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Abstract. In intelligent agents, memory has a very important and de-
cisive role for the choice of future behaviors, since it is progressively
formed through the agent’s interactions with the external environment.
Previous works exist in the logic concerning the formalization of the rea-
soning on the formation of beliefs in non-omniscient agents. We extend
this work by inserting the concept of time through a particular function
that assigns a “timing” to beliefs, inferences and modal operators.

1 Introduction

Memory in an agent system is a process of reasoning: in particular, it is the
learning process of strengthening a concept.

Fig. 1. Short-term Memory and Long-term Memory



The interaction between the agent and the environment can play an impor-
tant role in constructing its memory and may affect its future behaviour, the
latter due to the proactive and deliberative capabilities of the agent themselves.
In fact, through memory an agent is potentially able to recall and to learn from
experiences so that its beliefs and its future course of action are grounded in these
experiences. Most of the methods to design agent memorization mechanisms have
been inspired by models of human memory [1, 2] developed in cognitive science.

Atkinson and Shiffrin in [3] proposed a model of human memory which con-
sists of three distinct memory stores, the sensory register where information are
stored which are detected from senses, the short term memory (or working mem-
ory) where explicit beliefs are stored and the long term memory which stores the
background knowledge; information passes from store to store in a linear way.

This model has been further enhanced by Gero and Liew in [4], and [5] for
constructive memory. Memory construction occur whenever an agent uses past
experience in the current environment in a situated manner. The exploitation of
“memories” requires the interaction among this different memory components.
Such correlation can be obtained in various ways, e.g., via neural networks, via
mathematical models or via logical deduction.

In computational logic, [6] introduces DLEK (Dynamic Logic of Explicit
beliefs and Knowledge) as a logical formalization of SOAR (State Operator And
Result) Architecture [7], which is one of the most popular cognitive architecture.
The underlying idea is to represent reasoning about the formation of beliefs
through perception and inference in non-omniscient resource-bounded agents.
They consider perception, short-term memory (also called “working memory”),
long-term memory (also called “background knowledge”) and their interaction.
DLEK is a logic that consists of a static part called LEK (Logic of Explicit
beliefs and Knowledge), which is an epistemic logic, and a dynamic component,
which extends the static one with “mental operations”. Resource-boundedness
in DLEK is modeled via the assumption that beliefs are kept in the short-term
memory, while implications that allow reasoning to be performed are kept in the
long-term memory. New beliefs can be formed in DLEK either from perception,
or from previous beliefs in short-term memories and rules in the background
knowledge. Inferences that add new beliefs are performed one step at a time
via an interaction between short- and long-term memories in consequence of an
explicit “mental operation” that will occur whenever an agent deems it necessary
and can allot the needed time [8, 9].

DLEK has however no notion of time, while agents’ actual perceptions are
inherently timed and so are many of the inferences drawn from such percep-
tions. In this paper we present an extension of LEK/DLEK to T-LEK/T-DLEK
(“Timed LEK” and “Timed DLEK”) obtained by introducing a special function
which associates to each belief the arrival time and controls timed inferences.
Through this function it is easier to keep the evolution of the surrounding world
under control and the representation is more complete. The issue of time in
agents has been coped with in several other works, (see, e.g., among many, [10–
13]), where however the objective is that of dealing with time in communication



and coordination among agents; thus, our attempt to deal with time in memory
management is a novelty in the literature.

In the rest of the paper, Sections 2 and 3 present syntax, semantics of the
extended logic, the axiomatization, and the canonical model. In Section 4 we
propose a brief discussion on complexity and conclude. This paper is an ex-
tended version of [14], where we have introduced explicit time instants and time
intervals in formulas. This is relevant because agents’ perceptions (that may be-
come beliefs) are always inherently timed, and so are the conclusions that can be
drawn from them. But to avoid problems with the management of the intervals
and in order to not lose the logic of the formalization, in this paper we have
introduced a new function that associated to each atom the interval of validity,
moreover we can inherit the proofs of lemmas, theorems from [6].

2 T-LEK and T-DLEK

As in [6], our logic consists of two different components: a static component,
called T-LEK, which is mix between an Epistemic Logic and Metric Temporal
Logic ([15]), and a dynamic component, called T-DLEK, which extend the static
one with mental operation, which are vary important for “controlling” beliefs
(adds new belief, update belief, etc).

2.1 Syntax

As it is customary in logic programming, we assume a signature specifying
(countable) sets of predicate, function, and constant symbols. From constant
and function symbols, compound terms are built as usual. The Herbrand uni-
verse is the collection of all such terms (which includes constant symbols). We
assume that the integer numbers and the symbol∞ are included among the con-
stant symbols and that the arithmetic operators are included among the function
symbols. Consequently, arithmetic expressions are terms of the signature. Atoms
have the form pred(τ1, . . . , τn) where pred is a predicate symbol, n ≥ 0 is its arity
and τ1, . . . , τn are terms. We denote by Atm the countable set of atoms of the
signature (i.e., the Herbrand base).

In our scenario we fix Atm = {p(t1, t2), q(t3, t4), ... ,h(ti, tj)} where ti 6 tj
and p, q, h are predicates, that can be equal or not. Moreover p(t1, t2) stands
for “p is true from the time instant t1 to t2” with t1, t2 ∈ N (Temporal Repre-
sentation of the external world); as a special case we can have p(t1, t1) which
stands for “p is true in the time instant t1”. Obviously we can have predicates
with more terms tha only two but in that case we fix that the first two must
be those that identify the time duration of the belief (i.e. open(1, 3,door) which
means “the agent knows that the door is open from time one to time 3”). Instead
in the previous work [14] we considered atoms of the form pI with I = [t1, t2],
which are the conjunction pt1 ∧ pt1+1 ∧ · · · ∧ pt2 and also pt stand for pIt with
It = [t, t]; we have decided to change approach because pI is too detached from
propositional logic.



Below is the definition of the formulas of the language LT -LEK , with a slight
abuse, in this grammar we use I as terminal symbol standing for time intervals
(possibly specified through arithmetic expressions, as said earlier):

ϕ,ψ := p(t1, t2) | ¬ϕ | �I ϕ | B ϕ | K ϕ| ϕ ∧ ψ| ϕ → ψ

Others Boolean connectives >, ⊥, ↔ are defined from ¬ and ∧ as usual. In the
formula �I Φ the MTL Interval “always” operator is applied to a formula; I
is a “time-interval” which is a closed finite interval [t, l] or an infinite interval
[t,∞) (considered open on the upper bound), for any expressions/values t, l
such that 0 ≤ t ≤ l and �[0,∞) will sometimes be written simply as �. The
operator B is intended to denote belief and the operator K to denote knowledge.
More precisely the B identifies beliefs present in the working memory, instead
K identifies what rules present in the background knowledge.

Terms/atoms/formulas as defined so far are ground, namely there are no
variables occurring therein. We introduce variables and use them in formulas in
a restricted manner, as usual for example in answer set programming [16]. Vari-
ables can occur in formulas in any place constants can occur and are intended as
place holders for elements of the Herbrand universe. More specifically, a ground
instance of a term/atom/formula involving variables is obtained by uniformly
substituting ground terms to all variables (grounding step), with the restriction
that any variable occurring in an arithmetic expression (i.e., specifying a time in-
stant) can be replaced by a (ground) arithmetic expressions only. Consequently, a
non-ground term/atom/formula represents the possibly infinite set of its ground
instances, namely, its grounding. Notice that the rational of considering ground
formulas is that they represent perceptions (either new or already recorded in
agent’s memory) coming in general from the external world(we say “in general”
as, in fact, in some of the aforementioned agent-oriented frameworks perceptions
can also result from internal events, i.e., from an agent’s observations of its own
internal activities). As it is customary in logic programming, variable symbols are
indicated with an initial uppercase letter whereas constants/functions/predicates
symbols are indicated with an initial lowercase letter.

The language LT -DLEK of Temporalized DLEK (T-DLEK) is obtained by
augmenting LT−LEK with the expression [α]ψ, where α denotes a mental op-
eration and ψ is a ground formula. The mental operations that we consider are
essentially the same as in [6]:

– +ϕ, where ϕ is a ground formula of the form p(t1, t2) or ¬p(t1, t2): the mental
operation that serves to form a new belief from a perception ϕ. A perception
may become a belief whenever an agent becomes “aware” of the perception
and takes it into explicit consideration. Notice that ϕ may be a negated
atom.

– ∩(ϕ,ψ): believing both ϕ and ψ, an agent starts believing their conjunction.

– `(ϕ,ψ), where ψ is a ground atom, say p(t1, t2): an agent, believing that ϕ is
true and having in its long-term memory that ϕ implies ψ (in some suitable
time interval including [t1, t2]), starts believing that p(t1, t2) is true.



– a(ϕ,ψ) where ϕ and ψ are ground atoms, say p(t1, t2) and q(t3, t4) respec-
tively: an agent, believing p(t1, t2) and having in the long-term memory
that p(t1, t2) implies ¬q(t3, t4), removes the timed belief q(t3, t4) if the in-
tervals match. Notice that, should q be believed in a wider interval I such
that [t1, t2] ⊆ I, the belief q(., .) is removed concerning intervals [t1, t2] and
[t3, t4], but it is left for the remaining sub-intervals (so, its is “restructured”).

The last mental operation, which is a sort of “update” or “restructuring oper-
ator”, substitutes −ϕ ([6]), that instead represents arbitrary “forgetting”, i.e.,
removing a belief from the short-term memory. In fact in [6] there are +ϕ, −ϕ,
`(ϕ,ψ) and a(ϕ,ψ).
Example 1: We propose a small example to illustrate the form and the role
of rules in the working memory and in the long-term memory. If at time t=2
it is starting raining, in the agent’s working memory there will be the fol-
lowing belief: B(raining(2, 2)). And if we have in the background knowledge
K(rain(t1, t2) → take(t1, t2,umbrella)) and 2 ∈ [t1, t2] than the agent can in-
fer B(take(2, 2,umbrella)), which is a new belief stored in the working memory.
And if we have also K(rain(t1, t2)∧take(t1, t2,umbrella)→ go(t1+1,∞, shops))
than the agent can infer B(go(3,∞, shops)) which means that after getting the
umbrella the agent can go around the shops.

Example 2: An example of a non-ground T-LEK formula is:

K(�[t1,t2](enrollment(T ,T )) → �[t1,t2](�[T,T+14]send payment(T1 ,T1 )))

where we suppose that an agent knows that it is possible to enroll in the uni-
versity in the period [t1, t2] and that, after the enrollment, the payment must be
sent within fourteen days (still staying within the interval [t1, t2]). Since, by the
restrictions on formulas stated earlier, it must be the case that T1 ∈ [T, T + 14]
and both T , T +14 must be in [t1, t2], only a finite set of ground instances of this
formula can be formed by substituting natural numbers to the variables T, T1
(specifically, the maximum number of ground instances is t2 − t1 − 14 + 1 as-
suming to pay on the last day t2). In case one would consider the more general
formula:

K(�[t1,t2](enrollment(T ,T ,X )) → �[t1,t2](�[T,T+14]send payment(T1 ,T1 ,X )))

where X represents a student of that university, i.e., student(., .,X ) holds for
some ground instance of X, then the set of ground instances would grow, as
a different instance should be generated for each student (i.e., for each ground
term replacing X). In practice, however, ground instances need not to be formed
a priori, but rather they can be generated upon need when applying a rule; in
the example, just one ground instance should be generated when some student
intends to enroll in that university at a certain time T = t̂.

2.2 Semantics

Semantics of DLEK and T-DLEK are both based on a set W of worlds. In both
DLEK and T-DLEK we have the valuation function: V : W → 2Atm . Also we



define the “time” function T that associates to each formula the time interval in
which this formula is true and operates as follows:

– T (p(t1, t2)) = [t1, t2], which stands for “p is true in the time interval [t1, t2]”
where t1, t2 ∈ N; as a special case we have T (p(t1, t1)) = t1, which stands
for “p is true in the time instant t1” where t1 ∈ N (time instant);

– T (¬p(t1, t2)) = T (p(t1, t2)), which stands for “p is not true in the time
interval [t1, t2]” where t1, t2 ∈ N;

– T (ϕ op ψ) = T (ϕ)
⊎
T (ψ) with op ∈ {∨,∧,→}, which means the unique

smallest interval including both T (ϕ) and T (ψ);
– T (Bϕ) = T (ϕ);
– T (Kϕ) = T (ϕ);
– T (�Iϕ) = I where I is a time interval in N;
– T ([α]ϕ) there are different cases depends on which kind of mental operations

we applied:

1. T (+ϕ) = T (ϕ);
2. T (∩(ϕ,ψ)) = T (ϕ)

⊎
T (ψ);

3. T (`(ϕ,ψ)) = T (ψ);
4. T (a(ϕ,ψ)) returns the restored interval where ψ is true.

For a world w, let t1 the minimum time instant of T (p(t1, t1)) where p(t1, t1) ∈
V (w) and let t2 be the supremum time instant (we can have t2 =∞) among the
atoms in V (w). Then, whenever useful, we denote w as wI where I = [t1, t2],
which identifies the world in a given interval.

The notion of LEK/T-LEK model does not consider mental operations, dis-
cussed later, and is introduced by the following definition.

Definition 1. A T-LEK model is a tuple M = 〈W ;N ;R;V ;T 〉 where:

– W is the set of worlds;
– V : W → 2Atm valuation function;
– T “time” function;
– R ⊆W×W is the accessibility relation, required to be an equivalence relation

so as to model omniscience in the background knowledge s.t. R(w) = {v ∈
W | wIR vI} called epistemic state of the agent in wI , which indicates all the
situations that the agent considers possible in the world wI or, equivalently
any situation the agent can retrieve from long-term memory based on what
it knows in world wI ;

– N : W → 22
W

is a “neighbourhood” function, ∀w ∈ W , N(w) defines, in
terms of sets of worlds, what the agent is allowed to explicitly believe in the
world wI ; ∀wI , vI ∈W , and X ⊆W :

1. if X ∈ N(wI), then X ⊆ R(wI): each element of the neighbourhood is a
set composed of reachable worlds;

2. if wIR vI , then N(wI) ⊆ N(vI): if the world vI is compliant with the
epistemic state of world wI , then the agent in the world wI should have
a subset of beliefs of the world vI .



A preliminary definition before the Truth conditions : letM = 〈W ;N ;R;V ;T 〉
a T-LEK model. Given a formula ϕ, for every wI ∈W , we define

‖ ϕ ‖MwI
= {vI ∈W |M,vI |= ϕ} ∩R(wI).

Truth conditions for T-DLEK formulas are defined inductively as follows:

– M,wI |= p(t1, t2) iff p(t1, t2) ∈ V (wI) and T (p(t1, t2)) ⊆ I;
– M,wI |= ¬ϕ iff M,wI 2 ϕ and T (¬ϕ) ⊆ I;
– M,wI |= ϕ ∧ ψ iff M,wI |= ϕ and M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;
– M,wI |= ϕ ∨ ψ iff M,wI |= ϕ or M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;
– M,wI |= ϕ→ ψ iff M,wI 2 ϕ or M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;
– M,wI |= B ϕ iff ‖ ϕ ‖MwI

∈ N(wI) and T (ϕ) ⊆ I;
– M,wI |= Ki ϕ iff for all vI ∈ R(wI), it holds that M, vI |= ϕ and T (ϕ) ⊆ I;
– M,wI |= �Jϕ iff T (ϕ) ⊆ J ⊆ I and for all vI ∈ R(wI), it holds that
M,vI |= ϕ;

In particular, considering formulas of the forms B ϕ and K ϕ, we observe
that M,wI |= B ϕ if the set ‖ ϕ ‖MwI

of worlds reachable from wI which entail ϕ
in the very same model M belongs to the neighbourhood N(wI) of wI . Hence,
knowledge pertains to formulas entailed in model M in every reachable world,
while beliefs pertain to formulas entailed only in some set of them, where this
set must however belong to the neighbourhood and so it must be composed of
reachable worlds. Thus, an agent is seen as omniscient with respect to knowledge,
but not with respect to beliefs.

Concerning a mental operation α performed by any agent i, we have:M,wI |=
[α]ϕ iff Mα, wI |= ϕ and T (ϕ) ⊆ I where Mα = 〈W ;Nα(wI);R;V ;T 〉 Here α
represents a mental operation affecting the sets of beliefs. In particular, such op-
eration can add new beliefs by direct perception, by means of one inference step,
or as a conjunction of previous beliefs. When introducing new beliefs, the neigh-
bourhood must be extended accordingly, as seen below; in particular, the new
neighbourhood Nα(wI) is defined for each of the mental operations as follows.

– Learning perceived belief:
N+ϕ(wI) = N(wI) ∪

{
‖ ϕ ‖MwI

}
with T (ϕ) ⊆ I.

The agent adds to its beliefs perception ϕ (namely, an atom or the negation
of an atom) perceived at a time in T (ϕ); the neighbourhood is expanded to
as to include the set composed of all the reachable worlds which entail ϕ
in M .

– Beliefs conjunction:

N∩(ψ,χ)(wI) =

N(wI) ∪
{
‖ ψ ∧ χ ‖MwI

}
if M,wI |= B(ψ) ∧B(χ)
and T (∩(ψ, χ)) ⊆ I

N(i, wI) otherwise
The agent adds ψ ∧ χ as a belief if it has among its previous beliefs both
ψ and χ, with I including all time instants referred to by them; otherwise
the set of beliefs remain unchanged. The neighbourhood is expanded, if the
operation succeeds, with those sets of reachable worlds where both formulas
are entailed in M .



– Belief inference:

N`(ψ,χ)(wI) =

N(wI) ∪
{
‖ χ ‖MwI

}
if M,wI |= B(ψ) ∧ K(ψ → χ)
and T (` (ψ, χ)) ⊆ I

N(wI) otherwise
The agent adds the ground atom χ as a belief in its short-term memory if
it has ψ among its previous beliefs and has in its background knowledge
K(ψ → χ), where all the time stamps occurring in ψ and in χ belong to I.
Observe that, if I does not include all time instants involved in the formulas,
the operation does not succeed and thus the set of beliefs remains unchanged.
If the operation succeeds then the neighbourhood is modified by adding χ
as a new belief.

– Beliefs revision (applied only on ground atoms).
Given Q = q(j, k) s.t. T (q(j, k)) = T (q(t1, t2)) ∩ T (q(t3, t4)) with j, k ∈ N
and P =

{
M,wI |= B(p(t1, t2))∧B(q(t3, t4))∧K(p(t1, t2)→ ¬q(t3, t4)) and

T (a (p(t1, t2), q(t3, t4))) ⊆ I and there is no interval J ) T (p(t1, t2)) s.t.
B(q(t5, t6)) where T (q(t5, t6))=J

}
:

Na(p(t1,t2),q(t3,t4))(wI) =

{
N(wI) \

{
‖ Q ‖MwI

}
if P

N(i, wI) otherwise
The agent believes that q(t3, t4) holds only in the interval T (q(t3, t4)) and
has the perception of p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)). Then, the
agent replaces previous belief q(t3, t4) in the short-term memory with q(t5, t6)
where T (q(t5, t6))=T (q(t3, t4))\T (q(t1, t2)). In general, the set T (q(t3, t4))\
T (q(t1, t2)) is not necessarily an interval: being T (p(t1, t2)) ⊆ T (q(t3, t4)),
with T (p(t1, t2))=[t1, t2], and T (q(t3, t4))=[t3, t4], we have that T (q(t3, t4))\
T (q(t1, t2))=[t3, t1− 1]∪[t2 + 1, t4]. Thus, q(t3, t4) is replaced by q(t3, t1− 1)
and q(t2 + 1, t4) (and similarly if t4 =∞).

We write |=T -DLEK ϕ to denote that ϕ is true in all worlds wI , of every TLEK
model M .

Example 3: Let us consider the example of a person who is married or divorced,
where only the perform can perform the action to be married or divorced. Let
us assume that performed actions are recorded among an agent’s perceptions,
with the due time stamp. For reader’s convenience, actions are denoted using a
suffix “A”. For simplicity, actions are supposed to always succeed and to produce
an effect within one time instant. Let us consider the following rules (kept in
long-term memory):

K(marry(T ,T )A→ married(T + 1 ,∞))
K(divorce(T ,T )A→ divorced(T + 1 ,∞)).

Let us now assume that a person married, e.g., at time 5; then, a belief will be
formed of the person is married from time 6 on; however, if that person later
divorced, e.g., at time 8, as a consequence result that s(he) is divorced from
time 9. It can be seen that the application of previous rules in consequence of an
agent’s action of marring/divorcing determines some “belief restructuring” in the
short-term memory of the agent. In absence of other rules concerning marriage,



we intend that a person can not be simultaneously married and divorced. The
related belief update is determined by the following rules:

K(married(T ,∞)→ ¬divorced(T ,∞))
K(divorced(T ,∞)→ ¬married(T ,∞))

With the above timing, the result of their application is that the belief formed at
time 5, i.e.,married(6,∞) will be replaced bymarried(6, 8) plus divorced(9,∞).

Property 1: For the mental operations previously considered we have the fol-
lowing (where ϕ,ψ are as explained earlier):

– |=T -DLEK [+ϕ]Bϕ.
Namely, as a consequence of the operation +ϕ (thus after the perception of
ϕ) the agent i adds ϕ to its beliefs.

– |=T -DLEK (Bϕ ∧Bψ)→ [∩(ϕ,ψ)]B(ϕ ∧ ψ).
Namely, if an agent has ϕ and ψ as beliefs, then as a consequence of the
mental operation ∩(ϕ,ψ) the agent starts believing ϕ ∧ ψ;

– |=T -DLEK (K(ϕ→ ψ) ∧B ϕ)→ [`(ϕ,ψ)]B ψ.
Namely, if an agent has ϕ as one of its beliefs and has K(ϕ→ψ) in its back-
ground knowledge, then as a consequence of the mental operation `(ϕ,ψ)
the agent starts believing ψ;

– |=T -DLEK (K(p(t1, t2)→ ¬q(t3, t4)) ∧B (p(t1, t2)) ∧B (q(t3, t4)))→
[a(p(t1, t2), q(t3, t4))] (B (q(t5, t6)))

where T (q(t5, t6)) = T (q(t3, t4)) \ T (q(t1, t2)).
Namely, if an agent has q(t3, t4) as one of its beliefs, q is not believed outside
T (q(t3, t4)), the agent perceives p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)),
and has K(p(t1, t2) → ¬q(t3, t4)) in its background knowledge. Then after
the mental operation a(p(t1, t2), q(t3, t4)) the agent starts believing q(t5, t6))
where T (q(t5, t6)) = T (q(t3, t4)) \ T (q(t1, t2)).

3 Axiomatization and Canonical Models

The logic T-DLEK can be axiomatized as an extension of the axiomatization
of DLEK as follows. We implicitly assume modus ponens, standard axioms for
classical propositional logic, and the necessitation rule. The T-LEK axioms are
the following:

1. K(ϕ) ∧K(ϕ→ ψ)→ K(ψ);
2. K(ϕ)→ ϕ;
3. K(ϕ)→ KiKi(ϕ);
4. ¬K(ϕ)→ K¬K(ϕ);
5. Bϕ ∧K(ϕ↔ ψ)→ Bψ.

The axiomatization of T-DLEK, involves these axioms:

1. [α]f ↔ f where f = p or f = pt or f = pI ;



2. [α]¬ϕ↔ ¬[α]ϕ;
3. [α](ϕ ∧ ψ)↔ [α]ϕ ∧ [α]ψ;
4. [α]K(ϕ)↔ K

(
[α](ϕ)

)
;

5. [+ϕ]Bψ ↔
(
B([+ϕ]ψ) ∨K

(
[+ϕ]ψ ↔ ϕ

))
;

6. [`(ϕ,ψ)]Bχ↔
(
B
(
[`(ϕ,ψ)]χ

)
∨
(
Bϕ∧K

(
ϕ→ ψ

)
∧K

(
[a(ϕ,ψ)]χ↔ ψ

)))
;

7. [a(ϕ,ψ)]Bχ↔
(
B
(
[a(ϕ,ψ)]χ

)
∨
(
Bϕ∧K(ϕ→¬ψ)∧K

(
[a(ϕ,ψ)]χ↔¬ψ

)))
;

8. [∩(ϕ,ψ)]Bχ↔
(
B
(
[∩(ϕ,ψ)]χ

)
∨
(

(Bϕ∧Bψ)∧ K
(
[∩(ϕ,ψ)]χ↔ (ϕ∧ψ)

))
;

9.
ψ ↔ χ

ϕ↔ ϕ[ψ/χ]
where ϕ[ψ/χ] denotes the formula obtained by replacing ψ

with χ in ϕ.

We write T-DLEK ` ϕ to indicate that ϕ is a theorem of TDLEK.
Both logics T-LEK and T-DLEK are sound for the class of T-LEK models.

The proof that T-DLEK is strongly complete can be achieved by using a standard
canonical model argument.

The canonical T-LEK model is a tuple Mc = 〈Wc;Nc; {Rc;Vc;Tc〉 where:

– Wc is the set of all maximal consistent subsets of LT -LEK ; so, as in [6],
canonical models are constructed from worlds which are sets of syntactically
correct formulas of the underlying language and are in particular the largest
consistent ones. As before, each w ∈ Wc can be conveniently indicated as
wI .

– For every wI ∈ W and wIRcvI if and only if Kϕ ∈ wI iff Kϕ ∈ vI ; i.e.,
Rc is an equivalence relation on knowledge; as before, we define Rc(wI) =
{vI ∈ W | wIRcivI}. Thus, we cope with our extension from knowledge of
formulas to knowledge of formulas.

– Analogously to [6], for wI ∈ W , Φ ∈ LT -LEK we define AΦ(wI) = {vI ∈
Rc(wI) | Φ ∈ vI}. Then, we put Nc(wI) = {AΦ(wI) | BΦ ∈ wI}.

– Vc is a valuation function defined as before.
– Tc is a “time” function defined as before.

As stated in Lemma 2 of [6], there are the following immediate consequences
of the above definition: if wI ∈Wc and i ∈ Ag , then

– for Φ ∈ LT -LEK , it holds that KΦ ∈ wI if and only if ∀vI ∈ W such that
wIRcvI we have Φ ∈ vI ;

– for Φ ∈ LT -LEK , if BΦ ∈ wI and wIRcvI then BΦ ∈ vI .

Thus, whileRc-related worlds have the same knowledge andNc-related worlds
have the same beliefs, as stated in Lemma 3 of [6] there can be Rc-related worlds
with different beliefs. The above properties can be used analogously to what is
done in [6] to prove that, by construction, the following results hold:

Lemma 1. For all wI ∈ Wc and BiΦ,BiΨ ∈ LT -LEK , if BiΦ ∈ wI but BiΨ 6∈
wI , it follows that there exists vI ∈ Rci(wI) such that Φ ∈ vI ↔ Ψ 6∈ vI .



Lemma 2. For all Φ ∈ LT -LEK and wI ∈ Wc it holds that Φ ∈ wI if and only
if Mc, wI � Φ.

Lemma 3. For all Φ ∈ LT -DLEK then there exists Φ̃ ∈ LT -LEK such that
T-DLEK ` Φ↔ Φ̃.

Under the assumption that the interval I is finite, the previous lemmas allow us
to prove the following theorems. The limitation to finite intervals is not related
to features of the proposed approach, but to well-known paradoxes of temporal
logics on infinite intervals.

Theorem 1. T-LEK is strongly complete for the class of T-LEK models.

Theorem 2. T-DLEK is strongly complete for the class of T-LEK models.

With the new formalization of time intervals proposed in this paper, the
proof of Theorem 2 immediately follows from the proof proposed in [6].

4 Conclusion

In this work we extended an existing approach to the logical modeling of short-
term and long-term memories in Intelligent Resource-Bounded Agents by in-
troducing the T function, which manages the interval when an atom is true.
Through this function we are also able to assign a “timing” to the epistemic
operators B and K. Moreover we add the always operator �I of the Metric Tem-
poral Logic to increase the expressiveness of our logic. We considered not just
adding new beliefs, rather we introduced a new mental operation not provided
in DLEK, to allow for removing/restructuring existing beliefs. The resulting T-
DLEK logic shares similarities in the underlying principles with hybrid logics
(cf., e.g., [17]) and with temporal epistemic logic (cf., e.g., [18]); as concerns the
differences, the former has time instants but no time intervals, and the latter
has neither time instants nor time intervals.

With regard to complexity for the mono agent case, which we are in, for
LEK it has been proved that the satisfiability problem is decidable and it has
been proved to be in NP-complete, instead for DLEK it has been conjectured to
be PSPACE. It is easy to believe that our extensions cannot spoil decidability
because the T function do not interfere. Inference steps to derive new beliefs are
analogous to D-LEK: just one modal rule at a time is used and a sharp separation
is postulated between the working memory, where inference is performed, and
the long-term memory.

Future developments could be the extension to the multi-agent case also
reconsidering the complexity.
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