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Abstract

The freedom to upload and the lack of effective social media monitoring have resulted in a slew of
societal issues such as cyberbullying, offensive content, and hate speech. Due to this, identifying hate
and abusive language on social media is one of the trendiest research topics these days. This work
proposes an ensemble-based model for detecting hate and offensive language in English and Hindi social
media postings, which combines a support vector machine, logistic regression, random forest, gradient
boosting, and Adaboost classifiers. The use of word-level n-gram features performed significantly well
in the English dataset, with macro F;-scores of 0.79 and 0.59 for two different tasks, while character-level
n-gram features performed significantly well in the Hindi dataset, with macro F;-scores of 0.75 and 0.47
for two different tasks.
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1. Introduction

The rise of mobility and the accessibility of the Internet has enticed people all over the world to
utilize social media platforms for communication [1, 2]. The majority of Internet users used
at least one social media network today, such as Facebook, Twitter, Instagram, YouTube, or
others. Because communication on these platforms is inexpensive, people are publishing an
endless amount of content [3, 4]. In recent years, the freedom to upload and the lack of effective
monitoring has led to a slew of societal issues, including cyberbullying, offensive content, and
hate speech [5, 6, 7, 8, 9]. Because of anonymity and mobility provided by the social platforms,
the cultivation and spread of hate speech eventually leading to hate crime has become easy in a
virtual landscape beyond the reach of traditional law enforcement. Hate speech may be defined
as “any communication that disparages a person or a group on the basis of their gender, sexual
orientation, nationality, religion, or other characteristics” [10, 11, 12].
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Hate speech is considered harmful by several online forums, including Facebook?, YouTube?,
and Twitter’, which have policies in place to delete hate speech content. There is significant
motivation to explore automatic hate speech detection because of societal concern and how
ubiquitous hate speech is becoming on the Internet [5, 13, 14]. The distribution of nasty content
can be prevented by automating its identification. Automatic detection of hate speech over the
social platform is needed in the current scenario; however, it has several challenges starting
from the definition of hate speech itself. Recent social posts containing code-mixed languages,
such as English-Hindi, English-Malayalam, or any other code-mixed languages. If a model was
developed with a unimodal dataset like English, it might not detect the hate speech post having
code-mixed languages effectively.

Several works [13, 14, 10, 8, 15, 16, 17] have been proposed by researchers to identify hate
speech from social media. Kumari and Singh [15] presented a model based on convolutional
neural networks for detecting hate, obscenity, and abusive language in English and Hindi tweets.
To recognize hatred, offensive, and profanity in English, Hindi, and German tweets, Mishra
and Pal [16] developed an attention-based bidirectional long-short-term memory network.
Mujadia et al. [17] developed an ensemble-based model comprised of a support vector machine,
random forest, and Adaboost classifiers to identify hate content in tweets written in English,
Hindi, and German. Roy et al. [10] proposed a convolutional neural network-based model for
the identification of hate content from social media. Kumar et al. [13] proposed a fine-tuned
BERT model whereas [14] used conventional machine learning models for the hate speech
identification. Saumya et al. [8] experimented with several conventional machine learning and
deep learning models for the hate speech identification from Dravidian social media posts. They
found character N-gram features with conventional machine learning classifiers performing
better than the complex deep learning models.

In line with these works, the current paper proposes an ensemble-based machine learning
model for the identification of hate and offensive content from English and Hindi social media
posts. The dataset published for the FIRE-2021 workshop [18, 19] is used to validate the proposed
ensemble-based model.

The rest of the sections are organized as follows: Section 2 discusses the proposed methodol-
ogy in detail. Section 3 lists the findings and finally the paper is concluded in section 4.

2. Methodology

The detailed diagram of the proposed ensemble-based model can be seen in Figure 1. The
proposed ensemble-based model consists of five different classifiers: (i) Support Vector Machine
(SVM), (ii) Logistic Regression (LR), (iii) Random Forest (RF), (iv) Gradient Boosting (GB), and
(v) AdaBoost. The proposed model is validated with the dataset published in FIRE-2021 [18].
Two different sub-tasks were given: (i) a coarse-grained binary classification of tweets in Hate
and Offensive (HOF) and Non-Hate and offensive (NOT) classes, (ii) the further classification of
Hate and Offensive (HOF) tweets into Hate (HATE), profane (PRFN) and offensive (OFFN) posts.

'https://www.facebook.com/communitystandards/objectionable ontent.
*https://support.google.com/youtube/answer/2801939.
*https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy.
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Figure 1: Proposed model for the hate and offensive language identification from social media

Table 1
Data statistic used to validate the proposed system

Class  English Hindi

Train  Test Train  Test
Task-A  HOF 2,501 798 1,433 505
NOT 1,342 483 3,161 1,027
Total 3,843 1,281 4,594 1,532
Task-B NONE 1,342 483 3,161 1,027
PRFN 1,196 379 213 74
HATE 683 224 566 215
OFFN 622 195 654 216
Total 3,843 1,281 4,594 1,532

The overall data statistic for both the task can be seen in Table 1.

In the experimentation, the aforementioned classifiers performed well individually in the
identification of hate and offensive content, due to this, we utilized them to construct an
ensemble-based model that can train efficiently to identify hate and offensive content on social
media. To provide input to the proposed model, we experimented with different combinations
of word and character n-gram TF-IDF (Term-Frequency Inverse Document Frequency) features
for both English and Hindi datasets.

« English Task-A and Task-B: TF-IDF is retrieved from the textual contents of the social
media post to provide input to the suggested ensemble-based model. In the case of English
language posts, we found that the first 50,000 uni-gram, bi-gram, and tri-gram word-level
TF-IDF features performed well with the model in classifying posts into the various hate
classes, compared to other n-gram combinations of word-level and character-level TF-IDF
features.



Table 2
Results for hate and offensive language identification from English and Hindi social media posts

Task Class Precision Recall F;-score Accuracy
English Task-A  HOF 0.79 0.89 0.84
NOT 0.77 0.60 0.67 78.22
Macro Average 0.78 0.75 0.76
English Task-B HATE 0.56 0.42 0.48
NONE 0.68 0.72 0.70
OFFN 0.59 0.32 0.42 65.96
PRFN 0.69 0.90 0.78
Macro Average 0.63 0.59 0.59
Hindi Task-A HOF 0.79 0.55 0.65
NOT 0.81 0.93 0.86 80.22
Macro Average 0.80 0.74 0.75
Hindi Task-B HATE 0.44 0.08 0.14
NONE 0.77 0.97 0.86
OFFN 0.57 0.44 0.49 73.56
PRFN 0.70 0.28 0.40
Macro Average 0.62 0.44 0.47

« Hindi Task-A and Task-B: In the case of Hindi social media posts, we found that the
first 70,000 one-to-six gram character-level TF-IDF features performed the best when
compared to other word-level and char-level n-gram features.

3. Results

The performance of the proposed model is measured in terms of macro precision, macro recall,
macro Fj-score, and accuracy. The results for both the sub-tasks for the English and Hindi
dataset are listed in Table 2. In the case of English Task-A, the proposed ensemble-based model
achieved a macro precision of 0.78, macro recall of 0.75, macro F;-score of 0.76, and accuracy of
78.22%. The confusion matrix for English Task-A can be seen in Figure 2.

In the case of English Task-B, the proposed ensemble-based model achieved a macro precision
of 0.63, macro recall of 0.59, macro F;-score of 0.59, and accuracy of 65.96%. The confusion
matrix for English Task-B can be seen Figure 3. For Hindi Task-A, the proposed model achieved
a macro precision of 0.80, a macro recall of 0.74, macro F;-score of 0.75, and accuracy of 80.22%.
The confusion matrix for the Hindi Task-B can be seen in Figure 4. Similarly, for Hindi Task-B,
the proposed model achieved a macro precision of 0.62, macro recall of 0.44, macro F;-score of
0.47, and accuracy of 73.56%. The confusion matrix for the Hindi Task-B can be seen in Figure 5.

4. Conclusion

The detection of hate speech on social media poses significant problems. This paper investigates
the usefulness of TF-IDF features at the word and character levels using an ensemble-based
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Figure 2: Confusion matrix for English Task-A
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Figure 3: Confusion matrix for English Task-B

machine learning approach. The proposed ensemble-based model achieved macro F1-scores
of 0.79 and 0.59 for English task-A and task-B, respectively, and 0.75 and 0.47 for Hindi task-A
and task-B, respectively. In the future, some other deep learning-based ensemble models can be
implemented for the identification of hate and offensive content from social media posts.
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