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Abstract
The usefulness of cooperative game theory and key concepts like the Shapley value, which measures
the contribution of individual players to the overall performance of a coalition, has been demonstrated
in various applications. Due to the computational effort growing exponentially with the number of
participants in a game, several methods have been proposed to approximate Shapley values. Yet, in
many applications, only the order of players according to their Shapley values is important, or maybe
the set of the 𝑘 best players, but not the values themselves. In this paper, we consider the problem of
identifying the 𝑘 players in a cooperative game with the highest Shapley values and denote it as the
Top-𝑘 Shapley problem. By viewing the marginal contributions of a player as a random variable, we
establish a connection between cooperative games and multi-armed bandits, which in turn allows us to
reduce Top-𝑘 Shapley to the multiple arms identification problem. We call the resulting bandits problem
Shapley bandits. Besides adopting existing algorithms for multiple arms identifications, we propose the
Border Uncertainty Sampling algorithm (BUS) and provide empirical evidence for its superiority over
state-of-the-art algorithms.
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1. Introduction

The formal notion of a cooperative game, in which players can form coalitions to accomplish a
certain task, is a versatile concept with countless practical applications. Consider, for example,
the cooperation of municipalities in infrastructure projects, with the goal to reduce costs by
sharing and allocating available resources. In the context of (supervised) machine learning,
individual features can be seen as players and feature subsets as coalitions — the task here is to
train a model with high predictive performance [1, 2].

An interesting question in the context of cooperative games concerns the importance or
contribution of an individual player: How to distribute the collective benefit of a coalition among
the individual players? A connection to explainable AI can be drawn by interpreting features in
a machine learning model as players and the predictive performance as the collective benefit
such that the portion allocated to each feature can be seen as its importance for the model.
Independent of the considered application, cooperative game theory has proposed different
solution concepts, with the Shapley value as the arguably most popular one [3]. The Shapley
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value assigns to each player a weighted average of all its marginal contributions, where we
understand by a marginal contribution of a player the increase in the worth of a coalition when
adding that player. The popularity of the Shapley value arises from the fact that it can be derived
axiomatically by demanding desirable properties that one would expect from a fair distribution
[3]. It has found its usage in a broad range of fields, from identifying influential members in
terrorist networks [4, 5] to finding important neurons in artificial neural networks [6].

An inherent drawback of the Shapley value is the huge computational effort caused by the
exponentially (in the number of players) growing number of marginal contributions — one per
coalition — to be averaged over. As a consequence, brute force approaches quickly become
infeasible for even only a few dozens of players. Several approximation methods have been
proposed [6, 7, 8] to tackle this difficulty, all of them sharing the same idea of calculating mean
estimates for randomly sampled marginal contributions uniformly for all players. Further,
theoretical guarantees for approximation methods have been shown under mild assumptions
[7, 8].

While these approximations show partially satisfying results in empirical studies, it seems to
be rarely mentioned that in many applications the true objective is not to obtain precise Shapley
value estimates for all players, but to identify a certain number of 𝑘 players with the highest
Shapley values (even though most works are indirectly aiming for that). For example, security
agencies are more interested in identifying the most threatening members in terrorist networks,
or the good performance of a machine learning model is oftentimes largely driven only by the
most valuable features. Needless to say, one could tackle this problem näively by just pointing
at the 𝑘 players with highest Shapley value estimates obtained by traditional approximation
algorithms. However, this approach would involve sampling steps to approximate the Shapley
values of players for which one can already be certain that these are at the top or bottom of
the ranking in terms of the Shapley values. In such cases, on the other hand, it makes sense
to sample marginal contributions for players lying in the ”middle” of the ranking in order to
separate as quickly as possible the set of 𝑘-best players from the rest with a certain degree of
certainty, although this might involve sacrificing precision of estimates for those players who
are likely to be at the top or bottom of the ranking.

Similar considerations have already been made in the field of multi-armed bandit (MAB)
problems [9], which is a class of online learning problems, where an agent needs to choose
one arm (choice alternative) among a given set of arms (choice alternatives) in the course of a
sequential decision process to achieve a specific target. In the stochastic variant of the MAB
problem, each arm is associated with an unknown reward distribution and choosing a specific
arm results in obtaining a stochastic reward generated by the chosen arm’s unknown reward
distribution. Many of the targets considered therefore revolve around identifying a specific
partial ranking with respect to the (unknown) means of the arms reward distributions as quickly
as possible. One particular target is to find the 𝑘 arms having the highest mean, known as the
multiple arms identifications problem [10], for which a number of algorithmic solutions are
already available [10, 11, 12, 13, 14]. In this paper, we show how to trace the Top-𝑘 Shapley
problem back to the multiple arms identifications problem, so that state-of-the-art solution
methods for the latter problem can be efficiently used for the former. In addition, we propose a
new method that performs even superior in numerical experiments.



2. Preliminaries

Before introducing our proposed problem formally in Section 3, we revisit in the following
cooperative games and the Shapley value, as well as the problem of multiple arms identification
in multi-armed bandit problems.

2.1. Cooperative Games and the Shapley Value

A cooperative game is characterized by a pair (𝑁, 𝜈) containing a set of players 𝑁 = {𝑝1, . . . , 𝑝𝑛}
and a value function 𝜈 : 𝒫(𝑁) → R, where 𝜈(∅) = 0 by definition. The players can form
coalitions 𝑆 ⊆ 𝑁 and obtain a combined benefit given by 𝜈(𝑆) which is called the worth of 𝑆.
For the question of how to distribute the worth 𝜈(𝑁) of the grand coalition 𝑁 to the individual
𝑛 many players, the Shapley value [3] forms a payoff distribution allocating to each player 𝑝𝑖
the value

𝜑𝑖(𝜈) =
∑︁

𝑆⊆𝑁∖{𝑝𝑖}

1

𝑛
(︀
𝑛−1
|𝑆|

)︀ · (𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆)).

For simplicity, we write 𝜑𝑖 whenever it is clear to which value function 𝜈 we refer. The difference
in worth 𝜈(𝑆∪{𝑝𝑖})−𝜈(𝑆) is called 𝑝𝑖’s marginal contribution given 𝑆. The Shapley value can
be derived axiomatically, as it is provably the only solution concept fulfilling simultaneously
the following properties [3], which one would intuitively demand from a fair distribution:

• Efficiency: the worth of 𝑁 is partitioned over all players, i.e., 𝜈(𝑁) =
∑︀

𝑝𝑖∈𝑁 𝜑𝑖,
• Symmetry: if two players 𝑝𝑖 and 𝑝𝑗 cannot be distinguished by their marginal contri-

butions, i.e., 𝜈(𝑆 ∪ {𝑝𝑖}) = 𝜈(𝑆 ∪ {𝑝𝑗}) for all 𝑆 ⊆ 𝑁 not containing 𝑝𝑖 or 𝑝𝑗 , then
𝜑𝑖 = 𝜑𝑗 ,

• Additivity: if 𝜈 is a sum of two value functions 𝜈1 and 𝜈2, i.e., 𝜈 = 𝜈1 + 𝜈2, then
𝜑𝑖(𝜈) = 𝜑𝑖(𝜈1) + 𝜑𝑖(𝜈2),

• Dummy element: if a player 𝑝𝑖 has constant marginal contribution 𝜈({𝑝𝑖}) for all coali-
tions, i.e., 𝜈(𝑆 ∪ {𝑝𝑖}) = 𝜈(𝑆) + 𝜈({𝑝𝑖}) for all 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖}, then 𝜑𝑖 = 𝜈({𝑖}).

2.2. Multiple Arms Identification

A multi-armed bandit problem is specified by a set of arms 𝒜 = {𝑎1, . . . , 𝑎𝑛} each arm 𝑎𝑖 of
which is endowed with an unknown distribution 𝜁𝑖 having mean 𝜇𝑖. In each discrete time
step 𝑡, the learner can pull an arm 𝑎𝑖 of its choice, meaning that it retrieves a random sample
𝑋𝑡

𝑖 ∼ 𝜁𝑖 drawn independently conditioned on the history of the previous time steps. The
arms can be ordered (not necessarily uniquely) via a permutation 𝜋 : [𝑛] → [𝑛] such that
𝜇𝜋(1) ≥ . . . ≥ 𝜇𝜋(𝑛), where we define [𝑛] := {1, . . . , 𝑛}. Given a number 𝑘 ∈ [𝑛], the
objective of the learner in the multiple arms identification problem is to identify the top-𝑘 arms
𝑎𝜋(1), . . . , 𝑎𝜋(𝑘). In the literature there are two prevalent learning frameworks for this objective,
namely the fixed budget setting and the fixed confidence setting. In the former, a number of
time steps 𝑇 (the budget) is given beforehand, which once exhausted requires the learner to
return its guess about the top-𝑘 arms, with its performance being measured by the probability
of returning a correct output. On the contrary, the learner is judged in the latter by the number



of time steps needed in order to identify the top-𝑘 arms with probability at least 1 − 𝛿 for a
given 𝛿 ∈ (0, 1].

3. Problem Statement

The Top-k Shapley problem is given by a cooperative game (𝑁, 𝜈) in which accesses to the
value function 𝜈 are costly. Although 𝜈 is known (in the sense that we can access 𝜈(𝑆) for all
𝑆 ⊆ 𝑁 ), the Shapley values remain unknown, since it is practically infeasible for a sufficiently
large number of players to compute them. The players in 𝑁 can be ordered (not necessarily
uniquely) via a permutation 𝜋 : [𝑛]→ [𝑛] such that 𝜑𝜋(1) ≥ . . . ≥ 𝜑𝜑(𝑛). For sake of simplicity,
we assume that the there are no ties at the top-𝑘-th position. Given a number 𝑘 ∈ [𝑛], the
learner’s goal is to identify the top-𝑘 players 𝑝𝜋(1), . . . , 𝑝𝜋(𝑘) with highest Shapley values.

Likewise to multiple arms identification, we distinguish between two learning scenarios.
One where performance is measured by the probability of the learner successfully identifying
the top 𝑘 players after a given number 𝑇 of accesses to 𝜈 that the learner is allowed to make
(fixed budget scenario). The other focusing on a minimal number of accesses to 𝜈 in order to
guarantee a successful identification with a probability of at least 1− 𝛿 for a given 𝛿 ∈ (0, 1]
(fixed confidence scenario). Due to page restrictions we focus only on the fixed budget setting.

4. Reduction to Multiple Arms Identification

Given a cooperative game (𝑁, 𝜈), the marginal contribution 𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆) of each player
𝑝𝑖 can be viewed as a discrete random variable 𝑋𝑖 if 𝑆 is drawn randomly from 𝒫(𝑁 ∖ {𝑝𝑖}).
Further, by drawing any 𝑆 with probability 1/𝑛(𝑛−1

|𝑆| ), 𝑋𝑖 has mean E[𝑋𝑖] = 𝜑𝑖. Thus, by
interpreting a player 𝑝𝑖 as an arm 𝑎𝑖 within a multi-armed bandit problem, where retrieving
a sample of the arm’s distribution corresponds to drawing a (independent) sample of 𝑋𝑖, we
obtain that the arm’s mean 𝜇𝑖 equals the player’s Shapley value 𝜑𝑖. Together with the Shapley
values, the corresponding arms’ means remain unknown to us. With this connection at hand,
the reduction to multiple arms identification is complete, as the objective of identifying the
top-𝑘 players 𝑝𝜋(1), . . . , 𝑝𝜋(𝑘) with highest Shapley values is equivalent to the task of finding the
corresponding 𝑘 arms 𝑎𝜋(1), . . . , 𝑎𝜋(𝑘) having highest means. We denote the resulting bandit
problem as Shapley bandits. This general reduction scheme allows leveraging any algorithm
for multiple arms identification to the Top-k Shapley problem without affecting its internal
mechanisms. Finally, it should be emphasized that each pull of an arm 𝑎𝑖 involves two accesses
to the value function 𝜈, one for 𝜈(𝑆) and the other for 𝜈(𝑆 ∪ {𝑝𝑖}).

5. Algorithms

We present and analyze in Section 5.1 Uniform Random Sampling as a first benchmark algorithm,
show in Section 5.2 how to adapt already existing algorithms for multiple arms identification
to the top-𝑘 Shapley problem at the example of the Gap-based Exploration algorithm [14], and
propose in Section 5.3 with Border Uncertainty Sampling a new algorithm that can be easily
generalized to multiple arms identification.



5.1. Uniform Random Sampling

As an illustrative example of how the approach can be applied we present the Uniform Random
Sampling algorithm (see Algorithm 1). It is a modification of the ApproShapley algorithm in
[7] and the Simple Random Sampling algorithm in [8], which instead of sampling permutations
of players and computing marginal contributions in the sequence in which players in the
permutations appear, simply samples a coalition for each player in order to remain faithful to
our reduction explained above (cf. Section 4).

For each player 𝑝𝑖 a mean estimate �̂�𝑖 of 𝜑𝑖 is kept by URS and at termination the 𝑘 players
with highest estimates are returned. Note how URS does not rely on a budget 𝑇 or confidence
1− 𝛿 to be given, instead it can be run for an arbitrary number of time steps and is therefore
applicable for the fixed budget setting as well as the fixed confidence setting. Utilizing the

Algorithm 1: Uniform Random Sampling (URS)
Input: 𝑁 , 𝜈, 𝑘

1 Initialize: �̂�𝑖 ← 0, 𝑡𝑖 ← 0 ∀𝑝𝑖 ∈ 𝑁
2 for 𝑡 = 1, 2, . . . do
3 𝑖← (𝑡 mod 𝑛) + 1
4 𝑡𝑖 ← 𝑡𝑖 + 1
5 𝜑𝑖,𝑡𝑖 = 𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆) with 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖} drawn with probability 1/𝑛(𝑛−1

|𝑆| )

6 �̂�𝑖 ←
(𝑡𝑖−1)�̂�𝑖+𝜑𝑖,𝑡𝑖

𝑡𝑖

7 end
Output: 𝑝�̂�(1), . . . , 𝑝�̂�(𝑘) for �̂� : [𝑛]→ [𝑛] with �̂��̂�(1) ≥ . . . ≥ �̂��̂�(𝑛)

techniques presented in [8], we can derive performance guarantees for the fixed budget and the
fixed confidence setting depending on the variances or ranges of the marginal contributions of
each player, stated in the following.

Theorem 1.
Let 𝜎2 ≥ V[𝑋𝑖] for all 𝑝𝑖 ∈ 𝑁 and 𝑘 ∈ [𝑛], 𝑚 ∈ N, 𝛿 ∈ (0, 1], as well as 𝜀𝑘 > 0 with
𝜀𝑘 ≤ 𝜑𝜋(𝑘) − 𝜑𝜋(𝑘+1). Then, URS identifies the top-𝑘 players correctly

• after 2𝑚𝑛 many accesses to 𝜈 with probability at least 1− 4𝑛𝜎2/𝜀2𝑘𝑚;

• with probability at least 1− 𝛿 after 8𝑛2𝜎2/𝜀2𝑘𝛿 many accesses to 𝜈.

The proof is given in Appendix A. The first property becomes a guarantee for the fixed budget
scenario by setting 𝑚 (denoting the number of marginal contributions drawn for each player)
to the highest integer fulfilling 2𝑚𝑛 ≤ 𝑇 for the given budget 𝑇 . The second property reveals
a sampling complexity of 8𝑛2𝜎2/𝜀2𝑘𝛿 for the fixed confidence scenario.

Theorem 2.
Let 𝑟 be an upper bound for the range of 𝑋𝑖 for all 𝑝𝑖 ∈ 𝑁 . Further, let 𝑘 ∈ [𝑛], 𝑚 ∈ N,
𝛿 ∈ (0, 1], and 0 < 𝜀𝑘 ≤ 𝜑𝜋(𝑘) − 𝜑𝜋(𝑘+1). Then, URS identifies the top-𝑘 players correctly

• after 2𝑚𝑛 many accesses to 𝜈 with probability at least 1− 2𝑛 exp (−𝜀2𝑘𝑚/2𝑟2) ;



• with probability at least 1− 𝛿 after 4𝑛𝑟2/𝜀2𝑘 · log (2𝑛/𝛿) many accesses to 𝜈.

The proof is given in Appendix B. Again, 𝑚 is to be interpreted as the number of marginal
contributions drawn for each player.

5.2. Gap-based Exploration

At the example of the Gap-based Exploration algorithm (Gap-E) [15, 14] we demonstrate how
to adapt a multiple arms identification algorithm to the Top-𝑘 Shapley problem (see Algorithm
2). Originally, Gap-E was proposed and analyzed for the setting of finding the single arm with
highest mean reward in [15], and later slightly modified for the task of finding the top-𝑘 arms
in [14]. Whenever Gap-E pulls an arm 𝑎𝑖, we replace the random sample by 𝜈(𝑆 ∪ {𝑖})− 𝜈(𝑆)
for 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖} drawn randomly with probability 1/𝑛(𝑛−1

|𝑆| ). Gap-E demands the budget 𝑇 , a
coefficient 𝑐 ∈ R>0, and the complexity of the problem 𝐻⟨𝑘⟩ as additional parameters to be
given, where

𝐻⟨𝑘⟩ =

𝑛∑︁
𝑖=1

(︁
Δ

⟨𝑘⟩
𝑖

)︁−2
, and Δ

⟨𝑘⟩
𝑖 =

{︃
𝜇𝑖 − 𝜇𝜋(𝑘+1), 𝑖 ∈ {𝜋(1), . . . , 𝜋(𝑘)}
𝜇𝜋(𝑘) − 𝜇𝑖, 𝑖 ∈ {𝜋(𝑘 + 1), . . . , 𝜋(𝑛)}

.

Algorithm 2: Gap-based Exploration (Gap-E)

Input: 𝑁 , 𝜈, 𝑇 , 𝑐, 𝐻⟨𝑘⟩

1 Initialize: �̂�𝑖 ← 0, 𝑡𝑖 ← 1 ∀𝑝𝑖 ∈ 𝑁
2 for 𝑖 = 1, . . . , 𝑛 do
3 �̂�𝑖 = 𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆) with 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖} drawn with probability 1/𝑛(𝑛−1

|𝑆| )

4 end
5 for 𝑡 = 𝑛+ 1, . . . , 𝑇 do
6 Compute �̂� : [𝑛]→ [𝑛] with �̂��̂�(1) ≥ . . . ≥ �̂��̂�(𝑛)

7 Δ𝑖 =

{︃
�̂�𝑖 − �̂��̂�(𝑘+1) 𝑖 ∈ {�̂�(1), . . . , �̂�(𝑘)}
�̂��̂�(𝑘) − �̂�𝑖 𝑖 ∈ {�̂�(𝑘 + 1), . . . , �̂�(𝑛)}

∀𝑝𝑖 ∈ 𝑁

8 𝑖← argmax
𝑗∈[𝑛]

−Δ𝑗 + 𝑐
√︁

𝑇
𝐻⟨𝑘⟩𝑡𝑗

9 𝑡𝑖 ← 𝑡𝑖 + 1
10 𝜑𝑖,𝑡𝑖 = 𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆) with 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖} drawn with probability 1/𝑛(𝑛−1

|𝑆| )

11 �̂�𝑖 ←
(𝑡𝑖−1)�̂�𝑖+𝜑𝑖,𝑡𝑖

𝑡𝑖

12 end
Output: 𝑝�̂�(1), . . . , 𝑝�̂�(𝑘) for �̂� : [𝑛]→ [𝑛] with �̂��̂�(1) ≥ . . . ≥ �̂��̂�(𝑛)

5.3. Border Uncertainty Sampling

Next, we propose a new algorithm (cf. Algorithm 3) called Border Uncertainty Sampling (BUS)
without providing theoretical guarantees. In similar fashion to Gap-E a measure of (un-)certainty



whether a player 𝑝𝑖 belongs to the top-𝑘 players or not is at the heart of BUS. However, the gaps
involved in the measure of (un-)certainty are calculated in a slightly different manner, namely
as the absolute distance to the average of the 𝑘-th and (𝑘 + 1)-th highest mean estimates �̂��̂�(𝑘)

and �̂��̂�(𝑘+1). Next, BUS chooses to draw a sample for the player 𝑝𝑖 that minimizes its gap times
the number of samples BUS has already drawn for it, i.e., Δ𝑖 · 𝑡𝑖. The intuition behind this
measure of certainty is that for players with larger gap Δ𝑖 we are more certain to tell whether
it belongs to the top-𝑘 players or not. Likewise, a larger number 𝑡𝑖 of samples drawn indicates
a higher precision of the estimate �̂�𝑖. Thus, BUS selects the player 𝑝𝑖 with highest uncertainty.
As with URS, a clear advantage of BUS over Gap-E is that no additional parameters like the time
budget for instance are required, allowing it to be terminated at any time step.

Algorithm 3: Border Uncertainty Sampling (BUS)
Input: 𝑁 , 𝜈, 𝑘

1 Initialize: �̂�𝑖 ← 0, 𝑡𝑖 ← 1 ∀𝑝𝑖 ∈ 𝑁
2 for 𝑖 = 1, . . . , 𝑛 do
3 �̂�𝑖 = 𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆) with 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖} drawn with probability 1/𝑛(𝑛−1

|𝑆| )

4 end
5 for 𝑡 = 𝑛+ 1, . . . do
6 Compute �̂� : [𝑛]→ [𝑛] with �̂��̂�(1) ≥ . . . ≥ �̂��̂�(𝑛)

7 �̂�
* ← �̂��̂�(𝑘)+�̂��̂�(𝑘+1)

2

8 Δ𝑖 ← |�̂�𝑖 − �̂�
*| ∀𝑝𝑖 ∈ 𝑁

9 𝑖← argmin
𝑗∈[𝑛]

Δ𝑗 · 𝑡𝑗

10 𝑡𝑖 ← 𝑡𝑖 + 1
11 𝜑𝑖,𝑡𝑖 = 𝜈(𝑆 ∪ {𝑝𝑖})− 𝜈(𝑆) with 𝑆 ⊆ 𝑁 ∖ {𝑝𝑖} drawn with probability 1/𝑛(𝑛−1

|𝑆| )

12 �̂�𝑖 ←
(𝑡𝑖−1)�̂�𝑖+𝜑𝑖,𝑡𝑖

𝑡𝑖

13 end
Output: 𝑝�̂�(1), . . . , 𝑝�̂�(𝑘) for �̂� : [𝑛]→ [𝑛] with �̂��̂�(1) ≥ . . . ≥ �̂��̂�(𝑛)

6. Experiments

In the following we evaluate the algorithms URS, BUS, Gap-E [14], and Successive Accepts and
Rejects (SAR) [14] modified for the Top-𝑘 Shapley problem on synthetic data. For Gap-E we
have heuristically set 𝐻⟨𝑘⟩ = 10000 and 𝑐 = 1. We are interested in the performance curves in
dependence of the number of players 𝑛, the budget 𝑇 , and the variance in marginal contributions.
Generating random value functions is not suitable for our purpose, as this leads to expensive
computations of the corresponding Shapley values. As a remedy, we simulated cooperative
games with the following two approaches. First, we consider in Section 6.1 a stochastic setting
in which the marginal contributions of each player are sampled from some fixed distributions.
And secondly, we simulate in 6.2 a special case of cooperative games called sum of unanimity



games for which the computation of Shapley values is fairly straightforward. We show in all
figures for each choice of parameters the averaged ratio of correctly identified top-𝑘 players
gathered from 500 repetitions.

6.1. Stochastic Setting

We substitute the marginal contributions of each player 𝑝𝑖 by a random variable 𝑋𝑖 ∼ 𝒩 (𝜇𝑖, 𝜎
2
𝑖 )

and set 𝜇𝑖 = 0.806 − 0.006𝑖 for all 𝑝𝑖 ∈ 𝑁 . The results are shown in Figure 1. For all three
considered dependencies (budget, number of players, and variances) BUS outperforms the other
considered algorithms by a visible margin. The performance of all algorithms improves for
increasing budgets and decreasing variances as one would expect, but the impact of the number
of players on BUS’s and Gap-E’s ratio is surprisingly low in the considered ranges.
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Figure 1: Averaged ratios of correct returned sets under the stochastic setting for 𝑘 = 10. Left: 𝑛 = 100,
𝜎2 = 0.005. Center: 𝑇 = 1000, 𝜎2 = 0.005. Right: 𝑛 = 100, 𝑇 = 1000.

6.2. Sums of Unanimity Games

In an unanimity game, specified by a subset 𝑅 ⊆ 𝑁 , the value function takes the form of

𝜈𝑅(𝑆) = I{𝑅 ⊆ 𝑆} for all 𝑆 ⊆ 𝑁,

where I{·} denotes the indicator function. An unanimity game can be interpreted as a game in
which all players contained in 𝑅 have to agree on cooperating together in order to achieve a
benefit of 1. One can construct a sum-of-unanimity-games game (SOUG game) by combining
multiple unanimity games in a linear combination. More precisely, for a set of coalitions
ℛ ⊆ 𝒫(𝑁) and coefficients 𝑐𝑅 ∈ R for each 𝑅 ∈ ℛ the value function is given by:

𝜈(𝑆) =
∑︁
𝑅∈ℛ

𝑐𝑅 · 𝜈𝑅(𝑆) for all 𝑆 ⊆ 𝑁.



The Shapley values of a SOUG game can be calculated in linear time with respect to the number
of combined unanimity games and is given for each player 𝑝𝑖 by [3]:

𝜑𝑖 =
∑︁

𝑅∈ℛ:𝑖∈𝑅

𝑐𝑅
|𝑅|

.

For our simulations we generate SOUG games by drawing all the key terms uniformly at random
within a specific range/domain, respectively. The considered ranges or domains are

• {5, 6, . . . , 50} for the number of combined unanimity games |ℛ|,
• {0, 1, . . . , 𝑛} for the size of each 𝑅 ∈ ℛ,
• 𝑁 for the members of each 𝑅 ∈ ℛ,
• [0, 1/|ℛ|] for the coefficient 𝑐𝑅 for each 𝑅 ∈ ℛ.

The results in Figure 2 show a similar picture as for the stochastic setting, albeit the performance
ratios being closer together. BUS still outperforms its competitors Gap-E and SAR, while the
benchmark algorithm URS does not perform significantly worse, which indicates the increased
challenge that SOUG games pose in comparison to the stochastic setting. In contrast, the number
of players has now a more drastic impact.
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Figure 2: Averaged ratios of correct returned sets for SOUG games for 𝑘 = 3. Left: 𝑛 = 10. Right:
T=2000.

7. Conclusion

We have proposed the Top-𝑘 Shapley problem, which consists of finding the 𝑘 players in
a cooperative game with the highest Shapley values. Taking a probabilistic view by seeing
the marginal contributions of the players as discrete random variables allowed us to draw a
connection to multi-armed bandits and reduce the problem to multiple-arms identification,
which we have done by successfully adapting known algorithms. We proposed with BUS a
new algorithm that is not limited to the use case of identifying top-𝑘 Shapley players and gave
evidence for its superiority by means of empirical results. Further, it has the advantage of not



needing to know any additional parameters compared to other algorithms for multiple arms
identification. For future work, we aim to derive theoretical guarantees, albeit leaving room for
modifications open in order to make the analysis feasible.
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A. Proof of Theorem 1

For all 𝑖 and 𝑡𝑖 we can view 𝜑𝑖,𝑡𝑖 as a discrete random variable with:

E[𝜑𝑖,𝑡𝑖 ] =
∑︁

𝑆⊆𝑁∖{𝑖}

1

𝑛 ·
(︀
𝑛−1
|𝑆|

)︀ · 𝜈(𝑆 ∪ {𝑖})− 𝜈(𝑆)

= 𝜑𝑖.

Let𝑇𝑖 be the number of times marginal contributions have been drawn for 𝑖 and𝑌𝑖 =
∑︀𝑇𝑖

𝑡𝑖=1 𝜑𝑖,𝑡𝑖 ,
thus E[𝑌𝑖] = 𝑇𝑖𝜑𝑖 and �̂�𝑖 = 𝑌𝑖/𝑇𝑖 at the point of termination.

Lemma 3.
Let 𝜀𝑘 > 0 with 𝜀𝑘 ≤ 𝜑𝜋(𝑘) − 𝜑𝜋(𝑘+1). The probability of URS identifying the top-𝑘 Shapley
players correctly is at least

1−
𝑛∑︁

𝑖=1

P
(︁
|�̂�𝜋(𝑖) − 𝜑𝜋(𝑖)| ≥

𝜀𝑘
2

)︁
.

Proof:
First, we show that a correct identification of the top-𝑘 players by URS implies that all Shapley
values are estimated with an absolute error of at most 𝜀𝑘

2 :

𝑘⋃︁
𝑖=1

𝑛⋃︁
𝑗=𝑘+1

{︁
�̂�𝜋(𝑖) ≤ �̂�𝜋(𝑗)

}︁

=
𝑘⋃︁

𝑖=1

𝑛⋃︁
𝑗=𝑘+1

{︁(︁
�̂�𝜋(𝑗) − 𝜑𝜋(𝑗)

)︁
+

(︁
𝜑𝜋(𝑖) − �̂�𝜋(𝑖)

)︁
≥ 𝜑𝜋(𝑖) − 𝜑𝜋(𝑗)

}︁

⊆
𝑘⋃︁

𝑖=1

𝑛⋃︁
𝑗=𝑘+1

{︂
�̂�𝜋(𝑗) − 𝜑𝜋(𝑗) ≥

𝜑𝜋(𝑖) − 𝜑𝜋(𝑗)

2

}︂
∪
{︂
𝜑𝜋(𝑖) − �̂�𝜋(𝑖) ≥

𝜑𝜋(𝑖) − 𝜑𝜋(𝑗)

2

}︂

⊆
𝑘⋃︁

𝑖=1

𝑛⋃︁
𝑗=𝑘+1

{︁
|�̂�𝜋(𝑗) − 𝜑𝜋(𝑗)| ≥

𝜀𝑘
2

}︁
∪
{︁
|�̂�𝜋(𝑖) − 𝜑𝜋(𝑖)| ≥

𝜀𝑘
2

}︁



=
𝑛⋃︁

𝑖=1

{︁
|�̂�𝜋(𝑖) − 𝜑𝜋(𝑖)| ≥

𝜀𝑘
2

}︁
.

From which we derive:

P

⎛⎝ 𝑘⋂︁
𝑖=1

𝑛⋂︁
𝑗=𝑘+1

{︁
�̂�𝜋(𝑖) > �̂�𝜋(𝑗)

}︁⎞⎠ ≥ 1−
𝑛∑︁

𝑖=1

P
(︁
|�̂�𝜋(𝑖) − 𝜑𝜋(𝑖)| ≥

𝜀𝑘
2

)︁
.

Let 𝜎2
𝑖 = V[𝜑𝑖,𝑡𝑖 ] and hence V[𝑌𝑖] = 𝑇𝑖𝜎

2
𝑖 . Similar to [8], we obtain by using Chebyshev’s

inequality for all 𝜀𝑘 > 0:

P
(︁
|�̂�𝑖 − 𝜑𝑖| ≥

𝜀𝑘
2

)︁
≤ 4𝜎2

𝑖

𝜀2𝑘𝑇𝑖
.

We complete the proof by deriving for 𝜎 ≥ 𝜎𝑖 and 𝑚 ≤ 𝑇𝑖 for all 𝑖 with the help of Lemma 3:

P

⎛⎝ 𝑘⋂︁
𝑖=1

𝑛⋂︁
𝑗=𝑘+1

{︁
�̂�𝜋(𝑖) > �̂�𝜋(𝑗)

}︁⎞⎠ ≥ 1− 4𝑛𝜎2

𝜀2𝑘𝑚
.

B. Proof of Theorem 2

Let 𝑟𝑖 be the range of 𝜑𝑖,𝑡𝑖 for all 𝑖. Similar to [8], we obtain by using Hoeffding’s inequality, for
all 𝜀𝑘 > 0:

P
(︁
|�̂�𝑖 − 𝜑𝑖| ≥

𝜀𝑘
2

)︁
≤ 2 exp

(︂
−
𝜀2𝑘𝑇𝑖

2𝑟2𝑖

)︂
.

We complete the proof by deriving for 𝑟 ≥ 𝑟𝑖 and 𝑚 ≤ 𝑇𝑖 for all 𝑖 with the help of Lemma 3:

P

⎛⎝ 𝑘⋂︁
𝑖=1

𝑛⋂︁
𝑗=𝑘+1

{︁
�̂�𝜋(𝑖) > �̂�𝜋(𝑗)

}︁⎞⎠ ≥ 1− 2𝑛 exp

(︂
−
𝜀2𝑘𝑀

2𝑟2

)︂
.
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