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Abstract

Sentiment analysis is one of the most essential jobs in natural language processing. The research
community has recently presented a slew of papers aimed at detecting sentiment from English social
media posts. Despite this, research on recognising feelings in Dravidian Kannada-English, Malayalam-
English, and Tamil-English postings has been limited. This study offers a dense neural network-based
model for categorising postings in Kannada-English, Malayalam-English, and Tamil-English into five
different sentiment classes. When character-level TF-IDF characteristics are combined with a dense
neural network, encouraging results are obtained. The recommended model received weighted F1-
scores of 0.61, 0.72, and 0.60 for Kannada-English, Malayalam-English, and Tamil-English social media
postings, respectively. The code for the proposed models is available at https://github.com/Abhinavkmr/
Deep-Neural-Network-based-Model-for-the-Sentiment- Analysis-of-Dravidian-Social-Media-Posts.git
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1. Introduction

Sentiment analysis is the process of finding polarity of a sentence. It can be negative or
positive of neutral depending on the context of the text. It is most helpful in recognizing
opinions/recommendations/queries/answers on a specific subject/product. It is gaining much
attention these days due to its significant impact on businesses like e-commerce, spam detection
[1, 2], recommendation system, social media monitoring, hate speech [3, 4], and disaster
management [5, 6]. English is a common and acceptable language worldwide specially in
the digital world. However, in a multilingual country like India, with more than 400 million
internet users speaking more than one language for communications produces a new code-
mixed language [7]. The presence of multiple script and language constructs in a text makes
it more challenging . Most of the existing models are trained for single language’s sentiment
analysis and thus fails to capture a code-mixed language semantics. Extracting sentiments from
code mixed user-generated texts becomes more difficult due to its multilingual nature [8].
Recently, the sentiment analysis of code-mixed language [9, 10] has drawn attention of the
research community. Joshi et al. [11] have presented a model for Hinglish (Hindi-English)
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dataset with subword representation of code-mix data and long short term memory (subword-
LSTM). In [7], Patra et al. reported a model based on support vector machine using character
n-grams features for Bengali-English code mixed data. Advani et al. [12] have used logistic
regression with handcrafted lexical and semantic features to extract sentiments from Hinglish
and Spanglish (Spanish + English) data. A morphological attention model has been proposed
by Goswami et al. [13] for sentiment analysis on Hinglish data.

The Malayalam and Kannada languages are spoken in the Indian state of Kerala and Karnataka.
There are around 38 million Malayalam speakers over the globe. Tamil is another Dravidian
language spoken by Tamil people in India, Singapore, and Sri Lanka. The scripts of both the
Dravidian languages are alpha-syllabic i.e., partially alphabetic and partially syllable-based.
However, Roman script is frequently used for posting on social media because it is easy [6].
Thus, the majority of the available data on social media are code-mixed.

In this paper, we proposed a dense neural network-based model that utilizes character-level n-
gram TF-IDF features to identify sentiments from the Kannada-English [14], Malayalam-English
[15], and Tamil-English [16] social media posts. The proposed dense neural network-based
model is validated by the dataset published in the DravidianCodeMix FIRE 2021 [17, 18] track.
The dataset provided by the organizer contains five different sentiment labels such as “positive,”
“negative,” “mixed feelings,” “unknown state,” and “if the post is not in the mentioned Dravidian
languages.”

The rest of the paper is summarized as: related work is listed in Section 2, the dataset
description, the proposed methodology is explained in Section 3. Various experiments and their
finding is presented in Section 4. Finally, Section 5 concludes the discussion by highlighting the
main findings of this study.

2. Related work

Recently, a number of works [19, 11, 7, 12, 9] have been made to extract sentiment from code-
mixed social media posts. Mahata et al. [19] proposed a bi-directional LSTM-based model
for detecting sentiment in social media posts containing both English and Tamil language.
Joshi et al. [11] have presented a model for Hinglish (Hindi-English) dataset with subword
representation of code-mix data and long short term memory (subword-LSTM). Mandalam et al.
[20] proposed an LSTM-based model that uses sub-word level features and word embedding
vectors to identify sentiment from code-mixed Tamil and Malayalam social media posts. In 7],
Patra et al. reported a model based on support vector machine using character n-grams features
for Bengali-English code mixed data.

Dowlagar et al. [21] proposed graph convolutional networks (GCN) for detecting sentiments
in Dravidian social media posts. Balouchzahi et al. [22] proposed three different models to
identify sentiments from Dravidian social media posts: SACo-Ensemble, SACo-Keras, and SACo-
ULMFIT, using machine learning, deep learning, and transfer learning, respectively. Advani et
al. [12] have used logistic regression with handcrafted lexical and semantic features to extract
sentiments from Hinglish and Spanglish (Spanish + English) data. A morphological attention
model has been proposed by Goswami et al. [13] for sentiment analysis on Hinglish data.

In line with the current literature, since social media code-mixed posts contain several



grammatical errors and non-standard abbreviations, the use of character-level features may
perform well; thus, this paper investigates the usability of character-level features with a simple
four-layered dense neural network for sentiment identification from Kannada, Malayalam, and
Tamil social media posts.

3. Methodology

The systematic diagram for the proposed dense neural network-based model can be seen in
Figure 1. The proposed model is validated against the Kannada-English, Malayalam-English,
and Tamil-English datasets [18]. The overall data statistic for each language can be seen in
Table 1.
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Figure 1: Proposed deep neural network-based model for sentiment classification from Kannada-English,
Malayalam-English, and Tamil-English datasets

Table 1
Overall data statistic for Kannada, Malayalam, and Tamil dataset
Class Kannada Malayalam Tamil

Train Validation Test Train Validation Test  Train  Validation Test
Mixed-feelings 574 52 65 926 102 134 4,020 438 470
Negative 1,188 139 157 2,105 237 258 4,271 480 477
Positive 2,823 321 374 6,421 706 780 20,070 2,257 2,546
Unknown state 711 69 62 5,279 580 643 5,628 611 665
Not-Kannada 916 110 110 - - - - - -
Not-Malayalam - - - 1,157 141 147 - - -
Not-Tamil - - - - - - 1,667 176 244
Total 6,212 691 768 15,888 1,766 1,962 35,156 3,962 4,402

In our experiments, we found that using character-level features with a dense neural network
performed better than some complex models like convolutional neural network (CNN) and



Table 2
Best-suited hyper-parameters for the proposed model in case of Kannada-English, Malayalam-English,
and Tamil-English

Hyper-parameters Kannada-English Malayalam-English Tamil-English
Dense layes 4 4 4
Number of neurons at each layer 4,096, 512, 64, 5 4,096, 512, 64, 5 4,096, 512, 64, 5
Dropout 0.2 0.2 0.2
Activation function RelU, Softmax ReLU, Softmax RelU, Softmax
Optimizer Adam Adam Adam
Loss Categorical cross-entropy  Categorical cross-entropy — Categorical cross-entropy
Learning rate 0.001 0.001 0.001
Batch size 20 20 20
Epochs 50 50 50

Table 3

Performance of the proposed model for Kannada, Malayalam, and Tamil social media posts
Class Kannada-English Malayalam-English Tamil-English

Precision Recall F,-score Precision Recall F,-score Precision Recall F,-score

Mixed-feelings 0.26 0.14 0.18 0.49 0.44 0.46 0.21 0.19 0.20
Negative 0.63 0.64 0.63 0.68 0.53 0.60 0.39 0.40 0.39
Positive 0.73 0.70 0.72 0.80 0.78 0.79 0.76 0.78 0.77
Unknown state  0.24 0.44 0.31 0.68 0.78 0.73 0.39 0.41 0.40
Not-Kannada 0.62 0.60 0.61 - - - - - -
Not-Malayalam - - - 0.78 0.74 0.76 - - -
Not-Tamil - - - - - - 0.64 0.49 0.55
Weighted Avg. 0.62 0.60 0.61 0.72 0.72 0.72 0.60 0.60 0.60

long-short-term memory (LSTM) when word-level features were used. As a result, we chose
a four-layered dense neural network with character-level features to identify sentiments in
Dravidian social media posts. To provide input to the dense neural network, experiment with the
various combinations of character n-gram TF-IDF features is done. In this extensive experiment,
we found that the first 50,000 one to six-gram character-level TF-IDF performs better for the
Kannada-English dataset in comparison to the other combinations of n-gram. Similarly, for
Malayalam-English and Tamil-English, the first 30,000 one to six-gram character-level TF-IDF
features performed better. The extracted features are then passed through a four-layered dense
neural network containing 4,096, 512, 64, and 5-neurons at consecutive layers, respectively. To
train the proposed model, categorical cross-entropy and Adam is used as the loss function and
optimizer, respectively. As the deep learning-based models are very sensitive to the chosen
hyper-parameters, we performed a sensitivity analysis by varying the learning rate, batch
size, dropout rate, and epochs. The best-suited hyper-parameters for the proposed dense
neural network are listed in Table 2. The proposed system was implemented using Keras with
Tensorflow as a backend.

4. Results

The performance of the proposed model is measured in terms of precision, recall, and F;-score.
Along with these metrics, we have plotted confusion matrix to show the prediction in each of
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Figure 2: Confusion matrix (Kannada-English)
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Figure 3: Confusion matrix (Malayalam-English)

the classes. The performance of the proposed model for Kannada-English, Malayalam-English,
and Tamil-English datasets is listed in Table3.

In case of Kannada-English dataset, the proposed model has achieved weighted precision of
0.62, recall of 0.60, and F;-score of 0.61. The confusion matrix for Kannada-English dataset can
be seen in Figure 2. From the confusion matrix, it can be seen that the proposed dense neural



Confusion matrix

0.19 0.16 0.45 0.02 0.19

Mixed_feelings 1 “- : d : . 1750
Negative { 015 040 029 0.02 0.5 1500
© 1250
K
2 Positive 4 0:07  0.05 . 0.01 0.09 | 1000
=}
= - 750
not-Tamil- 0.04 0.06 0.27 0.49 0.14
r 500
unknown state 012 0.11 035 003 0.41 - 250
F & ¥ & &
Q§\Q Q,&O X K2 (;(O
o <
R N &
.\.\.Q’ \{S\
= N

Predicted label

Figure 4: Confusion matrix (Tamil-English)

network perform significantly good for Positive class with the recall of 0.70, whereas it not good
for Mixed-feelings class. The possible reason can be the mixed sentiment text, and the proposed
model is not able to clearly distinguishe it. For Malayalam-English dataset, the proposed model
is able to achieve a weighted precision, recall, and F;-score of 0.72 (as can be seen in Table 3.
The confusion matrix for Malayalam-English dataset can be seen in Figure 3. Similarly, for
Tamil-English dataset, the proposed dense neural network has achieved a weighted precision,
recall, and F;-score of 0.60. The confusion matrix for Tamil-English dataset can be seen in
Figure 4.

5. Conclusion

Sentiment analysis of textual content offers a wide range of applications in natural language
processing. In this work, we have utilized character-level TF-IDF features with dense neu-
ral network to classify social media posts into five different classes. For Kannada-English,
Malayalam-English, and Tamil-English social media postings, the suggested model has obtained
weighted F1-scores of 0.61, 0.72, and 0.60, respectively. Since the usage of character-level TF-IDF
features yields promising results, this feature may be further investigated in the future with
various deep learning models to build a more robust system.
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