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ABSTRACT
This paper presents the algorithms that the organisers deployed
for the automatic Behavior Analysis (HBA) task in MediaEval 2019,
consisting on the detection of speech in social interaction from
body-worn acceleration and video only. For acceleration-based pre-
diction, a CNN with access to a window of 3s around and including
the one-second prediction window is shown to perform remarkably.
For video-based prediction, a Fisher vector pipeline with access
only to the prediction window of 1s was found to perform signifi-
cantly worse, while the late fusion of both approaches resulted in a
small improvement.

1 INTRODUCTION
The No-Audio Multimodal Speech Detection task [5] of MediaEval
2019 aims to study the problem of determining the speaking status
of standing subjects in crowded mingling scenarios. The non-verbal
input consists in accelerometer readings from a wearable devices
worn around the neck of the subjects, and video recorded from
overhead cameras.

The problem is of interest because the automatic detection of
speech from the visual modality allows for more detailed computa-
tional analyses of social behavior when audio of conversations is
not available. The importance of the acceleration modality is two-
fold. First, the use of accelerometers in wearable devices poses little
privacy concerns and such devices have therefore become common
in social interaction datasets, providing limited but exploitable in-
formation about the body movement of subjects. Second, being a
proxy for body movement, insights about how to best detect social
actions from acceleration information could potentially transfer to
other modalities like video.

2 RELATEDWORK
Using the same dataset, a previous submission for the same task [1]
makes use of PSD feature extraction and a Transductive Parameter
Transfer method for classifying based on acceleration and dense
trajectories and a Multiple Instance Learning method for classifying
the videomodality. Late fusion is also used and results in an increase
in performance. Both methods were proposed in separate papers
for the speech detection task [2, 6].

Research in psychology and computer science has investigated
the synchrony between speech and gesture [4] and the role that
gestures play in complementing or being redundant to speech [8, 9].

Very little literature is concerned with the specific task of recog-
nizing speaking status without access to audio. Much more concern
has received the automatic detection of gestures, possibly the most
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salient manifestation of speech behavior in our dataset. Although
gesture recognition can certainly be treated as an action recognition
or localization problem, it has received some attention in studies
that focus specifically on this task [3, 10, 15, 16]. The datasets used,
however, differ in that they normally offer a clear frontal view of a
single person.

3 APPROACH
The task was approached using a traditional dense trajectories
pipeline for video-based detection. For acceleration-based detection,
a one-dimensional convolutional neural network with access to
context outside of the prediction window was used. Multimodal
detection was approached via late fusion of classification scores.

3.1 Estimation from video: Dense Trajectories
and Fisher Vectors

The method for video classification was based on dense trajectories
[13, 14] due to their relative simplicity and competitive performance
even when compared with more recent deep learning approaches
for action recognition.

Fisher vectors [12], and specially their improved variant , [11]
were found to perform remarkably well in comparisson with Multi-
ple Instance Learning [2] in experiments with 3-second windows,
and were therefore chosen as classification algorithm.

Fisher vectors provide a way to obtain a compact feature vector
from an arbitrary number of local features by making use of the
additive property of log-likelihood in a generative model (see figure
2). Let X = {xt , t = 1...T } be the set of T local descriptors of
dimensionalityD extracted from an image anduλ be the probability
density function with parameters λ. The fisher score is defined as
the gradient of the log-likehood over X , with respect to the model
parameters:

GX
λ =

1
T
∇λ loguλ(X ) (1)

where λ denotes the model parameters. The fisher vector is a
normalized version of the Fisher score:

GX
λ = LλG

X
λ (2)

where normalization by Lλ corresponds to whitening of the di-
mensions. Any generative model can be used as uλ . We chose a
Gaussian mixture model (GMM) with K components with diagonal
covariance matrices, in line with previous work [11]. The param-
eters λ of a GMM are λ = {wi , µi ,σ

2
i , i = 1, . . . ,K}, where wi , µi

and σ 2
i are the mixture weight, mean vector and diagonal of the

covariance matrix of Gaussian i . Mean and standard deviation are
the only parameters considered because mixture weights add little
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additional information [11]. Under the assumption of independence
of local descriptors:

GX
λ =

1
T

T∑
t=1

∇λ loguλ(xt ) (3)

Let γt (i) be the soft assignment of descriptor xt to Gaussian i:

γt (i) =
wiui (xt )∑K
j=1w juj (xt )

(4)

Derivation of the gradients leads to:

GX
µ,i =

1
T
√
wi

T∑
t=1

γt (i)

(
xt − µi

σi

)
(5)

GX
σ ,i =

1
T
√
2wi

T∑
t=1

γt (i)

[
(xt − µi )

2

σ 2
i

− 1

]
(6)

where the division between vectors is term-by-term. The Fisher
Vector aggregates all gradients into a vector of 2KD dimensions.
Finally Fisher vectors are normalized by dividing by their L2 norm
and then power-normalized with f (z) = siдn(z)

√
|z |.

For the task, person videos were resized to 100x100px. A set of
200 one-second windows were sampled per person, reducing the
size of the training set to 10800 examples, due to the large size of
the represenation. A GMM with 256 components was used. Fisher
vectors were fed into a linear SVM classifier. 4-fold cross validation
at the subject level was used to determine the optimal regularization
parameter.

GMM SVMBags of dense trajectories Fisher Vectors

i
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Figure 1: Fisher vectors pipeline.

3.2 Estimation from acceleration: 1-D
Convolutional Neural Network (CNN)

For the classification of one-second windows using acceleration, a
one-dimensional CNN was chosen. The architecture was based on
the two-dimensional AlexNet [7]. The ratios between number of
channels was preserved but the number of channels was reduced
due to the reduced complexity of the input (see figure 2). Because
experiments have revealed that 3-second windows are more infor-
mative for the detection of speaking status, the network was fed
3-second windows to give it access to a wider context, but only the
middle second is predicted. The data was padded with zeros at both
ends.

A sliding window of 3s with stride of 1s was used to produce
the training examples. Data was pre-processed by z-score stan-
dardization on each axis, to reduce the effect of gravity and device
miscalibration.

60x3

56x24 27x64 13x96 13x96 13x64 384 384 192

0/1

Figure 2: Architecture of the 1D-CNN used. Input data has 3
channels corresponding to axes X, Y and X of the accelerom-
eter. Filter sizes are 5 for the first convolutional layer and 3
for the rest of the layers, with unit padding. AswithAlexNet,
first, second and last layers are followed by a max-pooling
layer kernel size 3 and stride of 2.

3.3 Multimodal estimation: late fusion
Late fusion of the scores of both modalities was used to obtain multi-
modal scores, by training a logistic regressor with no regularization
on the output scores of both modalities.

4 RESULTS AND ANALYSIS
Table 1 presents the results on the provided test set.

Submission Method AUC

This submission 1D CNN 0.692
Fisher vectors 0.552
Fusion 0.693

Past submission [1] TPT 0.656
MILES 0.549
Fusion 0.658

Table 1: Test results.

5 DISCUSSION AND OUTLOOK
Although the submitted results indicate much better performance
from the acceleration-based method, our experiments using predic-
tion windows of 3s for both methods have resulted in very similar
performance, indicating that the larger context fed into the CNN is
useful for prediction. The experiments made for the submission sug-
gested multiple areas for possible future work. One of them relates
to how to give dense trajectory methods context in an equivalent
way. Giving dense-trajectory-based methods access to context for
high-resolution prediction is not straightforward given that aggre-
gation methods like Fisher vectors are time-agnostic, unlike a CNN
which only compresses its time dimension.

The comparison with the results of our past submission indi-
cates that Fisher Vectors are capable of outperforming MILES. Our
experiments also showed that personalisation using TPT does not
deliver better results for this dataset, even when compared with a
more simple Logistic Regressor.
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