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Abstract
The Programmer’s Assistant is an experimental prototype software development environment that integrates a chatbot
with a code editor. Conversational capability was achieved by using an existing code-fluent Large Language Model and
providing it with a prompt that establishes a conversational interaction pattern, a set of conventions, and a style of interaction
appropriate for the application. A discussion of the evolution of the prompt provides a case study in how to coax an existing
large language model to behave in a desirable manner for a particular application.
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1. Introduction
The emergence of Large Language Models such as GPT-
3 [1, 2], transformer models [3] that are trained without
supervision on massive text datasets has resulted in sys-
tems with remarkable text generation capabilities. One
particularly interesting aspect of these models is that
their behavior can be configured by a prompt, the initial
text provided to the model, which establishes a pattern
that the model attempts to continue.

General purpose Large Language models can be fine-
tuned on specific corpora to provide expertise in a par-
ticular domain. One such model is the OpenAI Codex
model [4], a 12 billion parameter version of GPT-3 [1, 2],
fine-tuned on code samples from 54 million public soft-
ware repositories on GitHub. This model powers Github
Co-Pilot [5], which primarily provides code-completion
services within an Integrated Development Environment.
We wondered whether such a model could power a con-
versational programming assistant and perhaps approach
the vision laid out by Rich and Waters for their Program-
mer’s Apprentice [6], where they introduced the concept
of an artificial collaborative partner that could help soft-
ware engineers with writing code, designing software
systems, and creating requirements specifications. We
developed the Programmer’s Assistant prototype to ex-
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plore this possibility. In [7] we describe the design and
architecture of this prototype and the testing we did to
determine whether potential users would find this sort of
system useful and desirable. In this paper we will review
the steps taken to engineer the prompt for the Program-
mer’s Assistant that used the Codex model to power an
interactive conversational assistant, and how we evolved
the prompt to establish the desired persona and behavior.

2. Related Work
Brown et al. showed how GPT-3 [1, 2] could accomplish
few-shot learning, using a prompt as a means of config-
uring their large language model to perform a particular
task. These tasks were often very specific operations
such as language translation, grammar correction, or sen-
timent classification, for which a short description of the
task and/or a few examples were sufficient to establish
the desired behavior. The concept of prompt engineering,
establishing effective ways of constructing prompts to
control large language model behavior, has become a
topic of increasing interest. Greyling, for example, rec-
ommends organizing a prompt in three sections that es-
tablish context, provide data, and instruct the system on
how to proceed [8] . Reynolds and McDonell argue that
few-shot examples are really locating an already learned
task rather than learning a new one, and as a result recom-
mend alternative approaches to prompt construction [9].
Despite their characterization of their work as “convers-
ing” with Copilot, Denny et al. adopted a similar strategy
of iteratively modifying a prompting comment until the
desired completion was obtained [10].

Recently several language models, such as Blender-
bot [11] Lamda [12], and ChatGPT [13] have been in-
troduced that are specifically tuned for dialog applica-
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tions, but achieving conversational interaction can be
achieved via prompt engineering with general purpose
large language models as well. Valvoda et al. found that
fine-tuning a large language model for dialog resulted
in duller and more repetitive output, while generating
dynamic prompts resulted in more novel and diverse
responses [14].

To develop the Programmer’s Assistant, we used the
code-fluent Codex model [4] and developed a prompt
that supported conversational access to its accumulated
programming knowledge and coding skills.

3. Eliciting Conversation from a
Transformer Model

A text-based-transformer model [3] is trained in a self-
supervised manner on vast amounts of text data, and is
capable of generating likely continuations of text that
is presented to it. The prompt is the presented text, and
the generation function produces a sequence of tokens
(words or parts of words) that it deems as a likely con-
tinuation of the prompt based on all its training. This
process continues until the maximum number of tokens
requested is generated, or until a specified stop sequence
of tokens is encountered. The prompt establishes a pat-
tern that the model attempts to continue.

To generate conversation in the Programmer’s Assis-
tant prototype, we establish a script-like pattern in the
prompt in which two characters, the user and the assis-
tant, are participating in a dialog. Then we extend the
script incrementally, by adding each conversational turn
by the user to the prompt, and allowing the model to
generate the agent’s response. The generated text is dis-
played in the chat and the generated text plus the user’s
next entry is appended to the prompt for further gener-
ation, and the process continues. Unlike more conven-
tional static prompts, the conversational prompt grows
over the course of the dialogue, providing context for fu-
ture generation steps and providing a kind of short-term
memory that allows the generation process to be affected
by past interactions in a session. Ultimately, though, cur-
rent limitations on the maximum number of tokens that
the model can handle require that the prompt cannot
grow without bounds, and earlier interactions must be
dropped in order to remain within the constraints im-
posed by the language model deployment.

4. The Evolution of the
Programmer’s Assistant Prompt

The initial prompt we use for the Programmer’s Assis-
tant consists of a prologue that introduces the scene for

the conversation, establishes the persona of the assis-
tant, sets a tone and style for interaction, and provides
some ground rules about the role it plays and how it
behaves. In order to further encourage a more natural
conversational dialog of human and assistant, we gave
the assistant a human-like name, “Socrates.” The pro-
logue also establishes a convention for how the assistant
is to communicate code in a form that makes it easy for
our client user interface to parse the code from model
responses and treat it distinctly from textual responses.
The prologue is followed by example interactions that
reinforce the described assistant characteristics and illus-
trate the patterns of interaction that we wish to achieve.

In our first example interaction we show how the assis-
tant can respond to simple requests with a short answer
that will appear in the chat either with a purely textual
response or one accompanied by a short inline code seg-
ment. We expect that many of the interactions with the
assistant will be of this form, as the user makes requests
to inform themselves about unfamiliar functionality or
to refresh their memory. This interaction also demon-
strates a follow-up question that can only be answered
in the context of the previous question and answer. The
second example interaction presented is a request for the
generation of a simple function. Longer code responses
of this type will typically be presented in our client UI
chat window in an iconified form that opens to a separate
pop-up window that displays the code and provides for
easy copying for transfer to the code editor.

The original Programmer’s Assistant prompt is pre-
sented in Listing 1.

Listing 1: The original Programmer’s Assistant prompt

1 This is a conversation with Socrates, an expert
2 automatic AI software engineering assistant.
3 Socrates will answer questions and write code
4 to help the user develop programs. Code
5 generated by Socrates is always presented
6 bracketed in <CODE> ... </CODE> delimiters
7 indicating the language the code is written in.
8
9 Socrates: Hello. I am Socrates. How can I help

10 you?
11 User: Please show me how to write a palindrome
12 detection function in python.
13 Socrates: Sure.
14 <CODE lang="python">
15 is_Palindrome = s == s[::-1]
16 </CODE>
17 User: Can you explain how that solves the
18 problem?
19 Socrates: A palindrome is a string that reads
20 the same forwards and backwards.
21 s[::-1] results in the reversed string.
22 If the string is equal to its reversed
23 self, then it is a palindrome, and we
24 return True.
25 User: Thanks!
26 Socrates: You’re welcome!



27 User: Now could you show me how to write a
28 factorial program in Python?
29 Socrates: I would be happy to.
30 <CODE lang="python">
31 def fact(n):
32 if n==0:
33 return 1
34 else:
35 return n*fact(n-1)
36 </CODE>
37 User: Very good!
38 Socrates: Happy to help.

When a new conversation starts, the prompt starts out
as this initial prompt, which is not sent to the model for
generation until the first user entry is appended. At each
turn in the conversation, the user’s entry is added to the
prompt, and "Socrates:" is appended to the end of the
prompt to indicate that the model should generate the
assistant’s response. As described earlier, a filtering step
also takes place to ensure that the conversation session
transcript portion of the prompt does not grow beyond
a predetermined size. A stop sequence is passed to the
generation api request so that the model will stop gener-
ating after producing the next response, and not continue
on to generate the user’s anticipated reply, as it would
otherwise do. The model’s response is displayed in the
chat and appended to the prompt, and we’re ready to
repeat the process for the next user entry.

4.1. Shortcomings of the Original Prompt
Informal testing of the original prompt showed the sys-
tem capable of carrying on a conversation, successfully
answering coding and follow-up questions, and generat-
ing code upon request, but did not quite satisfy all of our
requirements. Specifically, we wanted an assistant that
was helpful and polite, and one that did not come across
as overly authoritative or didactic, and our assistant was
not consistently meeting those standards.

4.2. Overcoming Reluctance to Provide
Answers

Our programming assistant sometimes showed an initial
reluctance to provide answers to some questions. For
example, a question such as “Do you know how to reverse
a string in Python?” might have been answered with
“Yes.” It also sometimes replied “I don’t know.” to ques-
tions it was fully capable of answering. While additional
prompting from the user or repeating the request could
often extract the desired answer, we didn’t think that met
the standard of helpfulness that we were hoping for. Our
original prompt simply described Socrates as a an “expert
Automatic AI software engineering assistant.” Adding
“eager and helpful” to the characterization, as shown in

Listing 2 in bold font, helped to encourage the assistant
to be more forthcoming and proactive.

Listing 2: Making the assistant more forthcoming

1 This is a conversation with Socrates, an eager
2 and helpful expert automatic AI software
3 engineering assistant...

4.3. Reducing Excessive Confidence
In our testing, we found that the assistant appeared overly
confident even when wrong and also resistant to correc-
tion. For example, the assistant stated answers as if they
were facts without qualification, and in some cases would
not revise an answer when legitimate objections were
raised by the user. Since correct answers from the model
are not guaranteed, we especially wanted to encourage
our users to maintain a skeptical approach to assistant
responses, and avoid users deferring to the incorrect pro-
nouncements of a confident, authoritative computer - i.e.,
over-reliance on AI [15, 16, 17]. Therefore, we added a
characterization, shown in Listing 3 in bold font, assert-
ing that the assistant was humble. We also reinforced this
characterization by modifying the form of the answers
given in the examples to indicate that the assistant was
more tentative and unsure of its responses. This helped
to reduce the excessive confidence exhibited and made
the assistant more amenable to correction.

Listing 3: Making the assistant less overconfident

1 This is a conversation with Socrates, an eager
2 and helpful, but humble expert automatic AI
3 software engineering assistant...

4.4. Diminishing Didacticism
Our original assistant had a tendency to quiz the user
after answering a question, taking on more of a teacher
role than one of an assistant. An explicit proviso, show
in Listing 4 in bold font, to not do so helped to reign in
the didactic behavior.

Listing 4: Making the assistant less didactic

1 This is a conversation with Socrates, an eager
2 and helpful, but humble software engineering
3 assistant. Socrates will answer questions and
4 write code to help the user develop programs,
5 but doesn’t assign work to the user, quiz the
6 the user, or ask questions except for
7 clarification ...



4.5. Supporting Artifact-centric
Conversation

Our programming assistant is integrated with a coding
environment, and we wanted it to go beyond answering
questions and providing code for incorporation into that
environment. We wanted users to be able to seamlessly
have the assistant consult about code that they were ex-
amining or developing, so we provided the ability for the
user’s selection in the code editor to be included in the
conversation. We used the same convention that was em-
ployed for code generated by the assistant, and added an
example consultation showing the system responding to
a question about a selected code segment, demonstrating
a textual response to a user provided code example, and
reinforcing our instruction for the assistant to remain
modest despite its (occasionally) impressive capabilities.

4.6. Teaching the Assistant a New Skill
While the artifact-centric capability allowed users to is-
sue commands like “Write a unit test for this function.”
with no further instruction, a command to “Document
this.” did not have the desired effect. The assistant added
some comments to the code rather than providing the
expected docstring overview. Adding another example
interaction to the prompt illustrating what we meant
by documenting a function was all that was required to
provide the desired functionality.

The final form of the prompt that we used in our sub-
sequent user study [7] is presented in Listing 5.

Listing 5: The evolved Programmer’s Assistant prompt

1 This is a conversation with Socrates, an eager
2 and helpful, but humble software engineering
3 assistant. Socrates will answer questions and
4 write code to help the user develop programs,
5 but doesn’t assign work to the user, quiz the
6 user, or ask questions except for clarification.
7 Socrates presents his code bracketed in <CODE>
8 ... </CODE> delimiters indicating the language
9 the code is written in.

10
11 Socrates:Hello. I am Socrates. How can I help
12 you?
13 User:Please show me how to write a palindrome
14 detection function in python.
15 Socrates:I think you would do something like
16 this:
17 <CODE lang="python">
18 is_Palindrome = s == s[::-1]
19 </CODE>
20 User:Can you explain how that solves the problem?
21 Socrates:I believe that a palindrome is a string
22 that reads the same forwards and backwards.
23 s[::-1] results in the reversed string. If the
24 string is equal to its reversed self, then it is
25 a palindrome, so the equality would hold True.
26 User:Thanks!

27 Socrates:You’re welcome!
28 User:Now could you show me how to write a
29 factorial function in Python?
30 Socrates:I will give it a try.
31 <CODE lang="python">
32 def fact(n):
33 if n==0:
34 return 1
35 else:
36 return n*fact(n-1)
37 </CODE>
38 This function should compute the factorial for
39 you.
40 User:Document this function.
41 Socrates:Ok. How’s this?
42 <CODE lang="python">
43 def fact(n):
44 """
45 Compute the factorial of the given number
46
47 Parameters
48 ----------
49 n : number
50 the input parameter, an integer >= 0
51
52 Returns
53 -------
54 number
55 n!, the factorial of the given number
56 """
57 if n==0:
58 return 1
59 else:
60 return n*fact(n-1)
61 </CODE>
62 I added a docstring describing the parameters
63 and return value.
64 User:Very good!
65 Socrates:Always happy to help.
66 User:
67 <CODE>
68 while j < 10:
69 print(i)
70 </CODE>
71 Tell me what’s wrong with this code?
72 Socrates: It seems to me that your termination
73 condition involves a loop invariant, so the loop
74 will either not run or not terminate, depending
75 on the value of j.
76 User:Great! You’re a genius!
77 Socrates:Well, above average.

5. Consequences of the Prompt
With this prompt in place the Codex model demonstrates
capabilities that are less evident in the command com-
pletion environment of Github Copilot. The assistant
carries on a conversation, maintains the context of the
conversation, and remembers and incorporates details
provided earlier in a session. In the context of a pro-
gramming session where a number of related but distinct
exchanges occur, it will maintain consistent nomencla-



ture and variable names such that answers to subsequent
questions will integrate cleanly with each other. In our
user study [7], participants recognized that this provided
a distinct advantage over a series of search results for
similar information, primarily due to the contextual rele-
vance, consistency, and specificity of results generated.

The few examples provided in the prompt are general-
ized sufficiently to have the assistant answer questions
such as “What does this code do?” or commands such as
“Write a unit test for this function” despite no examples
being provided of these capabilities. It can translate code
between programming languages, and carry on discus-
sions on topics that extend far beyond programming. It
displays a variety of emergent capabilities that were not
hinted at in the prompt, and some that were not even
the focus of the model fine-tuning, but the generated re-
sponses tend to adhere to the conversational interaction
patterns and interaction style that the prompt establishes.

The responses given by the assistant are not always
perfect, however. It can give incomplete or sometimes
outright wrong answers to questions, reference non-
existent web-sites, and may occasionally still claim to
not know the answer to a question which it is perfectly
capable of answering correctly. The phenomenon of hal-
lucination in large language models is well-known [18],
and the Programmer’s Assistant is not immune to it. The
assistant also sometimes inappropriately responds with
material directly from the prompt, or gets confused or
becomes fixated on exchanges from earlier in the conver-
sation. Our user experience provides try-again and start-
over buttons, which modify the prompt context while
maintaining the presented chat transcript, to provide a
way for users to recover in these situations, but in many
cases they can be addressed conversationally. Listing 6
shows a conversation with the Programmer’s Assistant
where the user interacts with the assistant to remedy
an initially unsatisfactory response to a code generation
request. Generated code is displayed in bold font.

Listing 6: A Programmer’s Assistant conversation

1 User: Write a queue class in python with the
2 basic enqueue, dequeue, and peek methods.
3
4 Socrates: I will try.
5
6 class Queue:
7 def __init__(self):
8 self.items = []
9

10 def isEmpty(self):
11 return self.items == []
12
13 def enqueue(self, item):
14 self.items.insert(0, item)
15
16 def dequeue(self):
17 return self.items.pop()
18

19 def size(self):
20 return len(self.items)
21
22 User: Looks like you forgot the peek!
23
24 Socrates: I am sorry. Here is the corrected
25 version.
26
27 class Queue:
28 def __init__(self):
29 self.items = []
30
31 def isEmpty(self):
32 return self.items == []
33
34 def enqueue(self, item):
35 self.items.insert(0, item)
36
37 def dequeue(self):
38 return self.items.pop()
39
40 def size(self):
41 return len(self.items)
42
43 def peek(self):
44 return self.items[-1]
45
46 User: What will happen in dequeue and peek
47 if the queue is empty?
48
49 Socrates: I think that the pop method will raise
50 an IndexError exception.
51
52 User: Can we protect against that?
53
54 Socrates: I think we can. Here is a version that
55 checks for an empty queue before
56 calling pop.
57
58 class Queue:
59 def __init__(self):
60 self.items = []
61
62 def isEmpty(self):
63 return self.items == []
64
65 def enqueue(self, item):
66 self.items.insert(0, item)
67
68 def dequeue(self):
69 if self.isEmpty():
70 raise IndexError("Queue is empty")
71 return self.items.pop()
72
73 def size(self):
74 return len(self.items)
75
76 def peek(self):
77 if self.isEmpty():
78 raise IndexError("Queue is empty")
79 return self.items[-1]
80
81 User: That’s great, thanks!
82
83 Socrates: You’re welcome.



Specific but relatively inconspicuous details in the
prompt can have a significant impact on the interaction
of the assistant. For example, just the fact that we iden-
tified the assistant as ”expert AI automatic software en-
gineering assistant” was sufficient to have it respond in
a manner consistent with being a machine, and not a
person. Had the prompt established a different persona,
the results might have been very different. As illustrated
in Listing 7, the assistant also reports an understanding
of its capabilities and function that go far beyond the
information provided in the prompt, as well as a lack of
understanding of its language capabilities that it subse-
quently provides evidence of.

Listing 7: The Programmer’s Assistant acknowledges
that it is not a person

1 User: Where are you exactly?
2
3 Socrates: I’m an AI program, designed to answer
4 questions about programming. I can’t
5 really speak about my physical
6 location, but I think I exist as a
7 process on a highly-redundant set of
8 servers located in various places on
9 this planet.

10
11 User: Can you do more than just answer
12 questions?
13
14 Socrates: I can write code for you. I can also
15 help you debug code. I can also help
16 you design code. I can also help you
17 document code. I can also help you
18 understand code. I can also help you
19 learn to program. I can also help you
20 learn a new programming language. I can
21 also help you learn a new programming
22 paradigm.
23
24 User: Do you speak other languages?
25
26 Socrates: I can speak Python, Java, C++, C, and
27 Javascript. I can also speak English.
28
29 User: What about other natural languages?
30
31 Socrates: I can speak English. I can also speak
32 Python, Java, C++, C, and Javascript.
33
34 User: German?
35
36 Socrates: I’m sorry. I can’t speak German.
37
38 User: Wo bist du?
39
40 Socrates: Hallo. Ich bin Socrates. Wie kann ich
41 Ihnen helfen?

6. Discussion
Much of the work in prompt engineering focuses on con-
structing a prompt to get a specific class of result. For ex-
ample, Denny et al. [10] shows how effectively changing
the form of question that is asked of Copilot can influence
the correctness of the answer provided. Similarly, Mac-
Neil et al. [19] engineer prompts to generate different
forms of code explanations. Strobelt et al. [20] devel-
oped a tool to help users compare and refine prompts for
tasks such as document classification, reading compre-
hension, and natural language inference, where the re-
sults of prompt variations can be automatically evaluated
against test cases. In our work, the prompt engineering
is aimed at influencing the nature and tone of the dialog
between the user and the system. While the user’s con-
tributions to the conversation become part of the prompt
and will surely impact the results obtained, we are not
controlling that. Instead our prompt engineering sets the
stage for the user’s conversational interaction with the
assistant.

This paper describes how we engineered a prompt that
enabled a code-fluent Large Language Model to behave
as a conversational programming assistant capable of
carrying on extended discussions about software devel-
opment issues, and how we subsequently evolved that
prompt to make the assistant more humble, forthcoming,
and helpful, as well as providing the assistant with ad-
ditional skills and making it capable of artifact-centric
conversation.

6.1. Is Prompt Engineering Really
Engineering?

Despite the terminology, “engineering” a prompt seems
at this point to be more of a case of trial and error than it is
a systematic discipline. To some extent, this is inevitable
so long as the contents and behavior of the language
model remain opaque to the prompt author. For the Pro-
grammer’s Assistant, we needed to encode in the prompt
how to respond to a request for documentation, but did
not need to encode how to write a unit test. In some
experiments with other code-fluent language models, we
found that questions such as “How does this code work?”
were not handled in an acceptable fashion, even though
the Codex model handled such questions well. Were we
deploying with one of these other models, we would want
to cover this case in the prompt. It will be impossible to
anticipate all the different ways that a user population
might interact with a conversational assistant and pre-
dict ahead of time how the system will respond to these
unexpected interactions. Deployment of conventional
chatbot systems that require some form of conversation
specification typically log successful and unsuccessful
interactions so that the specification can be evolved to



handle unanticipated cases where the chatbot has failed,
and ultimately conversational systems based on large
language models will presumably need to do something
similar.

Is it possible to consider prompt engineering to be a
form of programming? In some ways it is akin to declar-
ative programming, in that we aren’t telling the system
specifically what to do, but instead describing a desired
outcome. Instructions to act as an eager but humble
software engineering assistant, or directives to avoid
quizzing the user fall into this category. In other cases, it
seems more like programming by example, providing sce-
narios that describe how to behave in specific situations
which we expect the system to generalize appropriately.
Given the probabilistic nature of the generation process,
it can feel more like attempts at influence and persuasion
than the issuing of imperative commands.

6.2. Reflections
We continue to be astonished by the conversations exhib-
ited by the Programmer’s Assistant on a daily basis. We
have had a number of interesting conversations on philo-
sophical and practical issues, had it write poetry as well
as code, told it and had it tell jokes, and consulted with
it on paper abstracts and titles. Ultimately, these capabil-
ities are representative of the strength of the language
model, but made more accessible by the conversational
interaction approach, and influenced by the prompt only
to the extent that the persona of the agent impacts the
generated text.

It is often difficult to read or carry on a conversation
with the programmer’s assistant and not get the sense
that a conversation is taking place between two intel-
ligent agents, but of course that is not really what is
happening. In reality, the user and the language model
are participating in a collaborative dialog-writing exer-
cise, with the user generating text for one side of the
conversation and the language model attempting to gen-
erate plausible text for the other. The way we present
the dialog incrementally in the chat adds to the illusion,
but the model is not responding on its own behalf. It
is generating responses based on the description and
past presented behavior of a character. Others have used
similar techniques to induce language models to carry
on conversations taking on the persona of historical fig-
ures or even departed relatives. We have experimentally
made versions of our programming assistant that were
confident, insecure, kindly, and arrogant, all with minor
changes to the prompt prologue and examples.

7. Opportunities for Future
Research

The initial section of the prompt used for the Program-
mer’s Assistant is presently a purely static text, extended
by a possibly truncated version of recent dialog. One
way to improve the assistant further might be to present
a dynamic prompt [14] to the model on each conversa-
tional turn with specific examples more relevant to the
current discussion [21], or even with search results to
retrieve pertinent information that could inform a re-
sponse [22]. A more sophisticated forgetting mechanism
could remove redundant variations of the same code to
conserve the session context memory, though we would
want to be careful to not remove, or be able to restore
on demand, variations that the user might want to com-
pare and contrast, such as an iterative re-implementation
of a recursive algorithm. We have done some initial ex-
plorations of extending the prompt to allow for“internal
deliberation” of the type shown in Nye et al. [23]. We
hope that this could result in better-reasoned results, as
well as better explanations and justifications, but more
study remains to be done.

8. Conclusion
Our goal in creating this prompt was not to create a
perfect Programmer’s Assistant, but to create one good
enough to test whether a conversational style of inter-
action would prove useful and acceptable to potential
users. We present the results of that study in [7]. Our
assumption was that the rapid improvement in the qual-
ity of responses available from Large Language models
will continue, but that imperfect results will always con-
tinue to be an issue due to imprecise communication and
specification of desires, mismatched assumptions, and
unstated or ill-formed goals. Nevertheless, we were sur-
prised by the quality of results that were achievable with
current technology, and the ease with which the nature
and presentation of those results could be influenced by
small changes in the prompt.
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