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ABSTRACT
This paper presents the solutions of team EVUS-ikg for the Mul-
timedia Satellite Task at MediaEval 2019. We addressed two of the
subtasks, namely multimodal flood level estimation (MFLE) and
city-centered satellite sequences (CCSS). For MFLE, a two-step ap-
proach was proposed, which retrieves flood relevant images based
on global deep features and then detects severe flood images based
on self-defined distance features, which can be extracted from hu-
man body keypoints and semantic segments. For CCSS, a neural
network, which combines CNN and LSTM, was used to detect
floods in satellite image sequences. Both methods have achieved a
good performance on the test set, which shows a great potential to
improve the current flood monitoring applications.

1 INTRODUCTION
Flood, as one of the great natural disasters, endangers people’s
safety and their property. Satellite images are one of the most often
used data sources for flood mapping. However, this is not sufficient
to obtain enough evidence for the estimation of local flood severity.
Crowdsourcing, as a rapidly developing method for data acquisition,
has been proved to be beneficial for such a purpose. From social
media, flood relevant posts can be retrieved with image and text
classifiers trained from deep neural networks (e.g. [8, 11]). However,
the information retrieved by now are mostly evidences, further
details, such as flood severity, is still desired for many emergency
response applications. In the previous Multimedia Satellite Tasks
(MMSat) at the MediaEval benchmarking initiative, several tasks
have been proposed regarding flood detection from satellite and
social media data. MMSat’18 [3] provided binary labels showing
road passability for tweets with photos, which can be regarded as
an early step for extracting local flood severity information. Our
solution [9], which simply used early fusion of several pre-trained
CNN features, has achieved an average performance compared with
the other teams. InMMSat’19 [1], the subtaskmultimodal flood level
estimation (MFLE) goes one step further, which aims to extract
news articles only with severe flood situation based on textual and
visual information. As for the satellite data, most of the previous
research applied semantic segmentation indicating which pixels are
water. In order to confirm if it is flooding, an extra water boundary
is always needed for a comparison. The differences are not only
caused by flood, but also can be caused by the mapping errors or
season change. In MMSat’19 [1], sequences of satellite images are
provided for a binary classification of the appearance of flooding
events, which could be a more reliable data source.
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2 APPROACH
In MFLE, corresponding image and text pairs were annotated with
binary labels, which indicate whether the image contains at least
one person standing in water above the knee. For run 1, where only
visual information is allowed, a two-step approach was proposed. A
first classifier was trained for extracting flood relevant images and a
second classifier was then used to detect the images containing peo-
ple standing in water above the knee from these relevant images.
We concatenated the features extracted from four CNN models,
namely InceptionV3 [15], DenseNet201 [10], InceptionResNetV2 [14]
pre-trained on ImageNet and VGG16 pre-trained on Place365 [16].
Then, we trained a classifier on these features with Xgboost [7]. Sub-
sequently, all positive predicted images are processed with Open-
Pose [5] pre-trained on Microsoft COCO [13] dataset for multi-
person body keypoint detection and DeeplabV3+ [6] pre-trained
on ADE20K [17] for semantic segmentation. During this step, im-
ages without persons, or all persons in the image who are without
adjacency to ground or water segments, were directly marked as
negative. Afterwards, we detected the water line based on the body
keypoints and segments, with the steps shown in Figure 1. Finally,
the pixel distances from each keypoint to the water line in vertical
direction are divided by the body length to calculate the relative
distances. These distances were used as the features to represent
the relationship between water and single person. After all, we
assigned each image annotations to all of the persons in the image
and trained a second binary classifier with Xgboost. As for images
with multiple persons, the image would be considered "positive" if
at least one of the persons is predicted as "positive" by this model.

For run 2, where only textual information is allowed, we used
a TextCNN model [12] with fasttext [4] word embeddings, which
is same as our solution for MMSat’18 [9]. For run 3, where the
visual and textual information are fused, only the articles predicted
"positive" by both models in run 1 and 2 would be considered as
"positive" by this fusedmodel. In run 4, we introduced extra data for
the visual based model. SinceMMSat’17 [2] provided binary labeled
images for training a binary classifier showing flood relevancy. We
trained on this augmented dataset to replace the first classifier in
run 1.

In CCSS, the sequences are collected from 12-bands Sentinel-2
satellite images with date and time. As a pre-processing step, we
performed a normalization by calculating the Z-score (subtracting
the mean and then dividing by the standard deviation) for each band
individually and then clipped the normalized image into the range
from -1 to 1. We used DenseNet121 as a feature extractor, and then
connected the features using a LSTM with 32 cells in the temporal
direction (Figure 2). We used a many-to-many LSTM, where we
required an output for each input image individually. The weights
of this DenseNet were initialized with the weights pre-trained on



MediaEval’19, 27-29 October 2019, Sophia Antipolis, France Y. Feng et al.

(1) Overlay of semantic 
segmentation and body 
keypoints

(2) Valid area created by body 
keypoints and image bottom 
points using convex hull

(3) Extract valid connecting 
boundary

(4) Abstraction with the 
height of lowest boundary 
point

(5) Extraction of distance 
feature

Figure 1: Steps for feature extraction (adapted on image under CC BY-NC-SA 2.0)
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Figure 2: Model for subtask city-centered satellite sequences

ImageNet. Since the image sequence lengths are different and do
not exceed 24 layers, we padded the sequence to 24 layers with
same size tensors with zeros and generate a mask indicating which
layers are padded. Then, we excluded these padded images when
calculating the categorical cross-entropy loss and accuracy metric.
During the training, we used only the RGB channels with a reduced
image size 256 × 256. Since there are 267 sequences available in
devset, we used 170 for training, 43 for validation and 54 as an
internal testset. Since some of the images in the sequence may
be broken or incomplete, the field FULL-DATA-COVERAGE in the
timeseries files can help us to filter these images.

We trained this model with different annotation settings. Each
sequence is annotated with binary labels (hereinafter called seq-
label), where the field FLOODING in the timeseries file of each
sequence provides the layer-level labels (hereinafter called layer-
label). Our primary observation of the training data shows that,
the layer-labels indicate a strong correspondence to the seq-labels,
where only the sequences annotated with all negative are annotated
with negative in the seq-labels. Thus, in run 1, we simply used these
layer-labels to train this model. Subsequently, we tested different
pseudo labels generated from the seq-labels. A repetition of seq-
labels in run 2 (i.e. seq-label is 1, layer-labels are all 1; seq-label
is 0, layer-labels are all 0). Since we observed a strong pattern in
the positive labeled sequences, that the first half of the seq-labels
are negative while the latter half negative. Thus, we followed this
pattern to generate pseudo layer-labels in run 3, where seq-label is
1, layer-labels are [0, 0, 0, 1, 1, 1] for a sequence of 6 images. For a
comparison, instead of using a many-to-many LSTM, run 4 applied
a many-to-one LSTM, where the model is optimized only based on
seq-labels.

Table 1: Evaluation on multimodal flood level estimation

Macro-avg. F1-score Run 1 Run 2 Run 3 Run 4

Development set 73.99% 52.96% 75.56% 73.23%
Test set 68.16% 48.86% 67.27% 68.28%

Table 2: Evaluation on city-centered satellite sequences

Micro-avg. F1-score Run 1 Run 2 Run 3 Run 4

Development set 97.00% 98.50% 97.75% 68.16%
Test set 92.65% 94.12% 97.06% 60.29%

3 RESULTS AND DISCUSSION
ForMLFE (Table 1), our image based approach can achieve an aver-
aged F1-score of 68.16% on test set. The text based method performs
significantly worse than the image based model. Combining both
textual and visual information did not improve the F1-score in our
case. In run 4, f1-score was improved slightly by introducing ad-
ditional images for training of the flood relevance classifier. We
further exam the failure examples. They can be categorized into
three types, namely failed pose detection, failed semantic segmen-
tation and failed water level estimation, where most of them are
caused by drawing a wrong water line. This leads to many false
positive detections. For CCSS (Table 2), comparing the results from
the first three runs using many-to-many LSTM and many-to-one
LSTM in run 4, the improvement is obvious. Regarding the different
annotation settings, run 3 achieved the best performance, where the
pseudo labels followed annotation patterns in layer-labels. Run 2
has also achieved a better performance than run 1, which indicates
the exact layer-labels may not be necessary to predict if a sequence
has flood or not.

4 CONCLUSIONS AND OUTLOOKS
In this paper, separate solutions have been proposed for subtask
MFLE and CCSS. Both models can solve the tasks properly according
to their performance on test set. ForMFLE, the water line estimation
can be further improved in order to reduce false positive detections.
For CCSS, the robustness of model can be tested on further events.
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