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Popularity bias is an important issue in recommender systems, as it affects end-users, content creators, and content provider platforms
alike. It can cause users to miss out on less popular items that would fit their preference, prevent new content creators from finding their
audience, and force providers to pay higher royalties for serving expensive popular content. Over the past years, various approaches
to mitigate popularity bias in recommender systems have been proposed. Among them, post-processing methods are widely accepted
due to their versatility and ease of implementation. While previous studies have investigated the effects of different post-processing
techniques on accuracy and fairness of recommendations, the influence of different algorithms on different user groups have not
received much attention in this context. Addressing this research gap, we study the effect of a recent mitigation strategy, Calibrated
Popularity, in conjunction with a selection of state-of-the-art recommender algorithms including BPR, ItemKNN, LightGCN, MultiVAE,
and NeuMF. We show that these algorithms demonstrate different characteristics in terms of the trade-off between accuracy and
fairness, both within and between various user groups defined by gender and inclination towards consumption of mainstream items.
Finally, we demonstrate how these discrepancies can be exploited to achieve a more effective trade-off between utility and fairness of
recommender systems.

1 INTRODUCTION

Recommender systems (RSs) are ubiquitous decision support tools, assisting all kinds of users in their personal and
business tasks. They help connect content creators and consumers on streaming platforms, suggest products in online
stores, and even influence whether a person finds a fitting job. Considering the important role of RSs, it is crucial to
monitor societal and statistical biases they often suffer from.

While not all biases are harmful—recommendation results need to be biased in the sense of personalization to match
the end user’s preferences—data, algorithmic, and presentation biases may lead to unfair behavior of RSs, i. e., the
recommender “systematically and unfairly discriminates against certain individuals or groups of individuals in favor of
others” [8]. Popularity bias corresponds to the tendency of some RSs to favor popular items over lesser popular items
and is considered to be a harmful phenomenon [1, 7, 13, 16]. Popularity bias has been a long-studied problem in the RSs
community (e. g., [3, 4, 17, 20, 28]). A RS with popularity bias creates recommendation lists with highly popular items
ranked on top, suppressing the exposure of long-tail items. This often leads to low satisfaction of end users (especially
those interested in niche items), unfairly limited exposure of new and niche item producers, and higher expenses for
content providers, as serving popular items on online platforms in most cases spells higher royalties. To measure and
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capture different aspects of popularity bias, various metrics have been introduced; for an overview, see Abdollahpouri
et al. [4]. In this paper we concentrate on the user side of popularity bias.

Over the past years, researchers proposed a multitude of bias mitigation strategies, working on different stages
of the recommendation pipeline. One can distinguish pre-, in- and post-processing methods. The first act before the
main RS, often applying transformations to the data the RS is trained on, in an attempt to make its output less biased.
In-processing methods usually include additional debiasing training objectives, e. g., through adversarial training [9, 21]
or regularization [26]. Post-processing methods act on the output of the RS, usually by re-ranking recommended items
to satisfy a certain fairness goal. Post-processing bias mitigation techniques have the advantage of versatility, being
independent of the main RS and thus able to work in conjunction with almost any algorithm. In addition, a number
of calibration-based post-processing techniques have been shown effective in popularity bias mitigation for matrix
factorization algorithms.

Previous studies have shown that not only different RSs vary in the degree they are susceptible to popularity bias, but
also different user groups suffer from it to various extents. These findings lead us to the following research questions
we tackle in this work: RQ1: Is the mitigation technique of post-processing equally effective for all algorithms? Do all

algorithms show the same character of trade-off between utility and calibration? RQ2: Are all user groups equally affected

by the mitigation procedure? Are the optimal mitigation parameters the same for all user groups? RQ3: To which extent can

the trade-off between utility and calibration be softened through using specific mitigation parameters for each user group?

To answer these questions, we pair a recent mitigation strategy, Calibrated Popularity, with an array of recommender
algorithms, analyzing the mitigation effectiveness and utility-fairness trade-off for each of them. We also consider the
effect of mitigation on different user groups, and through this characterize the scoring strategy of each recommendation
algorithm investigated. Finally, we conduct an experiment to evaluate potential gains of mitigation approaches tailored
specifically to each user group.

2 RELATEDWORK

Many studies formalize fairness of a RS on the user level through calibration of a certain item attribute (such as genre)
[24]. Meaning that recommendation is considered fair only when the distribution of the attribute over the recommended
list matches its distribution over some reference list (e. g., each user’s consumption history or the whole list of items in
the collection). A number of studies follow this approach to investigate and enforce fairness of the recommendations
[5, 14]. Lesota et al. [17] study differences between popularity distributions of consumed and recommended items for
each user, tackling the problem of measuring popularity bias as miscalibration between the two. They express it in
terms of the median as well as several statistical moments and similarity measures. In addition, they combine research
strands on popularity bias and gender bias by analyzing how female and male listeners are affected by popularity bias.
Abdollahpouri et al. [3] show that state-of-the-art movie recommendation algorithms suffer from popularity bias, and
introduce the delta-GAP metric to quantify the level of underrepresentation. Kowald et al. [16] reproduce these results
for music domain.

Works on bias mitigation often adopt post-processing strategies. Post-processing is a widely used family of bias
mitigation techniques. They operate on the output of a RS, re-ranking the items, striving to create a list that satisfies
both utility and fairness objectives. A big advantage of post-processing is its flexibility to be used with almost any
RS algorithm. A multitude of post-processing techniques for popularity bias mitigation have been proposed over the
years. Abdollahpouri et al. [2] propose an algorithm calibrating proportions of head and tail items from the overall
popularity distribution. Zehlike et al. [25] propose FA*IR, a method for boosting exposure of items of some protected
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category (of low popularity). Abdollahpouri et al. [4] take a more user-oriented approach, called Calibrated Popularity
(CP), calibrating three-bin item popularity distributions between user consumption history and their recommendations.
Klimashevskaia et al. [15] take a wide perspective on post-processing popularity bias mitigation techniques and analyze
them on both platform-wide and user-preference levels. They show that CP is preferable for providing fairness on
per-user level.

Usually bias mitigation algorithms allow to adjust the weight distribution between the utility and fairness objectives.
da Silva et al. [5] take this idea further, experimenting with learning personal weighting for every user to ensure proper
genre diversity in the recommendation lists. To the best of our knowledge, this approach has not been adopted for
popularity bias mitigation. In addition, most studies presenting mitigation techniques limit their demonstration to a
narrow scope of algorithms and mainly consider the population of users as a whole. We address these limitations in
our research, by (1) conducting a set of bias mitigation experiments on state-of-the-art RSs of different architectures,
(2) considering two ways of user grouping as well as the whole populations, and (3) carrying out an experiment with
learning bias mitigation weights for every group separately. We investigate two datasets: MovieLens-1M (ML-1M) [10]
from the movie domain and LFM-2b [23] from the music domain.

3 METHODOLOGY

We base our study on the common assumption that consumers prefer calibrated recommendations [24], i. e., the distribu-
tion of item popularity in a user’s recommendation list should match that of their interaction history. We investigate the
trade-off between popularity calibration and utility of recommendations considering different recommender algorithms,
user groups, and settings of the mitigation technique.

Item Popularity. Following common practice [4, 17], we define popularity of each item through the number of
interactions with it. We distinguish Popular, Niche, and Mid categories of items. Popular items are represented by
items most interacted with and jointly receiving 20% of all user-item interactions. Similarly, Niche items are the least
interacted with, receiving 20% of aggregated user-item interactions. The rest of items falls into the category Mid.

User Groups. This work concerns both overall user population as well as specific user groups. We investigate two
ways of user grouping: by users’ gender1 and by their inclination towards consumption of popular items. With the latter,
similar to [4], we define three user groups: HighPop, MidPop, and LowPop, based on the proportion of popular items in
their consumption histories. The groups are defined by sorting users in descending order with respect to the proportion
of popular items they consume, and then selecting the top 20%, mid 60%, and bottom 20% of users, respectively.

Metrics. In this work, we consider the trade-off between recommenders’ utility expressed through NDCG@10 metric
and their proneness to popularity bias. Following previous work, we define the latter on per-user level as Jensen-Shannon
Divergence between the popularity distribution of a user’s already consumed items and the top 10 recommended items.
If 𝐻𝑢 and 𝑅𝑢 are item popularity (probability) distributions of consumption history and recommendation for user 𝑢,
respectively, we calculate Jensen-Shannon Divergence as:

𝐽𝑆𝐷 (𝐻𝑢 , 𝑅𝑢 ) =
1
2

(∑︁
𝑐

𝐻𝑢 (𝑐)𝑙𝑜𝑔2
2𝐻𝑢 (𝑐)

𝐻𝑢 (𝑐) + 𝑅𝑢 (𝑐)
+

∑︁
𝑐

𝑅𝑢 (𝑐)𝑙𝑜𝑔2
2𝑅𝑢 (𝑐)

𝐻𝑢 (𝑐) + 𝑅𝑢 (𝑐)

)
(1)

where 𝐻𝑢 (𝑐) is the proportion of items of popularity category 𝑐 in the consumption history of user 𝑢. 𝐽𝑆𝐷 can be seen
as symmetrical version of Kullback–Leibler divergence. Note that using 𝑙𝑜𝑔2 we ensure that the value of 𝐽𝑆𝐷 is bound

1Due to limitations of considered datasets we have to treat gender as a binary concept (male versus female).
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between 0 and 1 [19]. We express the degree of exposure to popularity bias of a user group 𝑔 as 𝐽𝑆𝐷𝑔 , defined as the
average 𝐽𝑆𝐷 over all users in 𝑔.

Bias Mitigation Technique. Calibrated Popularity is a recent post-processing technique for popularity bias mitiga-
tion [4]. It re-ranks a recommendation list 𝐿′𝑢 of𝑚 items initially recommended to each user, to create a personalized
popularity-aware recommendation list 𝐿∗𝑢 of 𝑛 items (𝑛 << 𝑚):

𝐿∗𝑢 = argmax
𝐿𝑢 , |𝐿𝑢 |=𝑛

(1 − 𝜆) · 𝑅𝑒𝑙 (𝐿𝑢 ) − 𝜆 · 𝐽𝑆𝐷 (𝐻𝑢 , 𝑃 (𝐿𝑢 )) (2)

where 𝑅𝑒𝑙 (𝐿𝑢 ) is the sum of relevance scores and 𝑃 (𝐿𝑢 ) the item popularity distribution of the 𝑛 candidate item list.
To ensure consistency of the mitigation procedure across different recommenders, we re-scale the relevance scores
constituting 𝑅𝑒𝑙 (𝐿𝑢 ) to the interval [0, 1] where needed. The parameter 𝜆 allows to prioritize between the utility (first
term) and bias mitigation (second term) objectives. Similar to [4] the final recommendation list 𝐿∗𝑢 is created through
the process of greedy optimization.

Choosing OptimalMitigation Parameters. To illustrate potential gains of choosing group-specificmitigation parameters
for different user groups we introduce a way of selecting an optimal value of parameter 𝜆 taking into account both
utility and fairness of the recommendation. For ease of notation, we denote 𝐽𝑆𝐹 (𝐻𝑢 , 𝑅𝑢 ) = 1 − 𝐽𝑆𝐷 (𝐻𝑢 , 𝑅𝑢 ) a fairness
measure; similar to NDCG, higher values are better. We define the optimal value of 𝜆 for a user group 𝑔 as follows:

𝜆𝑔 = argmax
𝜆∈[0,1]

NDCG𝑔 · 𝐽𝑆𝐹𝑔
NDCG𝑔 + 𝐽𝑆𝐹𝑔

(3)

In other words, for a given group 𝑔 we select 𝜆 to maximize the harmonic mean between utility (NDCG) and fairness
(JSF) for the group. The selection is done by conducting a grid search on the interval [0, 1].

4 EXPERIMENT SETUP

Datasets. We investigate two datasets, MovieLens-1M (ML-1M) 2 in the movie domain and LFM-2b 3 in the music
domain. The former provides ratings for 6K users and almost 4K movies. The latter is a Last.fm music listening dataset,
which we modify to fit our experimental setup. Firstly, we consider only listening events in the year 2019 of users with
meta-information regarding age, gender and country. Secondly, all user–item interactions with a playcount (𝑃𝐶) of
< 2 are removed to reduce the number of spurious interactions and noise. Thirdly, we only consider tracks that were
listened to by at least 5 different users (constraint 1) and we only consider users who have listened to at least 5 different
tracks (constraint 2). Lastly, we treat each user–item interaction in a binary way – 1 if the user has listened to a track, 0
otherwise. Furthermore, we sample 100K tracks uniformly-at-random to ensure items of different characteristics are
equally likely to be included in the final subset. We then reinforce constraints 1 and 2. This ultimately results in almost
10K users retained with a total of 10.7M listening events. See Table 1 for details.

Algorithms and Baselines. We study popular collaborative filtering algorithms (i. e., neighborhood-based, neural
matrix factorization, autoencoders, and graph convolution networks), briefly described in the following. For consistency,
we use the algorithm implementations from the Recbole framework [27].4 These are: Bayesian Personalized Ranking

(BPR) [22] adopts an optimization function that ranks the items consumed by the users according to their preferences,
by defining an implicit order between pairs of items. Item k-Nearest Neighbors (KNN) [6] recommends items based on
item-to-item similarity. Specifically, an item is recommended to a user if it is similar (in terms of ratings or interactions)
2https://grouplens.org/datasets/movielens/1m
3http://www.cp.jku.at/datasets/LFM-2b
4https://recbole.io/
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Table 1. Statistics of the LFM-2b and MovieLens-1M datasets, broken down into investigated user gender groups.

Dataset Demographic Users Items (Tracks /
Movies)

Listening Events /
Interactions Sparsity

LFM-2b
All 9, 759 99, 922 10, 746, 088 99.8063%

Female 1, 820 70, 780 1, 856, 757 99.8359%
Male 7, 939 99, 890 8, 889, 331 99.7995%

MovieLens-1M
All 6, 040 3, 706 1, 000, 209 95.5316%

Female 1, 709 3, 481 246, 440 96.1090%
Male 4, 331 3, 671 753, 769 95.3038%
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Fig. 1. Trade-off between utility and fairness in LFM-2b dataset. Paler points denote smaller weight for the fairness objective (𝜆).
Points with the highest 𝐽 𝑆𝐷 for each curve correspond to 𝜆 = 0.

to the items previously interacted with by the user. Light Graph Convolution Network (LightGCN) [11] learns
user and item embeddings by linearly propagating them through the user-item interaction graph. It uses the weighted
sum of the embeddings learned at all layers as the final embedding. Neural Matrix Factorization (NeuMF) [12] builds
on the basic matrix factorization approach but replaces the inner product with a neural architecture that can learn an
arbitrary function from the interaction data. Variational Autoencoders (MultiVAE) [18] estimates a probability
distribution over all items, given the user’s interaction vector.

Training and Evaluation. To evaluate the aforementioned algorithms, we partition the interactions of each user in
train/validation/test groups with a 60-20-20 ratio split. Therefore, 60% of all users’ interactions are used to train the
algorithms. We maximize the NDCG @10 metric over the validation set. All results are reported for the test set.

Popularity Bias Mitigation. We conduct a series of tests comparing utility and fairness of recommendation lists
produced by the above mentioned algorithms and re-ranked by the CP post-processing mitigation technique with
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Fig. 2. Trade-off between utility and fairness in ML-1M dataset. Paler points denote smaller weight for the fairness objective (𝜆).
Points with the highest 𝐽 𝑆𝐷 for each curve correspond to 𝜆 = 0.

different settings. For every algorithm5, we re-rank the list of top 100 recommendations to create the final list of 10
items for each user. We test it for ten values of the weighting parameter 𝜆 from 0 (no mitigation) to 0.9 (weight 0.9 to
the fairness objective and 0.1 to utility) with step size 0.1. We aim to exploit potential differences in the way various
user groups respond to the popularity bias mitigation to achieve a better trade-off between utility and fairness. To this
end, we split users uniformly-at-random into train and test sets of the same size striving to ensure all user groups are
represented in both. We search for optimal values of 𝜆 for each user group and the whole population using the criterion
in Equation 3 on the train set. We then compute the new recommendation lists for the test users, applying mitigation
with the weights learned for their corresponding user groups.

5 RESULTS

We approach RQ1 by analyzing popularity calibration over various factors, shown in Figures 1 and 2. The figures report
NDCG (utility measure) against 𝐽𝑆𝐷 (popularity bias measure) for every recommendation algorithm and the ten values
of 𝜆, respectively, for LFM-2b and ML-1M dataset. On the plots, the opacity of the points corresponds to the value of
𝜆, such that the palest show the results of 𝜆 = 0. Let us first look at the the top row of the plots in each figure which
shows the results achieved on the whole population of the dataset. On LFM-2b we notice differences in behavior of
recommended lists produced by different recommendation algorithms. In particular, KNN shows an increase in NDCG
combined with an improvement in fairness at 𝜆 = 0.1. BPR and LightGCN show steady progress towards debiased
results of lower utility with growing 𝜆. At the same time, MultiVAE and NeuMF demonstrate a notably larger drop in
utility over the first step (from 𝜆 = 0 to 0.1). Considering that every point on each plot corresponds to a new set of
items recommended to most of the users, we can examine the quality of the top 100 recommendation lists produced by
different algorithms. In this regard, a smooth decay of NDCG and 𝐽𝑆𝐷 signify a better overall quality of the top 100 list
as it allows to debias the recommendation gradually without a sudden drop in utility. A sudden drop in both metrics
however would mean that the achieved utility to a large degree comes from concentration of the popular items at the

5We re-scale relevance scores provided by the algorithms to the interval [0, 1] in order to ensure comparability of mitigation results, see Equation 2.
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Table 2. Results of popularity bias mitigation with different settings.

LFM-2b ML-1M
Algorithm Metric 𝜆 = 0 𝜆𝑎𝑙𝑙 𝜆𝑝𝑜𝑝 𝜆𝑔𝑒𝑛𝑑𝑒𝑟 𝜆 = 0 𝜆𝑎𝑙𝑙 𝜆𝑝𝑜𝑝 𝜆𝑔𝑒𝑛𝑑𝑒𝑟

BPR NDCG ↑ 0.102 0.102 0.102 0.102 0.315 0.314 0.314 0.314
𝐽𝑆𝐷 ↓ 0.253 0.253 0.252 0.253 0.044 0.044 0.041 0.044

KNN NDCG ↑ 0.252 0.254 0.254 0.254 0.354 0.354 0.354 0.354
𝐽𝑆𝐷 ↓ 0.163 0.138 0.129 0.139 0.044 0.044 0.044 0.044

LightGCN NDCG ↑ 0.152 0.152 0.152 0.152 0.352 0.352 0.352 0.352
𝐽𝑆𝐷 ↓ 0.230 0.229 0.229 0.229 0.045 0.045 0.044 0.044

MultiVAE NDCG ↑ 0.110 0.110 0.110 0.110 0.357 0.357 0.357 0.357
𝐽𝑆𝐷 ↓ 0.200 0.200 0.196 0.200 0.046 0.046 0.046 0.046

NeuMF NDCG ↑ 0.050 0.050 0.049 0.050 0.277 0.273 0.275 0.275
𝐽𝑆𝐷 ↓ 0.358 0.358 0.292 0.358 0.043 0.016 0.020 0.024

top, and the rest of the top 100 contains less relevant items. Considering this, we observe that on the ML-1M dataset all
five recommenders show a very similar behavior.

Approaching RQ2, we look at the rest of the plots in Figures 1 and 2 which as before show the trade-off between
utility and fairness, but here according to specific user groups. The second rows of the plots correspond to the user
grouping according to their inclination towards the consumption of popular music (aka. mainstreamness). The plots on
the third row of Figure 1 show the results of the users grouped by genders6. Analyzing the results according to the
mainstreamness groups for LFM-2b, we observe initially all algorithms provide the best utility to the HighPop group,
the group most exposed to popularity bias varies from model to model. BPR, LightGCN and KNN show that LowPop
user group benefit from the mitigation method in terms of utility. KNN also shows the same for the MidPop group. In
most cases, the HighPop group experiences the largest drop in utility through popularity bias mitigation. These findings
support our hypothesis that selecting mitigation parameters separately for each user group potentially improves the
trade-off between utility and fairness. On the ML-1M dataset we see that all three groups maintain a certain level
of utility, while steadily decreasing the bias metric, showing that all five algorithms on this dataset can successfully
achieve good results in terms of bias mitigation while maintaining utility. Considering the results on genders, we do
not observe a notable difference in the overall patterns between the genders.

Finally addressing RQ3, Table 2 shows the results of the experiment with group-specific values of 𝜆. For every
algorithm and dataset, we report utility and bias metric under four conditions: 𝜆 = 0 no mitigation, 𝜆𝑎𝑙𝑙 where one
optimal parameter value is selected for the whole population, 𝜆𝑝𝑜𝑝 where specific optimal parameter value selected for
each popularity inclination user group, and finally 𝜆𝑔𝑒𝑛𝑑𝑒𝑟 indicating the selection of specific parameter value for each
gender. We observe that, except for NeuMF on ML-1M, group-specific 𝜆s provide the best result on bias metric and
trade-off between utility and fairness, namely a lower value of 𝐽𝑆𝐷 together with utility staying on the same level or
slightly decreasing. Among all algorithms LightGCN has shown the lowest sensitivity to the mitigation, as its values
do not notably drop in either utility or bias metrics. All algorithms show low bias metrics without any mitigation on
ML-1M, nevertheless leveraging group specific 𝜆 allows to improve trade-off between utility and fairness for BPR and
NeuMF.

6We do not report this grouping for ML-1M as all five algorithms display the same behavior for both genders: steady decrease of bias metric with only
slight decrease in utility.
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6 CONCLUSION AND FUTUREWORK

We explore the effectiveness of a post-processing popularity bias mitigation technique, Calibrated Popularity, applied to
an array of state-of-the-art recommendation algorithms. We conduct experiments on two datasets from the music and
movie domain, of different size and sparsity, considering how various user groups (defined by gender and mainstreami-
ness) are affected by bias mitigation. The larger music dataset LFM-2b exposes discrepancies in behavior of different
algorithms. NeuMF and MultiVAE show a notable drop in utility and bias metrics even with light bias mitigation
settings. KNN shows an increase in utility with moderate bias mitigation applied. We also show that for BPR, KNN,
and LightGCN users least interested in popular items can benefit in terms of utility from popularity bias mitigation
as opposed to other users. Our experiments show that different user groups respond to the mitigation differently
depending on their inclination towards consumption of popular content. We also found responses of different gender
groups relatively similar. Finally, we conduct an experiment showing that selecting mitigation parameters individually
for every user group (by interest towards popular items) leads to a better trade-off between utility and fairness overall.
In future work, other mitigation strategies as well as criteria for selecting optimal mitigation parameters could be tested.
Also, additional user groups could be addressed, including choosing individual settings for each user.
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