gen-
erated and added to the set of rules. The Crapid sys-
tem provides pre-defined payoff functions.

3.4 Evaluation Model and Semantics

Given a description d of the CTS abstraction, the evalu-
ation of d on instance ins of the database is performed by
evaluating each CTS rule in a bottom-up way on ins. More
precisely,

e For each CTS rule (C;, T, Si) € d, check if C; is satis-
fied with ins in the following way: for each atom ay in
C; (from left to right), check if there exists any tuple
to bind variables in aj to the values that are consis-
tent with the values bound to the variables appeared
inag...akr—1.

e For every combination V' of values that satisfies all the
atoms in C}, perform one of the following:

— If T} # null, replace variables in T; with values in
V and insert the task into the task pool.

— If T, = null, create new tuples using values in V'
for the atoms that appear in S;. Then, perform
one of the following: insert the tuples into ins,
update ins with the tuples (when the atom is fol-
lowed by /update), or delete the tuples from ins
(when followed by /delete).

e If a worker completes the generated task, (1) create
new tuples for the atoms that appear in S;, using val-
ues in V and the entered values for the task, then (2)
apply the insertion, delete, or update operation to ins
with the new tuples.

e If ins is updated, check if there exist rules for which C;
is satisfied with the new ins. If such rules exist, process
them. Terminate the process if we cannot find such a
rule. If there are multiple rules that can be executed
at the same time, the rule that appears earlier in the
code is evaluated first.

For example, assume that we have the CTS rule shown in
Figure 7. We first check if there exists a tuple that matches
Image(i, size, type:"photo") in the database. Assume
that the Image relation has tuple ¢ = (img98, 100, photo).
Then, i and size are bound to img98 and 100, respectively.
Next, check if there exists a tuple that matches Large (size)
with size=100. If exists, we replace $i in the task template
with img98 and insert the task into the task pool to ask
workers to choose the category for the image img98. If the
task is performed, the result of performing the task is stored
into LargePhoto, and the payoff attribute of the Worker re-
lation is incremented by 1.

Given a set d of CTS rules, the semantics of d is defined
as a set of rational consequences of d, in a similar way as
the semantics of CyLog codes [9]. A rational consequence
of d is a set of facts that are derived from the rules and
the equilibrium [16] of the games, i.e., the states reached by
rational workers.

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Condition || Image(i, size, type:"photo"), Large(size)
Task Question Please choose a category of $i.
Generator | Choice(var: category,
type:string, items:[landscape,
portrait, animal, food, others])
Count 1
Payoff pay (1)
Store LargePhoto(i, category)

Figure 7: Two atoms in the condition part

Rule 1
Condition
Task
Store TuringMachine(id:1, st:s, head:0)

Rule 2

TuringMachine(id, st, head),
Tape(pos:head, sym),

Rule(st, sym, new_st, new_sym, dir),
new_pos = pos + dir

Condition

Task
TuringMachine(id, st:new_st, head:new_pos)/update,
Store T
ape (pos, sym:new_sym)/update
Rule 3
Condition | TuringMachine(id, head)
Task
Store Tape (pos:head) /update

Figure 8: CTS rules implementing a Turing machine

4. EXPRESSIVE POWER

This section discusses the expressive power of the CTS ab-
straction. First, we show that the CTS abstraction is Turing
complete. Then, we introduce a criterion to measure the ex-
pressive power of programming languages, which focuses on
the class of games the language can implement. Finally, we
compare the expressive power of the CTS abstraction with
those of other frameworks.

4.1 Turing Completeness
Theorem 1. The CTS abstraction is Turing complete.

Proof Outline. Figure 8 is a set of CTS rules that im-
plements any Turing machine. Formally, a Turing machine
consists of a quintuple (K, X, 4, s, H) where K is a finite set
of states, ¥ is an alphabet, s € K is the initial state, H € K
is the set of halting states, and ¢ is the transition function
[6]. Intuitively, we need the following three components to
implement a turing machine.

Element 1.
Element 2.

Memory of the machine’s inner state

Head reading and writing information stored in
the tape

Element 3. The long tape in infinitum.

In Figure 8, TuringMachine(id, st, head) implements
Elements 1 and 2. Here, st records the current state whose
domain is K, and head stores the position of the head.
Tape(pos, sym) implements Element 3, in which each tuple
(p, s) states that symbol s (whose domain is X) is written at
position p of the tape. Rule(st, sym, new_st, new_sym,
dir) stores the rules § to read and write symbols on the
tape and move the head.

Rule 1 initializes a Turing machine (the initial state is s).
Rule 2 states how the head moves and writes symbols onto
the tape according to the rules stored in Rule(st, sym,
new_st, new_sym, dir). It states that if the inner state is
st and the symbol at the current position of the head is
sym, write new_sym at the position, update the inner state

24

by new_st, and move the head to pos+dir. Rule 3 extends
the tape when the head reaches a position that the head
never visited before. We need Rule 3 because Rule 2 always
requires that Tape(pos, sym) exists. We also need a rule
to stop the machine if it reaches the halting states H C K.
The rule is obvious and omitted due to the space limitation.

Defining the CTS rules to implement a Turing machine
proves that the CTS abstraction is Turing complete. O

4.2 Expressive Power in Terms of Games

This section proposes to use the game concept as a mea-
sure of the expressive power of programming languages for
crowdsourcing, because the class of games that the language
can implement affects the way in which the implemented sys-
tem can exploit the power of the wisdom of crowd. First, we
enumerate several classes of games and show the relationship
among the classes.

Definition 2. G is a class of games that satisfy the follow-
ing conditions:
1. Every input from a human is not affected by the inputs
from others, and

2. The payoffs are computed by a primitive recursive
function of the input values. O

An example of a game in G; is one that asks humans to
enter tags for a given image without telling them what tags
are entered by other humans. Payoffs are defined for each
combination of worker inputs. For example, workers receive
payoffs when they enter the same tag. Games in G; are
called simultaneous games in game theory.

Definition 3. Gy is a class of programs in which (1) N(> 0)
is known in advance; (2) each game has at most N-phases of
interactions, each of which asks a worker to enter data; (3) at
each i-th phase workers are shown some information based
on what was entered in the first to the i — 1-th phases; and
(4) payoffs are computed by a primitive recursive function
of the entered values.]

Each game in Gy has at most N phases, each of which
asks a human to enter data considering some information
computed from data in the previous phases. For example,
assume that we want to divide a set of cakes into two groups
whose total prices are equivallent to each other. Then, a
program that (1) asks one worker to divide the cakes into
two groups at the first phase, then (2) asks another worker
to choose one group, and finally (3) gives to each worker the
total price of cakes in his group, belongs to Gn (with N=2).
Note that the game guarantees that the prices of the two
groups become the same if workers are rational; it exploits
the power of human intelligence to compute how they can
make two groups whose prices are equivalent to each other.
From the definition, every game in G; belongs to Gn.

Definition 4. G. is a class of programs in which each pro-
gram (1) executes a sequence of interactions with workers,
with the sequence being generated by a primitive recursive
function, (2) shows workers at each interaction the informa-
tion computed by a function whose parameters are taken
from the results of past interactions, and (3) payoffs are
computed by a primitive recursive function of the entered
values. O

An example of a game in G. is to ask workers to write a
paragraph that explains a given keyword. Workers update

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Table 1: Expressive power
Abstraction /Framework | Turing complete [Class of games |

MTurk alone N C G
CrowdForge N CGnN
CrowdDB /Deco/Qurk N CGn
CTS Abstraction Y G
Imperative programming lan- | Y G
guages with the MTurk API

the paragraph until the paragraph is satisfied by the major-
ity of the crowd. When the paragraph is completed, every
writer (worker) who contributed to the paragraph receives a
payoff, which is computed by dividing a fixed total payment
by the number of the contributors.

Theorem 2. Gy is a proper subset of G..

Proof. For every g, g € Gy = g € G. and for any given ¢,
there exists g € G. s.t. g has i+1 input phases and therefore
g¢Zon. o

Theorem 3. Assume that we allow Turing machines to
interact with humans at any step of its execution. Let M be
the set of all such machines. M can implement any g € G..

Proof. The sequence of interactions with workers that can
be generated by a primitive recursive function can be imple-
mented by some m € M. The information shown and the
payoffs can be computed if m is a Turing machine. m|

Note that being Turing complete is not a sufficient con-
dition to be able to implement G., because the power of
interactions with humans does not matter for a language to
be Turing complete. G. contains indefinite-length sequential
games (in game theory) that can be expressed with Turing
machines that are able to interact with humans at any step
of its execution.

From the definition of the CTS rules, the following holds.

Theorem 4. The CTS abstraction can implement any
games in G.. O

4.3 Comparison of Expressive Powers

Table 1 compares the expressive powers of different ab-
stractions and frameworks. Games implemented by manu-
ally registering HITs to MTurk are contained in G;, whereas
code written in programming languages that uses MTurk
APIs can implement games in G.. CrowdForge can imple-
ment a part of the games in Gn, while its expressive power
is not larger than Gy, because it is not Turing complete.
In particular, games implemented by a combination of par-
tition, map, and reduce are contained in Gy with N = 3.
Similarly, the class of games that CrowdDB, Qurk, and Deco
can implement is not larger than Gy

5. PROTOTYPE SYSTEM

We implemented the Crapid system, a prototype system
to develop crowdsourcing systems using the CTS abstrac-
tion. Crapid takes as input a set of CTS rules and outputs
executable code. Crapid supports various task-template
generators (i.e., Entry, Choice, Decision, and Comparisons
as of May 2013) and payoff functions to help users easily
define microtasks in CTS rules. Crapid provides a form-
based user interface. When a user chooses a task-template
generator, Crapid provides an appropriate set of selection
boxes and drop-down menus to specify CTS rules. The out-
put code is executable on Crowd4U [10], a crowdsourcing
platform deployed at universities.

25

6. SUMMARY

This paper introduced the CTS abstraction, a declarative
approach for implementing complex crowdsourcing with mi-
crotasks. The paper also introduced a novel criterion to
measure the expressive power of programming languages for
crowdsourcing by focusing on the class of games we can im-
plement with the language. The class represents the size of
mechanism design space, i.e., the set of possible mechanisms
we can implement to exploit the wisdom of the crowd. The
CTS abstraction is unique in that it has all the following
features: (1) it naturally extends the task template adopted
by many crowdsourcing platforms, (2) it allows declarative
description, and (3) it has large expressive power.

Future work includes the development of various rewriting

techniques for the CTS abstraction. For example, we plan
to adapt various optimization techniques for crowdsourcing
systems [7] [8] [13] into our context.
Acknowledgements. The authors are grateful to Prof.
Shigeo Matsubara of Kyoto university for his helpful com-
ments, and to the contributors of Crowd4U, whose names
are partially listed at http://crowd4u.org. This research was
partially supported by PRESTO from the Japan Science and
Technology Agency, and by the Grant-in-Aid for Scientific
Research (#25240012) from MEXT, Japan.

7. REFERENCES

[1] S. Abiteboul, R. Hull, V. Vianu: Foundations of
Databases. Addison-Wesley 1995.

[2] A. Doan, R. Ramakrishnan, A. Y. Halevy. “Crowdsourcing

systems on the World-Wide Web. Commun.ACM. 2011,

vol. 54, no. 4, p. 86-96.

3] Amazon Mechanical Turk, https://www.mturk.com/.

G. Little, L. B. Chilton, M. Goldman, R. C. Miller.

“Turkit: human computation algorithms on mechanical

turk”. Proc. UIST (2010), ACM, New York, 57-66.

S. Jain, D. C. Parkes. “A game-theoretic analysis of the

ESP game”. ACM Trans. Economics and Comput. 1(1): 3

(2013)

H. R. Lewis, C. H. Papadimitriou. “Elements of the theory

of computation.” Prentice-Hall, Englewood Cliffs, New

Jersey, 1981

A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.

“Human-powered sorts and joins”. In VLDB, 2012.

M. J. Franklin., D. Kossmann, T. Kraska, S. Ramesh, R.

Xin. “CrowdDB: answering queries with crowdsourcing”.

SIGMOD Conference. 2011, p. 61-72.

A. Morishima, N. Shinagawa, S. Mochizuki. “The Power of

Integrated Abstraction for Data-centric Human/Machine

Computations”. VLDS2011, pp. 5-9.

A. Morishima, N. Shinagawa, T. Mitsuishi, H. Aoki, S.

Fukusumi. “CyLog/Crowd4U: A Declarative Platform for

Complex Data-centric Crowdsourcing”. PVLDB 5(12):

1918-1921 (2012).

P. Minder, A. Bernstein. “CrowdLang: A Programming

Language for the Systematic Exploration of Human

Computation Systems”. SocInfo 2012: 124-137

N. W. Paton, O. Di’az. “Active Database Systems”. ACM

Comput. Surv. 31(1): 63-103 (1999)

H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina,

N. Polyzotis, J. Widom. “An overview of the deco system:

data model and query language; query processing and

optimization”. SIGMOD Record 41(4): 22-27 (2012)

A. Kittur, B. Smus, S. Khamkar, R. E. Kraut.

“CrowdForge: crowdsourcing complex work”. UIST 2011:

43-52

T. Roughgarden. “Algorithmic game theory”. Commun.

ACM 53(7): 78-86 (2010)

F. Vega-Redondo. Economics and Theory of Games,

Cambridge University Press, 2003.

(10]

(11]

(12]

(13]

(14]

[15

(16]

