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ABSTRACT
Emotion is an inherent aspect of music, and associations to music

can be made via both life experience and specific musical tech-

niques applied by the composer. Computational approaches for

music recognition have been well-established in the research com-

munity; however, deep approaches have been limited and not yet

comparable to conventional approaches. In this study, we present

our fusion system of end-to-end convolutional recurrent neural

networks (CRNN) and pre-trained convolutional feature extrac-

tors for music emotion and theme recognition
1
. We train 9 models

and conduct various late fusion experiments. Our best performing

model (team name: AugLi) achieves 74.2 % ROC-AUC on the test

partition which is 1.6 percentage points over the baseline system

of the MediaEval 2019 Emotion & Themes in Music task.

1 INTRODUCTION
The ability of music to express and induce emotions is a well-known

and demonstrable fact [21]. It communicates and induces simi-

lar emotional states in all listeners because musical parameters

(e. g., rhythm, melody, timbre, dynamics) encode affective informa-

tion that is implicitly decoded by listeners [14, 18]. Furthermore,

both music psychologists and computer scientists have provided

plenty of evidence that listeners construe emotional meaning by

attending to structural aspects of the acoustic signal at various

levels [10, 13, 22]. Recent deep learning solutions demonstrate the

suitability of recurrent neural networks (RNNs), autoencoders, and

convolutional neural networks (CNNs) for the task of audio-based

music emotion recognition (MER) [17, 23, 25]. In [12], we have

utilised denoising autoencoders and a transfer learning approach

for time-continuous predictions of emotion in music and speech.

Furthermore, we have conducted both psychological and computa-

tional experiments that aimed at clarifying the role of music struc-

ture in the expression and induction of musical emotions [11, 15].

In this paper, we introduce our end-to-end architecture for the task

of emotion and theme recognition in music at MediaEval 2019 [7].

2 APPROACH
Our framework – which is motivated by our previous works with

CRNNs [1, 5] – is depicted in Figure 1. It consists of two models

whose predictions are fused to obtain the final predictions. These
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models capture both shift-invariant, high-level features (convolu-

tional block), and long(er)-term temporal context (recurrent block)

from the musical inputs [7, 8]. The MTG-Jamendo dataset [8] in-

cludes 18 486 audio tracks with 56 distinct mood and theme annota-

tions/tags. All audio files have at least one tag. The dataset provides

60-20-20 % splits for training, validation, and testing. For the full

description of the challenge data, please refer to [8].

2.1 Convolutional Recurrent Neural Network
The CRNN system (upper part of Figure 1) consists of a vgg-ish

model (which is trained on the Audioset dataset [19]) with the fi-

nal global average pooling layer replaced by an RNN. Specifically,

we add 2 recurrent layers with 256 units (we tried 128, 256, and

512 units) and a dropout [27] of 0.3 (out of [0.2, 0.3, 0.4]) for each

layer, followed by a 1 024 unit dense layer, batch normalisation [20],

ReLU activation [24] and a dropout of 0.3. Tagging is performed

by a 52 unit dense layer with sigmoid activation. We initialise the

convolutional feature extractor with the official SoundNet trained

weights [6]. Subsequently, sequences of log Mel spectrograms are

generated using the kapre keras library [9]. Afterwards, the input is

resampled to 16kHz, and 64 Mel filters and an FFT window of 512

samples with a hop size of 256 are used. During training, we sample

a random 20 s chunk of every song and apply random Gaussian

noise with a maximum power of 0.2. For evaluation, we use the cen-

tre 20 s chunk of each song. We apply the RMSprop optimiser [28]

and train the network with a batch size of 32. We first train only

the top RNN and tagging layers for 20 epochs with a learning rate

of 0.001, keeping the weights of the pre-trained vgg-ish frozen. We

then unfreeze the feature extraction layers and resume training

from the best checkpoint – measured in validation Receiver Oper-

atingCharacteristic Curve (ROC-AUC) – with a reduced learning

rate of 0.0001 for another 80 epochs. Finally, the best overall model

is restored and evaluated on the test partition.

2.2 Utilising pre-trained CNNs
The second model (see bottom part of Figure 1) uses our Deep

Spectrum system
2
[3] to extract pre-trained CNN features from

Mel spectrograms (128 Mel filters) of the songs, which have been

shown to outperform engineered feature sets on a variety of acous-

tic tasks [2–4]. We use an ImageNet [16] pre-trained VGG16 archi-

tecture and forward plots of 1 and 5 second audio chunks through

the network [26]. The activations of the penultimate layer then

form our feature vectors. We extract these features for the first 30

2
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Figure 1: An overview of our system composed of twoCRNNblocks. For a detailed account on the framework refer to Section 2.

seconds (the minimum song duration in the dataset [8]) of each

song and use them as sequenced input for training RNNs. For both

feature types, three RNN architectures are trained which differ in

the choice of recurrent cells, as with the CRNN. We chose an archi-

tecture with 2 recurrent layers of size 1 024 units each, followed by

a dense layer with the same number of units before the final densely

connected prediction layer. Afterwards, batch normalisation is used

after each of the recurrent layers and the penultimate dense layer.

Finally, a dropout of 0.4 is applied to the activations of the hidden

layers. We train the model using RMSprop with a learning rate of

0.001 and batch size 32 for a maximum of 1 000 epochs, but perform

early stopping if the validation ROC-AUC does not increase for

over 50 epochs. Thus, none of our models was trained for more than

200 epochs. As for the CRNN, we restore the best model checkpoint

before evaluating on the test partition.

2.3 Fusion Experiments
To explore further potential performance improvements, we apply

model fusion experiments by averaging the prediction scores re-

turned by our networks for the test partition. From these scores,

we generate corresponding tag decisions with the official challenge

script. In total, we evaluate five different fusion scenarios: fusion

of all systems, fusion of all Deep Spectrum , fusion of all CRNN

systems and fusion of Deep Spectrum systems trained on 1 s and

5 s feature windows, respectively.

3 RESULTS AND ANALYSIS
The results of our experiments are shown in Table 1. Our best CRNN

model with GRU layers reaches 69.5% ROC-AUC on the test set,

while a bi-directional LSTM trained on 1 s Deep Spectrum features

achieves 71.0% ROC-AUC. These results can be explained by the

fact that we use a fixed size chunk of each song (20 s for CRNN and

30 s forDeep Spectrum + RNN) instead of the whole song.Wemade

this choice because training of the RNNmodels on longer sequences

quickly becomes computationally infeasible. Nonetheless, we can

see that fusion leads to an increase in performance. For each type of

system, in-group fusion only leads to marginal performance boosts.

We notice a larger positive effect by combining various system types

hinting at complimentary information found on different scales.

Finally, fusing all 9 systems increases the performance to 74.2%

ROC-AUC on the test set. This shows that the features extracted

Table 1: Performance of our proposed approaches. All re-
sults are given inmacro ROC-AUC. Baseline accuracy on the
test set is 72.5 % ROC-AUC [7].

CRNN
RNN type validation test

LSTM 71.4 69.4

GRU 72.6 69.5
BLSTM 71.9 68.2

Deep Spectrum [3] + RNN
spectrogram width (s) RNN type validation test

1 LSTM 70.1 70.0

1 GRU 68.4 69.8

1 BLSTM 69.2 71.0
5 LSTM 69.0 70.3

5 GRU 68.8 69.9

5 BLSTM 68.4 70.8

Fusion
fused models test

All CRNN (3 models) – 70.7

All 1s Deep Spectrum (3 models) – 71.5

All 5s Deep Spectrum (3 models) – 71.6

All Deep Spectrum (6 models) – 72.6

All systems (9 models) – 74.2

from spectrograms with an ImageNet pre-trained CNN provide

further information not found by training on audio data alone. Our

fusion configuration further achieves a macro average F1 of 17.5 %

and a macro PR-AUC of 11.7 %.

4 DISCUSSION AND OUTLOOK
We outperformed the competitive challenge baseline of MediaEval

2019 Emotion & Themes in Music task after fusing the outputs of

our two systems (cf. Table 1) . We also demonstrated that the Deep

Spectrum + RNN approach (which makes use of CNNs pre-trained

on ImageNet) yields better results than the CRNN with the vgg-

ish model. For the future work, a systematic comparison between

engineered and data-driven feature sets will be done by using the

same machine learning models. Its aim will be to determine the

usefulness of data-driven features for emotions and theme predic-

tions in music. We believe that this research direction can lead

to a better understanding of the relevant cues for emotion com-

munications in music and improvements in automated emotion

recognition systems.
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