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ABSTRACT
This work presents a Table Tennis stroke classification approach
through a siamese spatio-temporal convolutional neural network -
SSTCNN. The videos are recorded at 120 frames per second with
players performing in natural conditions. The frames are extracted,
resized and processed to compute the optical flow. From the optical
flow, a region of interest - ROI - is inferred. The SSTCNN is then
feed by RGB and optical flow ROIs stream to give a probabilistic
classification over all the table tennis strokes.

1 INTRODUCTION
In the scope of video processing, action recognition and classifica-
tion is one of themain challenge. In the Sport task ofMediaEval 2019
[4], this aspect is underlined by providing a dataset of Tennis table
recordings, TTStroke-21 [6], where strokes have to be extracted
and classified with the aim of improving athletes performances. As
a first step, videos are provided with temporal segmentation and
the task is to classify those segments. However, contrary to the
common datasets widely used in image and video processing such
as UCF-101 [8], HMDB [3] or Kinetics [1]; this task focuses on fined
grained classification with the classification of strokes highly simi-
lar. The difficulty of this task is to be able to find the characteristics
of each kind of stroke using a limited dataset without over-fitting
it. In this paper, we present an approach aiming at providing data
with enough inter-dissimilarity and focusing on intra-similarity
to feed a neural network able to classify without over-fitting on a
limited dataset.

2 APPROACH
To deal with the low inter-variability of the classes in TTStroke-21
and avoid over-fitting on this sample of the dataset, we decided
to use cuboids of optical flow in addition to cuboids of RGB im-
ages with spatio-temporal convolutions processed simultaneously
through a Siamese architecture as presented in [6].

2.1 Optical Flow estimator
As shown in [7], flow estimators can have a strong impact on the
classification, so we tested classification using two different flow
estimators: DeepFlow [9] and Dense Inversive Search - DIS [2].
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Because of the strong motion artefacts observed on DIS flow, this
one is smoothed with a Gaussian blur using a kernel of size 3 × 3
and then multiplied by the computed foreground [10] to keep only
foreground motion.

2.2 Spatial segmentation
RGB and Optical Flow are spatially segmented using a region of
interest - ROI - of center Croi = (xroi ,yroi ) estimated from the
maximum of the optical flow norm and the center of gravity of all
pixels [6] as follows:

Cmax = (xmax ,ymax ) = arдmax
x ,y

(| |D| |1)

Cg = (xд,yд) =
1∑
δ (C)

C∈Ω

∑
Cδ (C)
C∈Ω

with δ (C) =
{

1 if | |D| |1(C) , 0
0 otherwise

xroi = α fωx (xmax , W ) + (1 − α) fωx (xд, W )

yroi = α fωy (ymax , H ) + (1 − α) fωy (xд, H )

(1)

with parameters α = 0.6, Ω = (ωx ,ωy ) = (320 × 180) the size of
the resized video frames, (W , H ) the size of the data inputted to our
network. The function fω (u,V ) =max(min(u,V − ω

2 ),
ω
2 ) allows

to have input data extracted within the boundaries of our data. To
avoid jittering, we apply a Gaussian blur along the time dimension
to average the center position using a kernel of size 40 and scale
parameter σblur = 4.44.

2.3 Data normalization
The RGB image channels are normalized by their theoretical maxi-
mum value, 255 in our case, to map them into interval [0,1]. As done
in [7] which compare different normalization methods, we decide
to normalize the optical flow V = (vx ,vy ) using the mean µ and
standard deviation σ of the maximum absolute values distribution
of each optical flow components over the whole dataset. In the fol-
lowing equation v and vN represent respectively one component
of the OF V and its normalization.

v ′ = v
µ+3×σ

vN (i, j) =

{
v ′(i, j) if |v ′(i, j)| < 1
SIGN (v ′(i, j)) otherwise.

(2)

This normalization method maps the values into interval [-1,1]
and increases the magnitude of most vectors making the optical
flow easier to process for classification of very similar actions such
as Table Tennis strokes.
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2.4 SSTCNN
Our Siamese Spatio-Temporal Convolutional Neural Network -
SSTCNN, see Fig. 1, is constituted of 2 branches with three 3D con-
volutional layers with 30, 60, 80 filter response maps, followed by a
fully connected layer of size 500. They take respectively cuboides of
RGB values and optical flow computed from them of size (W ×H ×

T )= (120×120×100). The 3D convolutional layers use 3×3×3 space-
time filters with a dense stride and padding of 1 in each direction.
The two branches are fused through a final fully connected layer
of size 21 followed by a Softmax function to output a probabilistic
classification.

Figure 1: SSTCNN architecture

2.5 Data augmentation
Data augmentation is made online and is different for each epoch.
Each stroke feed our SSTCNN once per epoch. For each stroke, we
extract one video sample of size (W × H × T ). The T successive
frames from the RGB and Optical Flow are extracted following a
normal distribution around the center of our stroke with standard
deviation of σ = ∆t−T

6 . We also spatially augment the data by
applying random rotation in the range ±10◦, random translation
in range ±0.1 in x and y directions, random homothety in range
1 ± 0.1 and a 0.5 chance flip in horizontal direction and random
channel swaps on the RGB data. We take extra care of applying
those changing on the Optical Flow by updating its values according
to the transformations. Transformations are applied and centered
on the region of interest avoiding crops outside of the camera range.

2.6 Training and submitted runs
All models were trained from scratch. We used firstly 250 epochs
with the data samples split randomly between all strokes and then
split using only two videos for validation. However we noticed
the results obtained by splitting the dataset between videos were
not satisfying. After looking at the dataset in detail, this is due to
the fact that most of the videos contain only one kind of stroke
performed by the same player. So the model will over-fit easily
to the player appearance and not the characteristics of the stroke
itself. With such a limited dataset and a limited time window we
preferred to focus on the random distribution of the strokes among
our training and validation sets. The two first runs are the classi-
fication obtained with the model trained on the split dataset and
saved on the minimum loss obtained on the validation set with two
different flows presented in section 2.1. The other two runs are the
same models but retrained from scratch using all data samples with
the number of epochs used for obtaining best performance on the
first validation set.

3 RESULTS
On the left side of the Table 1 we can see results of the first two
runs from the models trained on the split database with 250 epochs;
and on the right side two others runs obtained from the models
trained with all the data.

Table 1: Runs results

Flow Epochs Train Val Test Train Test

DIS 249 70.4 52.6 19.2 61.2 17.8
DeepFlow 229 74.7 56.1 17.2 70.2 22.9

Compared to what has been obtained in previous work [6], the
results are very low. Themain differences are i) the lack of a negative
class and ii) the split of the dataset in train and test sets between
videos. It directly leads to an over-fitting of the dataset and makes
the model much less able to do a proper classification. Best results
were obtained by using DeepFlow estimator.

Figure 2: Confusion Matrix of our best run

Furthermore, if we consider the confusion matrix of our best run,
Fig. 2, and group strokes in larger classes as: ’Forehand’, ’Backhand’
or ’Service’, ’Offensive’, ’Defensive’ or their intersection (6 classes),
we respectively get accuracies of 76.8%, 65.8% and 54.8%.

4 CONCLUSION
Despite a strong over-fitting, by grouping strokes together in larger
classes, we can notice that some characteristics to recognize strokes
are still learned. Furthermore, the work on TTStroke-21 [5] is
still in progress and the enrichment of the dataset will be a big
contribution in the domain of action detection and classification
especially for very similar actions.
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