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Abstract
Cyber-physical processes are those processes in which (some) tasks are autonomously enacted by smart
objects and have a physical effect. They are interesting in current Internet-of-Things (IoT) scenarios, in
which the resilience of the overall process is crucial. Digital twins, widespread in smart manufacturing
but also in many other novel scenarios, can be used as building blocks of cyber-physical processes.
In this work, we focus on the orchestration of Digital Twins using an AI technique such as Markov
Decision Processes (MDPs). We formalize stochastic composition of processes as ltl𝑓 goals, we present
a proof-of-concept implementation and exemplify in an Industry 4.0 scenario.
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1. Introduction

Nowadays, it is common in most organizations to organize business in terms of composing pro-
cesses. Business Process Management (BPM) comprises the methods, techniques and technolo-
gies able to translate business process models into computer-supported activities, relinquishing
routine management and control tasks from the organizational agents. Resilience is instead a
property associated with an organization’s capacity to continue its mission despite disruption,
through mindfulness, resourceful agility, elastic infrastructures and recoverability. In this paper,
we investigate the concept of resilience for BPM systems, in particular when such systems are
seen as a composition of Digital Twins (DTs). A DT is a virtual representation that serves as the
real-time digital counterpart of something that exists in the non-virtual (i.e., physical) world
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(e.g., a production system, a machine, or an organization). Notably, a process composed of DTs
is a particular case of a so called cyber-physical process (CPP) [1]. Cyber-physical systems are
characterized indeed by the presence of heterogeneous devices with different architectures,
computing and communication capabilities; a dedicated CPP coordinates the working of agents
during the steps of the process. Modern plant information systems and industrial machines
may natively come out with their DTs1; in other cases DTs are obtained by wrapping actors
that are already in place.

Inspired by the research on automatic orchestration and composition of software artifacts,
such as Web services, in [2] it has been argued that a possible approach for addressing CPPs
and developing novel automation techniques in smart manufacturing is the modeling of DT
services and data as software artifacts, and that the principles and techniques for composition
of artifacts in the digital world can be leveraged to improve automation in the physical one.

Consistently with the Roman model for service composition [3], they consider smart man-
ufacturing scenarios where DTs of physical systems provide stateful services wrapping the
functionalities of machines and tasks of human operators. Nevertheless, an inherent limitation
of approaches based on the classical Roman model is the assumption that the available services,
i.e., the services that can be used to realize the target service, behave deterministically. This
assumption is often unrealistic, because in practice the underlying physical system modeled as
a set of services might show non-deterministic behaviour due to the complexity of the domain,
or due to uncertainty about the dynamics of such system. In these cases, the deterministic
service model is not expressive enough to capture crucial facets of the system being modelled,
i.e., the model is not properly enabling resilience. Moreover, the above-mentioned techniques
work only when the target is fully realizable with no middle ground. Again, this is not properly
addressing resilience, and instead it would be preferred a technique that, rather than returning
no answer, returns the “best-possible” solution under the actual circumstances, the work [4]
contributes in this direction.2

This paper illustrates a novel approach to model CPPs and composes DTs, by synthesizing
them in a resilient way, extending [4] in such a way as to capture the non-deterministic
behaviour of the available services.

2. Implementation and Case Study

To illustrate the proposed technique in a real scenario, we applied it to the manufacturing process
of an electric motor. The main components of an electrical motor are the stator, the rotor and,
in the case of alternate current motors with direct current power (e.g., electric cars) an inverter.
These three components are built or retrieved in any order (no precedence constraints between
these tasks) and then eventually assembled to build a motor (alternate succession constraint
between Build/Retrieve tasks and the Assemble Motor task). After the motor is assembled, a
running in test must be performed (alternate succession constraint between the Assemble Motor

1http://www.forbes.com/sites/bernardmarr/2017/03/06/what-is-digital-twin-technology-and-why-is-it-so-
important

2This paper provides a solution technique that coincides with the exact solution if a composition exists; otherwise it
provides an approximate solution that maximizes the expected sum of values of the target service’s requests
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Figure 1: The electric motor manufacturing process represented using DECLARE.

task and the Running In task), and at most one (not coexistence constraint) between an electric
test and a full static test (the latter comprises the former). In addition, optionally, the motor can
be painted. The Painting, Electric Test, Static Test tasks optionally follow the Assemble Motor
task (alternate precedence constraints). The process depicts the manufacturing tasks involved in
a production of a single motor as indicated by the existence constraints. In order to apply our
tool, we first translate the declare manufacturing process in Figure 1 into the correspondent
ltl𝑓 formula, which is then turned into the correspondent DFA by using the Lydia tool [5]3.

The actors involved in the manufacturing process may break and are modeled as MDP with
a Ready state and a Broken state, or may not break and are modeled as MDP with only a
Ready state (in this case we have 𝑝𝑏𝑖 = 0). Actors include machines, humans, suppliers and
information systems. Each edge is labeled indicating the task, the probability of transition and
the reward vector structured in a multi-objective fashion. We imagine to have two objectives
we want to maximize, the economic saving and the overall quality of the product. These two
components of the vector cost must combined by using a priority preserving function. In our
example, we use negative rewards (i.e., costs) as they suit better the specific case. Probabilities
and costs are continuously computed by the DT by applying, for example, techniques to estimate
the Remaining Useful Life (RUL) in the case of machines.

In the Ready state, a family of operations, denoted with [Op] can be executed. The execution
of an operation has an economic cost denoted by 𝑐

[𝑂𝑝]
𝑖 and a quality cost 𝑞[𝑂𝑝]

𝑖 on the product
being manufactured. In some cases, the execution of [Op] may take the actor 𝑖 to the Broken
state with probability 𝑝𝑏𝑖 . In this case an additional cost 𝑐𝑏𝑖 , due to the necessity of disposing an
incomplete piece is paid. In order to take the actor back to the Ready state, a Restore[Op] task
must be executed on the actor, which have a cost 𝑐𝑟𝑖 depending on the actual conditions of the
actor. Noteworthy, Restore[Op] operation is a 𝜏 action as it does not leave any trace and is
implicit on the process depicted in Figure 1. In order for an actor in the Broken state to be used
for building, it must be fixed, which in some cases is the most convenient thing to do.

More in detail: the stator and the rotor can be either built by machines that might break,
or retrieved by the warehouse (for the rotor we have two different machines); the inverter is
provided by a supplier, thus we only have a warehouse; the assembling and the painting can be

3The source code of Lydia can be found at https://github.com/whitemech/lydia
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done either by a machine, that cannot break or by a human (the human may become convenient
when the wearing status of the machine is very high); the running in can be performed by two
different machines; the Electric Test and the Static Test are performed by a human engineer.

The warehouse has an important role in our case study. From one point of view, it allows to
cope with the lack of a specific manufacturing machine (as in the case of the inverter component).
On the other side, it takes into account cases where a component is build by a machine but then
not employed because the process instance cannot finish successfully. This can happen when
an actor selected to perform an operation (e.g., building the stator) breaks in reality. In this
case, the process fails and we must reschedule, but already built component are placed in the
warehouse. In this sense, the warehouse MDP could have, at a specific iteration, no available
operation if it empty. On the other hand, if a product is available the economic cost will be zero,
whereas the quality cost depends on the quality of the already available component.

The approach proposed has been implemented in freely available Python tool4, the GitHub
repository contains a Python script to reproduce the case study5. As illustrative examples,
the script analyzes how the following factors influence the choice of actors and operations:
priorities imposed between cost measures, probability of failure of certain actors, quality versus
economic cost due to restore in the case of Broken actors, quality cost when multiple actors
declare the same economic cost for the same operation.
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