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ABSTRACT
In this paper, we analyse two deep learning methods to predict
sperm motility and sperm morphology from sperm videos. We use
two different inputs: stacked pure frames of videos and dense optical
flows of video frames. To solve this regression task of predicting
motility and morphology, stacked dense optical flows and extracted
original frames from sperm videos were used with the modified
state of the art convolution neural networks. For modifications of
the selected models, we have introduced an additional multi-layer
perceptron to overcome the problem of over-fitting. The method
which had an additional multi-layer perceptron with dropout layers,
shows the best results when the inputs consist of both dense optical
flows and an original frame of videos.

1 INTRODUCTION
Our main goal of this task is to predict the spermmotility and sperm
morphology from videos of sperm samples. In the 2019 Medico task
[8], a video dataset was provided with ground truth values of sperm
motility such as progressive motility, non-progressive motility, and
immotility, and sperm morphology such as head defects, tail de-
fects, and midpiece and neck defects. This task was introduced as
completely new this year, and therefore, we could not find any
previous work in previous mediaeval Medico task competitions
[14, 15]. In this competition, the VISEM dataset [6] which contains
sperm videos recorded from 85 participants is used. In the dataset
paper, the authors presented baseline mean absolute error values for
motility and morphology. Moreover, the importance of computer-
aided sperm analysis can be identified from the research works
which have been done to develop automatic sperm analysis method
in last few decades [3, 13, 19].

Video analysis is a hot research topic in the field of deep learning.
Some researchers are experimenting with video classification [2],
detection [1], segmentation [5], and generations [12, 18] for various
type of video datasets. Yue-Hei Ng et al. [20] experimented with
video classification problem using well knows datasets such as
sports-1M [10] and UCF101 [16]. In these experiments, they have
generated dense optical flow images and row frames of videos
to classify 120 seconds long videos. In this paper, we use very
short video segments such as nine frames compared to these long
segments such as 120s X 30 frames/s.

To solve this new regression problem of predicting morphology
and motility from videos of sperm samples, this paper presents
two deep learning methods where we used extracted dense optical
flows and raw frames from the videos. In Section 2, we are going
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(a) Original frame (b) Dense optical flow -
stride 1

(c) Dense optical flow -
stride 10

Figure 1: Sample images used to construct input image
stacks into the models

to present our two types of input data and two types of methods
used in our experiments. Then, the results collected from these
experiments will be discussed in Section 3. Finally, the paper ends
up with conclusions and future work in Section 4.

2 APPROACH
We have selected the pre-trained ResNet-34 [7] to do some basic
experiments of predicting spermmotility and spermmorphology us-
ing stacked normal raw video frames and a combination of stacked
dense optical flows and raw frames of videos. In this paper, we
obtain experimental results using two different types of inputs and
from two different types of models.

2.1 Preprocessing data
To find estimates for the sperm motility and sperm morphology,
we first preprocessed the input videos to generate two types of
input. In the first type (dataset - D1), we stacked nine consecutive
frames from a video to make a single input data point. A sample of
a raw frame of a video is given in Figure 1a. Before stacking raw
video frames, we converted the RGB format frames of the video into
grayscale images and resized them into 256x256. These nine frames
represent nine different consecutive frames of a video. Moreover,
we collected 250 stacked data points (chunks) from 250 locations in
time from a video as described above.

For the second type of input (dataset - D2), we generated a
tensor with nine channels, which consists of a three-channels (RGB)
original video frame (Figure 1a), a three-channels dense optical flow
image of stride 1 (Figure 1b), and a three-channels image of dense
optical flow of stride 10 (Figure 1c). The dense optical flow image
of stride 1 was generated from two consecutive video frames from
a selected location of a video. Then, we generated the stride-10
dense optical flow image using two frames; the first frame of the
video chuck and the 10th frame of a selected video chunk. To
generate dense optical flows [4] of two different frames of a video,
the OpenCV library [9] was used with its inbuilt functions.
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Figure 2: Big picture of our deep learning model: M1 - the
base model of Resnet-34 with a three output last layer, M2
- the modified version of Resnet-34 with an additional MLP,
D1 and D2 represent the two different types of input used in
our experiments.

For both input types, we split the datasets into three folds based
on the folds given in the video dataset provided by organizers. Then,
a three-fold cross-validation was performed to evaluate our deep
learning models which will be introduced in the later sections.

2.2 Deep learning model implementation
For implementation of our deep learningmodels, we selected Resnet-
34 which is larger than the smallest, Resnet-18, and smaller than
other large scales Resnet models like Resnet-50, Resnet-101, and
Resnet-152. The selections of this intermediate Resnet-34 was done
based on expandability of the model by adding additional multi-
layer perceptron (MLP) within the available hardware resources
(considering memory limitations of the available graphics process-
ing units). In addition to that, the pre-experiments were done to
identify over-fitting problems of strong models for simpler predic-
tions and computation time required to finish training. Furthermore,
expandability of the number of input channels of the model within
the available GPU memory was examined.

Formethod 1 (M1), we modified the input layer of the selected
pre-trained Resnet-34 to take nine channel inputs and modified
the last layer of the model to output only three values which are
representing either three values of sperm motility or three values
of sperm morphology. We used this method as our base model with
the two different datasets (D1 and D2) as introduced in Section 2.1
and recorded results collected from this experiment in D1-M1 and
D2-M1 rows in Table 1.

In method 2 (M2), to avoid over-fitting problems of this task,
we have embedded additional MLP to the end of the network with
dropout layers [17]. The full structure of this additional MLP is
depicted in Figure 2 using a green colour. The dropout values of
this MLP were selected using pre-experiments, and it is a hyper-
parameter for this model. The collected results of this method are
tabulated in rows D1-M2 and D2-M2 of Table 1.

In the training process of all the above methods, the Adam opti-
mizer [11] with a learning rate 0.001 was used. The mean square
error (MSE) was used as the loss function for back-propagating
error, and mean absolute error (MAE) was used for calculating the
actual loss of predictions based on ground truth values of motility
and morphology.

Table 1: MAE values collected from the proposed methods:
D1-stacked gray-scale nine consecutive frames, D2-stacked
an original frame + a dense optical flow image from two con-
secutive frames + a dense optical flow from two frames with
stride=10; M1 - the basic model of Resnet-34 with modifi-
cations of number of input channels and outputs, M2 - the
modifiedmodel with an additionalMLPwith dropout layers

Motility Morphology

Input Method Fold MAE Average MAE Average

D1

M1
Fold 1 9.562

9.200
5.626

5.649Fold 2 8.959 5.749
Fold 3 9.079 5.573

M2
Fold 1 9.585

9.185
5.424

5.394Fold 2 9.28 5.382
Fold 3 8.689 5.375

D2

M1
Fold 1 9.044

9.372
5.933

5.525Fold 2 8.062 5.394
Fold 3 11.01 5.248

M2
Fold 1 8.612

8.825
5.549

5.293Fold 2 7.873 5.463
Fold 3 9.991 4.868

3 RESULTS AND ANALYSIS
According to the average MAE values shown in Table 1, the M2
method with the input type 2 (D2) shows best results among other
methods and other input types. This method shows the best MAE
value of 8.825 for the sperm motility and 5.293 for the sperm mor-
phology. This improvement of error values can be seen as results
of accumulated benefits of showing pre-processed temporal infor-
mation such as dense optical flows to the model and the additional
MLP to overcome the problem of over-fitting. Moreover, the added
MLP in M2 gives better results with both input types (D1 and D2)
for both predictions: sperm motility and sperm morphology. We
achieved this performance as a result of the pre-processed input
data with dense optical flows and the MLP introduced to overcome
the over-fitting problem.

4 CONCLUSION AND FUTUREWORK
The input with a raw frame and dense optical flows of two difference
stride values show better results compared to the stacked normal
frames of videos. Moreover, the modified Resnet-34 model with an
MLP which consists of dropout layers with high probabilities did
achieve better results than the base model in the both cases because
it helped to overcome the problem of over-fitting in the training
stage. Finally, the combination of the input with dense optical flows
and the modified Resnet-34 with an additional MLP shows the best
overall performance.

In future work, it is worth to try CNN models with long short-
term memory units to capture temporal features of video frames.
Moreover, a 3D CNN can be a promising approach for this kind of
task because 3D CNN models have capabilities to capture temporal
information of videos.
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