
Representational Limits in Cognitive Architectures 

Abstract—This paper proposes a focused analysis on some 
problematic aspects concerning the knowledge level in General 
Cognitive Architectures (CAs). In particular, it addresses the 
problems regarding both the limited size and the homogeneous 
typology of the encoded (and processed) conceptual knowledge. 
As a possible way out to face, jointly, these problems, this 
contribution discusses the possibility of integrating external, but 
architecturally compliant, cognitive systems into the knowledge 
representation and processing mechanisms of the CAs.  

Keywords—cognitive architectures, knowledge representation, 
knowledge level, common-sense reasoning. 

I.  INTRODUCTION 
The research on Cognitive Architectures (CAs) is a wide 

and active area involving a plethora of disciplines such as 
Cognitive Science, Artificial Intelligence, Robotics and, more 
recently, the area of Computational Neuroscience. CAs have 
been historically introduced i) “to capture, at the computational 
level, the invariant mechanisms of human cognition, including 
those underlying the functions of control, learning, memory, 
adaptivity, perception and action” [1] and ii) to reach human 
level intelligence, also called General Artificial Intelligence, by 
means of the realization of artificial artifacts built upon them. 
During the last decades many cognitive architectures have been 
realized, - such as ACT-R [2], SOAR [3] etc. - and have been 
widely tested in several cognitive tasks involving learning, 
reasoning, selective attention, multimodal perception, 
recognition etc. Despite the recent developments, however, in 
the last decades the importance of the “knowledge level” [4] 
has been historically and systematically downsized by this 
research area, whose interests have been mainly based on the 
analysis and the development of mechanisms and the processes 
governing human and (artificial) cognition. The knowledge 
level in CAs, however, presents several problems that may 
affect the overall heuristic and epistemological value of such 
artificial general systems and therefore deserves more 
attention.  

II. TWO PROBLEMS FOR THE KNOWLEDGE LEVEL IN CAS

Handling a huge amount of knowledge, and selectively 
retrieve it according to the needs emerging in different 
situational scenarios, represents an important aspect of human 
intelligence. For this task humans adopt a wide range of 
heuristics [5] due to their “bounded rationality” [6]. Currently, 
however, the Cognitive Architectures are not able, de facto, to 
deal with complex knowledge structures that can be even 
slightly comparable to the knowledge heuristically managed by 
humans. In other terms: CAs are general structures without a 

general content. This means that the knowledge embedded and 
processed in such architectures is usually very limited, ad-hoc 
built, domain specific, or based on the specific tasks they have 
to deal with. Thus, every evaluation of the artificial systems 
relying upon them, is necessarily task-specific and do not 
involve not even the minimum part of the full spectrum of 
processes involved in the human cognition when the 
“knowledge” comes to play a role. As a consequence, the 
structural mechanisms that the CAs implement concerning 
knowledge processing tasks (e.g. that ones of retrieval, 
learning, reasoning etc.) can be only loosely evaluated, and 
compared w.r.t. that ones used by humans in similar 
knowledge-intensive situations. In other words: from an 
epistemological perspective, the explanatory power of their 
computational simulation is strongly affected [7,8]. Such 
knowledge limitation, in our opinion, does not allow to obtain 
significant advancements in the cognitive science research 
about how the humans heuristically select and deal with the 
huge amount of knowledge that possess when they have to 
make decisions, reason about a given situation or, more in 
general, solve a particular cognitive task involving several 
dimensions of analysis. This problem, as a consequence, also 
limits the advancement of the research in the area of General 
Artificial Intelligence of cognitive inspiration.  

The “content” limit of the cognitive architectures has been 
recently pointed out in literature [1] and some technical 
solutions for filling this “knowledge gap” have been proposed 
[9]. In particular the use of ontologies and of semantic 
formalisms and resources (such as DBPedia) has been seen as a 
possible solution for providing effective content to the 
structural knowledge modules of the cognitive architectures. 
Some initial efforts have been done in this sense but cover only 
part of the “knowledge problem” in CAs (i.e. the one 
concerning the limited “size” of the adopted knowledge bases). 
However, also these solutions, do not address another relevant 
aspect affecting the knowledge level of CAs: namely, the 
problem concerning the “knowledge homogeneity” issue. In 
other terms: the type of knowledge represented and 
manipulated by most CAs (including those provided with 
extended knowledge modules) is usually homogeneous in 
nature. It mainly covers, in fact, only the so called “classical” 
part of conceptual information (that one representing concepts 
in terms of necessary and sufficient information and compliant 
with ontological semantics (see [10]) on these aspects). On the 
other hand, the so called “common-sense” conceptual 
components of our knowledge (i.e. those that, based on the 
results from the cognitive science, allow to characterize 
concepts in terms of “prototypes”, “exemplars” or “theories”) 
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is largely absent in such computational frameworks. The 
possibility of representing and handling, in an integrated way, 
an heterogeneous amount of common sense conceptual 
representations (and the related reasoning mechanisms), in fact, 
is not sufficiently addressed both by the symbolic-based 
“chunk-structures” adopted by the most common general CAs 
(e.g. SOAR) and by fully connectionist architectures (e.g. 
LEABRA). This aspect is problematic also in the hybrid 
solutions adopted by CAs such as CLARION [11] or ACT-R 
(the different reasons leading to a non satisfactory treatment of 
this aspect are detailed in [12]). This type of knowledge, 
however, is exactly the type of “cognitive information” 
crucially used by humans for heuristic reasoning and decision 
making. This paper presents an analysis of the current situation 
by proposing a comparison of the representational level of 
SOAR, ACT-R, CLARION and Vector-LIDA. Finally, we 
suggest that a possible way out to deal with this problem could 
be represented by the integration of external cognitive systems 
into the knowledge representation and processing mechanisms 
of  general cognitive architectures. Some initial efforts in this 
direction, have been proposed (see e.g. [13, 14]) and will be 
presented and discussed. 

III. KNOWLEDGE REPRESENTATION IN CAS 
In the following we provide a short overview of: SOAR [3], 

ACT-R [2], CLARION [11] and LIDA [15] (in its novel 
version known as Vector-LIDA [16]). The choice of these 
architecture has been based on the fact that they represent some 
of the most widely used systems (adopted in scenarios ranging 
from robotics to video-games) and their representational 
structures present some relevant differentiations that are 
interesting to investigate in the light of the issues raised in this 
paper. By analyzing, in brief, such architectures we will 
exclusively focus on the description of their representational 
frameworks since a more comprehensive review of their whole 
mechanisms is out of the scope of the present contribution 
(detailed reviews of their mechanisms are described in [17]; 
and [18]). We will show how all of them are affected, at 
different levels of granularity, by both the size and the 
knowledge homogeneity problems. 

A. SOAR 

SOAR is one of the oldest cognitive architectures. This 
system was considered by Newell a candidate for a Unified 
Theory of Cognition [19]. One of the main themes in SOAR is 
that all cognitive tasks can be represented by problem spaces 
that are searched by production rules grouped into operators. 
These production rules are red in parallel to produce reasoning 
cycles. From a representational perspective, SOAR exploits 
symbolic representations of knowledge (called chunks) and use 
pattern matching to select relevant knowledge elements. 
Basically, where a production match the contents of declarative 
(working) memory the rule fires and then the content from the 
declarative memory (called Semantic Memory in SOAR) is 
retrieved. This system adheres strictly to the Newell and 
Simon's physical symbol system hypothesis which assumes 
that symbolic processing is a necessary and sufficient condition 
for intelligent behavior. The SOAR system encounter, in 
general, the standard problems affecting symbolic formalisms 
at the representational level: it is not well equipped to deal with 
common-sense knowledge representation and reasoning (since 
approximate comparisons are hard and computationally 

intensive to implement with graph-like representations), and, as 
a consequence, the typology of encoded knowledge is biased 
towards the ``classical" (but unsatisfactory) representation of 
concepts in terms of necessary and sufficient conditions [10]. 
This characterization, however, is problematic for modelling 
real world concepts and, on the other hand, the so called 
common-sense knowledge components (i.e. those that, allow to 
characterize and process conceptual information in terms of 
typicality and involving, for example, prototypical and 
exemplar based representations and reasoning mechanisms) is 
largely absent. This problem arises despite the fact that the 
chunks in SOAR can be represented as a sort of frame-like 
structures containing some common-sense (e.g. prototypical) 
information [12]. W.r.t. to the size problem, the SOAR 
knowledge level is also problematic. SOAR agents, in fact, are 
not endowed with general knowledge and only process ad-hoc 
built (or task-specific learned) symbolic knowledge structures. 

B. ACT-R 

ACT-R is a cognitive architectures explicitly inspired by 
theories and experimental results coming from human 
cognition. Here the cognitive mechanisms concerning the 
knowledge level emerge from the interaction of two types of 
knowledge: declarative knowledge, that encodes explicit facts 
that the system knows, and procedural knowledge, that encodes 
rules for processing declarative knowledge. In particular, the 
declarative module is used to store and retrieve pieces of 
information (called chunks, featured by a type and a set of 
attribute-value pairs, similar to frame slots) in the declarative 
memory. ACT-R employs a wide range of sub-symbolic 
processes for the activation of symbolic conceptual chunks 
representing the encoded knowledge. Finally, the central 
production system connects these modules by using a set of IF-
THEN production rules using a set of IF-THEN production 
rules. Differently from SOAR, ACT-R allows to represent the 
information in terms of prototypes and exemplars and allow to 
perform, selectively, either prototype or exemplar-based 
categorization. This means that this architecture allows the 
modeller to manually specify which kind of categorization 
strategy to employ according to his specific needs. Such 
architecture, however, only partially addresses the 
homogeneity problem since it does not allow to represent, 
jointly, these different types of common-sense representations 
for the same conceptual entity (i.e. it does not assume a 
heterogeneous perspective). As a consequence, it is also not 
able to autonomously decide which of the corresponding 
reasoning procedures to activate (e.g. prototypes or exemplars) 
and to provide a framework able to manage the interaction of 
such different reasoning strategies (however its overall 
architectural environment provides, at least in principle, the 
possibility of implementing cascade reasoning processes 
triggering one another). Even if, in such architecture, some 
attempts exist concerning the design of harmonization 
strategies between different types of common-sense conceptual 
categorizations (e.g. exemplars-based and rule based, see [20]) 
however they do not handle the problem concerning the 
interaction of the prototype or exemplars-based processes 
according to the results coming from the experimental 
cognitive science (for example: the old item effect, privileging 
exemplars w.r.t. prototypes is not modelled. See again [12] for 
a detailed analysis of this aspect). Summing up: w.r.t. the 
knowledge homogeneity problem, the components needed to 
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fully reconcile the Heterogeneity approach with ACT-R are 
present, however they have not been fully exploited yet. 
Regarding the size problem: as for SOAR, ACT-R agents are 
usually equipped with task-specic knowledge and not with 
general cross-domain knowledge. In this respect some relevant 
attempts to overcome this limitation have been recently done 
by extending the Declarative Memory of the architecture. They 
will be discussed in section E along with their current 
implications. 

C. CLARION 

   CLARION is a hybrid cognitive architecture based on the 
dual-process theory of mind. From a representational 
perspective, processes are mainly subject to the activity of two 
sub-systems, the Action Centered Sub-system (ACS) and the 
Non-Action Centered Sub-system (NACS). Both sub-systems 
store information using a two-layered architecture, i.e., they 
both include an explicit  and an implicit  level of 
representation. Each top-level chunk node is represented by a 
set of (micro)features in the bottom level (i.e., a distributed 
representation). The (micro)features (in the bottom level) are 
connected to the chunk nodes (in the top level) so that they can 
be activated together through bottom-up or top-down 
activation. Therefore, in general, a chunk is represented by 
both levels: using a chunk node at the top level and distributed 
feature representation at the bottom level. W.r.t. to the 
knowledge size and homogeneity problems, CLARION, 
encounter problems with both these aspects since i) there are 
no available attempts aiming at endowing such architecture 
with a general and cross-domain knowledge ii) the dual-layered 
conceptual information does not provide the possibility of 
encoding (manually or automatically via learning cycles) the 
information in terms of the heterogeneous classes of 
representations presented in the section 2. In particular: the 
main problematic aspect concerns the representation of the 
common-sense knowledge components. As for SOAR and 
ACT-R, also in CLARION the possible co-existence of typical 
representations in terms of prototypes, exemplars and theories 
(and the interaction among them) is not treated. In terms of 
reasoning strategies, notwithstanding that the implicit 
knowledge layer based on neural network representations can 
provide forms of non monotonic reasoning (e.g. based on 
similarity), such kind of similarity-based reasoning is currently 
not grounded on the mechanisms guiding the decision choices 
followed, for example, by prototype or exemplars-based 
reasoning. 

D. Vector-LIDA 
Vector LIDA is a cognitive architecture employing, at the 

representational level, high-dimensional vectors and reduced 
descriptions. High-dimensional vector spaces have interesting 
properties that make them attractive for representations in 
cognitive models. The distribution of the distances between 
vectors in these spaces, and the huge number of possible 
vectors, allow noise-robust representations where the distance 
between vectors can be used to measure the similarity (or 
dissimilarity) of the concepts they represent. Moreover, these 
high-dimensional vectors can be used to represent complex 
structures, where each vector denotes an element in the 
structure. However, a single vector can also represent one of 
these same complex structures in its entirety by implementing a 
reduced description, a mechanism to encode complex 

hierarchical structures in vectors or connectionist models. 
These reduced description vectors can be expanded to obtain 
the whole structure, and can be used directly for complex 
calculations and procedures, such as making analogies, logical 
inference, or structural comparison. Vectors in this framework 
are treated as symbol-like representations, thus enabling 
different kind of operations executed on them (e.g. simple 
forms of compositionality via vectors blending). Vector- LIDA, 
encounters the same limitations of the other CAs since i) its 
agents are not equipped with a general cross-domain 
knowledge and therefore can be only used in very narrow tasks 
(their knowledge structure is either ad hoc build or ad hoc 
learned). Additionally, this architecture does not address the 
problem concerning the heterogeneity of the knowledge 
typologies. In particular its knowledge level does not represent 
the common-sense knowledge components such as prototypes 
and exemplars (and the related reasoning strategies). In fact, as 
for CLARION, despite vector-representations allow to perform 
many kind of approximate comparisons and similarity-based 
reasoning (e.g. in tasks such as categorization), the peculiarity 
concerning prototype or exemplars based representations 
(along with the the design of the interaction between their 
different reasoning strategies) are not provided. In this respect, 
however an element that is worth-noting is represented by the 
fact that the Vector-LIDA representational structures are very 
close to the framework of Conceptual Spaces. Conceptual 
Spaces are a geometric knowledge representation framework 
proposed by Peter Gärdenfors [21]. They can be thought as a 
particular class of vector representations where knowledge is 
represented as a set of quality dimensions, and where a 
geometrical structure is associated to each quality dimension. 
They are discussed in more detail in section 5. The 
convergence of the Vector-LIDA representation towards 
Conceptual Spaces could enable, in such architecture, the 
possibility of dealing with at least prototype and exemplars-
based representations and reasoning, thus overcoming the 
knowledge homogeneity problem.

E. Attempts to Overcome the Knowledge Limits 
   As mentioned above, some initial efforts to deal with the 
limited knowledge availability for agents endowed with 
cognitive architecture have been done. In particular, within 
Mind'sEye program (a DARPA founded project), the 
knowledge layers of ACT-R architecture have been 
semantically extended with an external ontological content 
coming from three integrated semantic resources composed by 
the lexical databases WordNet [22], FrameNet [23] and by a 
branch of the top level ontology DOLCE [24] related to the 
event modelling. In this case, the amount of semantic 
knowledge selected for the realization of the Cognitive Engine 
(one of the systems developed within the MindEye Program) 
and for its evaluation, despite by far larger w.r.t. the standard 
ad-hoc solutions, was tailored on the specific needs of the 
system itself. It, in fact, was aimed at solving a precise task of 
event recognition trough a video-surveillance intelligent 
machinery; therefore only the ontological knowledge about the 
events was selectively embedded in it. While this is a 
reasonable approach in an applicative context, still does not 
allow to test the general cognitive mechanisms of a Cognitive 
Architecture on a general, multi faceted and multi-domain, 
knowledge. Therefore it does not allow to evaluate strictu 
sensu to what extent the designed heuristics allowing to 
retrieve and process, from a massive and composite knowledge 
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base, conceptual knowledge can be considered satisfyicing  
w.r.t. the human performances. More recent works have tried to 
completely overcome at least the size problem of the 
knowledge level. To this class of works belongs that one 
proposed by Salvucci [9] aiming at enriching the knowledge 
model of the Declarative Memory of ACT-R with a world-level 
knowledge base such as DBpedia (i.e. the semantic version of 
Wikipedia represented in terms of ontological formalisms) and 
a previous one proposed in [25] presenting an integration of the 
ACT-R Declarative and Procedural Memory with the Cyc 
ontology [26] (one of the widest ontological resources 
currently available containing more than 230,000 concepts). 
Both the wide-coverage integrated ontological resources, 
however, represents conceptual information in terms of 
symbolic structures and encounter the standard problems 
affecting this class of formalisms and discussed above. Some 
of these limitations can be, in principle, partially overcome by 
such works, since the integration of such wide-coverage 
ontological knowledge bases with the ACT-R Declarative 
Memory allows to preserve the possibility of using the 
common-sense conceptual processing mechanisms available in 
that architecture (e.g. prototype and exemplars based). 
Therefore, in principle, dealing with the size problem also 
allows to address some aspects concerning the heterogeneity 
problem. Still, however, remains the problem concerning the 
lack of the representation of common-sense information to 
which such common-sense architectural processes can be 
applied: e.g. a conceptual retrieval based on prototypical traits 
(i.e. a prototype-based categorization) cannot be performed on 
such integrated ontological knowledge bases since these 
symbolic systems do not represent at all the typical information 
associated to a given concept ([12] presents an experiment on 
this aspect). In addition, as already mentioned, it remains not 
yet addressed the problem concerning the interaction, in a 
general and principled way, of the different types of common-
sense processes involving different representations of the same 
conceptual entity. In the light of the arguments presented above 
it can be argued, therefore, that the current proposed solutions 
for dealing with the knowledge problems in CAs are not 
completely satisfactory. In particular, the integrations with 
huge world-level ontological knowledge bases can be 
considered a necessary solution for solving size problem. It is, 
however, insufficient for dealing with the knowledge 
homogeneity problem and with the integration of the common-
sense conceptual mechanisms activated on heterogeneous 
bodies of knowledge, as assumed in the heterogeneous 
representational perspective. In the next sections we outline a 
possible alternative solution that, despite being not yet fully 
developed is, in perspective, suitable to account for both for the 
heterogeneous aspects in conceptualization and for the size 
problems.   

IV. INTEGRATING EXTERNAL COGNITIVE SYSTEMS IN CA

Recently some available conceptual categorization systems, 
explicitly assuming the heterogeneous representational 
hypothesis and integrated with wide-coverage knowledge bases 
(such as Cyc) have been developed and integrated with the 
knowledge level of available CAs. For our purposes, we will 
consider here the DUAL PECCS system [13, 14]. We will not 
discuss the results obtained by such system in tasks of 
conceptual categorization, since they have been already 
presented elsewhere [14]. We shall briefly focus, in the 
following, on the representational level of the system.   

The knowledge level of DUAL PECCS is heterogeneous in 
nature since it is explicitly based and designed on the 
assumption that concepts are “heterogeneous proxytypes” [27] 
and, as such, they are composed by heterogeneous knowledge 
components selectively and contextually activated in working 
memory. In particular, by following the proposal presented in 
[28, 29], the representational level of DUAL PECCS couples 
Conceptual Spaces representations and ontological knowledge 
(consisting in the Cyc ontology) for the same conceptual entity. 
Conceptual Spaces [21] is used to represent and process the 
common-sense conceptual information. In such framework, to 
each quality dimension is associated a geometrical (topological 
or metrical) structure. In some cases, such dimensions can be 
directly related to perceptual mechanisms; examples of this 
kind are temperature, weight, brightness, pitch. In other cases, 
dimensions can be more abstract in nature. In this setting, 
concepts correspond to convex regions, and regions with 
different geometrical properties correspond to different sorts of 
concepts [21]. Here, prototypes and prototypical reasoning 
have a natural geometrical interpretation: prototypes 
correspond to the geometrical centre of a convex region (the 
centroid). Also exemplars-based representation can be 
represented as points in a multidimensional space, and their 
similarity can be computed as the intervening distance between 
each two points, based on some suitable metrics (such as 
Euclidean and Manhattan distance etc.). The ontological 
component, on the other hand, is used to provide and process 
the “classical” knowledge component for the same conceptual 
entity.  

The representational level of DUAL PECCS (and the 
corresponding knowledge processing mechanisms) has been 
successfully integrated with the representational counterpart of 
some available CAs [14, 30] by extending, de facto, the 
knowledge representation and processing capabilities of 
cognitive architectures based on diverse representational 
assumptions.   One of the main novelties introduced by DUAL 
PECCS (and therefore one of the main advantages obtained by 
the CAs extended with such external cognitive system) consists 
in the fact that it is explicitly designed the flow of interaction 
between common-sense categorization processes (based on 
prototypes and exemplars and operating on conceptual spaces 
representations) and the standard deductive processes 
(operating on the ontological conceptual component). The 
harmonization regarding such different classes of mechanisms 
has been devised based on the tenets coming from the dual 
process theory of reasoning [31, 32]. Additionally, in DUAL 
PECCS, also the interaction of the categorization processes 
occurring within the class of non monotonic categorization 
mechanisms (i.e. prototypes and exemplars-based 
categorization) has been devised and is dealt with at the 
Conceptual Spaces level. This latter aspect is of particular 
interest in the light of the multifaceted problem concerning the 
heterogeneity of the encoded knowledge. In fact, since the 
design of the interaction of the the different processes operating 
with heterogeneous representations still represents, as seen 
before, a largely unaddressed problem in current CAs, this 
system shows the relative easiness that its knowledge 
framework (and, in particular, the Conceptual Spaces 
component) provides to naturally model the dynamics between 
prototype and exemplars-based processes. For what concerns 
the size problem, finally, the possibile grounding of the 
Conceptual Spaces representational component with symbolic 
structures enables the integration with wide-coverage 
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knowledge bases such as Cyc. Thus, the solution adopted in 
DUAL PECCS is, in principle, able to deal with both the size 
and the knowledge homogeneity problems affecting the CAs. 
In particular, the extension of the Declarative Memories of the 
current CAs with this external cognitive system allowed to 
empower the knowledge processing and categorization 
capabilities of such general architectures (an important role, in 
this respect, is played by the Conceptual Spaces component). 
Despite there is still room of improvements and further 
investigations, this seems a promising way to deal with the 
both the knowledge problems discussed in this paper. 
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