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Abstract
The necessity of demonstrating that Machine Learning (ML) systems can be safe escalates with the ever-increasing expectation
of deploying such systems to solve real-world tasks. While recent advancements in Deep Learning reignited the conviction
that ML can perform at the human level of reasoning, the dimensionality and complexity added by Deep Neural Networks pose
a challenge to using classical safety verification methods. While some progress has been made towards making verification
and validation possible in the supervised learning landscape, works focusing on sequential decision-making tasks are still
sparse. A particularly popular approach consists of building uncertainty-aware models, able to identify situations where
their predictions might be unreliable. In this paper, we provide evidence obtained in simulation to support that uncertainty
estimation can also help to identify scenarios where Reinforcement Learning (RL) agents can cause accidents when facing
obstacles semantically different from the ones experienced while learning, focusing on industrial-grade applications. We also
discuss the aspects we consider necessary for building a safety assurance case for uncertainty-aware RL models.
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1. Introduction
This position paper is presented to serve as motivation
for the long-term objective of using the uncertainty es-
timation capabilities of a Reinforcement Learning (RL)
agent to improve its functional safety and enable RL as
a viable framework to be deployed in industrial-grade
applications. Although not a new concept, recent accom-
plishments have reignited the interest in using RL as a
viable method to obtain agents able to interact with a
wide range of environments (see [1, 2, 3]). These results
were only possible due to the integration of Deep Neu-
ral Networks (DNNs) as function approximators for RL
agents.

According to some authors (e.g., [4, 5, 6]), the indus-
try is eager to apply Machine Learning (ML) and DNNs
more broadly in their processes, with the possibility to
increase the safety level by aiding humans in processes
that are potentially harmful or even automate complex
tasks beyond human capabilities. According to [7], possi-
ble applications include aircraft control, power systems,
medical systems, and the automotive domain. However,
despite the expected gains, industrial players are histori-
cally very conservative and, most of the time, only adopt
new technologies when there is enough evidence sup-
porting their reliability and cost-effectiveness, which is
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still not possible for some ML paradigms.
DNNs excel at learning complex representations from

a bulk of data, allowing to reach state-of-the-art perfor-
mance in tasks such as computer vision, natural language
processing, and control of autonomous systems. How-
ever, DNNs are too complex and have too many param-
eters to be verified using standard verification and vali-
dation methods. On top of that, DNN models are often
overconfident and incapable of recognizing that their pre-
dictions might be wrong [8]. The combination of these
factors has put DNNs at the center of safe AI research in
the past few years. The main goal is to guarantee that
DNNs can be safe, reliable, secure, robust, explainable,
and fair [7].

Another difficulty with DNNs, which also extends to
Deep RL, is formalizing how capable they are of gener-
alizing over novel instances. Despite the excellent re-
sults obtained with known benchmarks, different find-
ings show that DNNs are susceptible to distributional
shifts (e.g., [9, 10]). That means that the model output is
not reliable when fed with data drawn from a distribu-
tion that differs from its training data distribution, i.e.,
out-of-distribution (OOD) instances. When considering
autonomous systems controlled by RL agents, there is
the risk of accidents when facing OOD scenarios. This
issue can be solved by making sure the model is trained
with data that covers every aspect it might encounter
after deployment, which is intractable for open-world
complex tasks. Alternatively, some methods have been
suggested to make DNNs robust to distributional shifts,
such as in [11]. However, making DNNs able to handle
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distributional shifts is a challenging task and the exist-
ing methods are limited. We follow a different direction,
which consists in using a monitor to identify the OOD
instances. Once OOD is detected, the system can switch
to a safe control policy to avoid accidents caused by the
agent’s inabilities (that could be as simple as "stop and
wait for help"). We follow the hypothesis that uncertainty
should grow higher when facing the unknown (same as
given in [12]) and use uncertainty estimation as a proxy
metric to classify OOD inputs.

1.1. Scope and structure of the paper
This paper aims at showing how uncertainty-based OOD
detection can help in the long-term goal of building a
solid safety case for RL agents, which must be backed by
convincing safety arguments. That is not the only factor
necessary to make certification of RL models possible,
but one of the most important aspects. The paper will
focus on industrial applications of automated guided ve-
hicles (AGVs). Industrial environments are mostly guided
by specific regulations that are helpful when outlining
the system requirements and specifications in terms of
safety. We believe this can also be used as a starting point
when expanding the framework to a more general case,
covering a larger range of open-world applications.

To validate the potential of this approach to help with
deriving strong safety arguments, experiments with an
environment that simulates the application of transport-
ing goods with a vision-based AGV in warehouses were
conducted. The obtained results indicate that uncertainty
estimation and OOD detection can help to identify un-
known situations which, in some cases, lead to accidents.
At the end of the document,

The document is structured as follows: section 2 shows
publications available in the literature to serve as back-
ground and motivation for this paper. In section 3 the
uncertainty-aware RL algorithm is shown. Section 4 con-
tains the experiments and preliminary results, and sec-
tion 5 presents a short discussion and the future steps we
believe are necessary for building the safety assurance
case for uncertainty-aware RL systems.

2. Related Work
Publications investigating safety assurance cases for RL
systems are limited. Therefore, we will start with relevant
works that cover the application of general AI methods
in safety-critical applications. That will be followed by
works that deal with uncertainty estimation and OOD
detection for ML systems, mainly focusing on computer
vision problems, and finally, publications that combine
uncertainty and RL will be shown. Our work is an inter-
section of those three topics, with the proposed method

being inspired by existing uncertainty quantification ap-
proaches and the future outline borrowing ideas from
authors that intend to conform AI systems to safety certi-
fication processes that are, to the best of our knowledge,
very limited when it comes to RL.

AI for safety-critical applications: Different authors
defend that to enable ML models to solve safety-critical
tasks, the models must be assured by evidence that the
ML components will behave in accordance with existing
safety specifications. [13] argue that the evidence must
cover all aspects necessary to show why these compo-
nents can be trusted. The authors also present a survey
with different methods that help in collecting the evi-
dence for the whole ML lifecycle. In [7], an extensive
study in neural networks applied to high assurance sys-
tems is presented. In [14], the authors identify problems
that arise when using ML following ISO 26262, a standard
that regulates the functional safety of road vehicles. They
claim that the use of ML can result in hazards not experi-
enced with conventional software. [15] also discuss the
shortcomings of fitting ML systems to ISO 26262 and how
the Safety of the Intended Functionality (SOTIF), pub-
lished in the ISO PAS 21448, offers a better alternative for
safety assurance. The authors also present an extensive
list of safety concerns related to DNN models, including
the risk of the data distribution not being a good approx-
imation of the real world and the possibility of distribu-
tional shifts to happen over time. [16] also argue that the
analysis of ML systems is fundamentally incompatible
with traditional safety verification since safety engineer-
ing approaches focus on faults at the component level and
their interactions with other system components while
systemic failures experienced in complex systems are not
necessarily consequence of faults from individual parts
of the system. Therefore, the safety arguments should
also reflect the inherent complexity and unpredictability
of ever-changing environments where ML systems are
designed to operate.

Machine Learning and Uncertainty: The impact of
uncertainty in Machine Learning is a recurrent topic of
research, with a plentiful of publications discussing how
ML systems should manage uncertainty and presenting
methods to quantify uncertainty. In [17], the authors
present a more general discussion on the properties of
Bayesian Deep Learning models used for computer vision
tasks that are affected by aleatoric and epistemic uncer-
tainties (the first is inherent to the system stochastic prop-
erties while the former is related to a lack of knowledge).
In [18], an introduction to the topic of uncertainty in ML
models is provided as well as an overview of the main
methods for capturing and handling uncertainty. In [19],
the authors show how autonomous systems are affected



by uncertainty and how correctly assessing uncertainty
can help towards improving the supervision of inherently
unsafe AI systems. Furthermore, a conceptual framework
for dynamic dependability management based on uncer-
tainty quantification is presented. In [20], uncertainty
quantification as a proxy for the detection of OOD sam-
ples is discussed, with different methods compared in
image classification datasets, namely CIFAR-10, GTSRB,
and NWPU-RESISC45. Some popular uncertainty quan-
tification methods for DNN models worth of mentioning
are Monte Carlo Dropout [21], Deep Ensembles [22], and
Evidential Deep Learning [23].

Reinforcement Learning and Uncertainty: Most
of the work combining uncertainty quantification and
ML cover Supervised Learning, with a strong focus on
computer vision tasks. However, some literature also
shows how uncertainty-aware RL agents can be obtained.
A popular application is to use uncertainty to improve
exploration. This class of algorithms is motivated by the
principle of Optimism in the Face of Uncertainty (OFU)
and describes the tradeoff between using high-confidence
decisions, that come from the already established knowl-
edge, and the agent’s need to explore state-action pairs
with high epistemic uncertainty [24].

However, this paper will rather focus on uncertainty
as a proxy for detecting domain shifts in decision-making
agents. In [25] it is proposed to define the data distribu-
tions in terms of the elements that compose a Markov De-
cision Process (MDP), where minor disturbances should
fall under the generalization umbrella and large devia-
tions represent OOD samples. However, determining
which semantic properties represent such changes and
how to measure them is left as an open question. In [26],
the authors present an uncertainty-aware model-based
learning algorithm that adds statistical uncertainty es-
timates combining bootstrapped neural networks and
Monte Carlo Dropout to its collision predictor. Mobile
robot environments are used to show that the agent acts
more cautiously when facing unfamiliar scenarios and
increases the robot’s velocity when it has high confi-
dence. In [27] this method is extended to environments
with moving obstacles. The authors also combine Monte
Carlo dropout and deep ensembles with LSTM models to
obtain uncertainty estimates. A Model Predictive Con-
troller (MPC) is responsible to find the optimal action
that minimizes the mean and variance of the collision
predictions.

3. Background
In this section, we present the background for each com-
ponent of the proposed uncertainty-aware RL algorithm.
Different uncertainty quantification methods could be

used, but Variational Auto Encoders (VAEs) are an in-
teresting choice for vision-based systems. They are con-
sidered robust models, are trained in an unsupervised
manner (i.e., labeling samples is not necessary), are fast
to train, and their generalization capabilities can be visu-
ally inspected by comparing the input and reconstructed
images. However, the safety argumentation would ben-
efit from a comparison between different alternatives,
with the strengths and deficiencies of each approach ad-
dressed, which will remain as a future work suggestion.

3.1. Reinforcement Learning
In RL, we consider an agent that sequentially interacts
with an environment modeled as an MDP. An MDP is
a tuple ℳ := (𝑆,𝐴,𝑅, 𝑃, 𝜇0), where 𝑆 is the set of
states, 𝐴 is the set of actions, 𝑅 : 𝑆 × 𝐴 × 𝑆 ↦→ R
is the reward function, 𝑃 : 𝑆 × 𝐴 × 𝑆 ↦→ [0, 1] is
the transition probability function which describes the
system dynamics, where𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) is the probability
of transitioning to state 𝑠𝑡+1, given that the previous
state was 𝑠𝑡 and the agent took action 𝑎𝑡, and 𝜇0 : 𝑆 ↦→
[0, 1] is the starting state distribution. At each time step,
the agent observes the current state 𝑠𝑡 ∈ 𝑆, takes an
action 𝑎𝑡 ∈ 𝐴, transitions to the next state 𝑠𝑡+1 drawn
from the distribution 𝑃 (𝑠𝑡, 𝑎𝑡), and receives a reward
𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1).

3.2. Variational Auto Encoders
VAEs are a popular class of deep probabilistic genera-
tive models [28]. Autoencoders follow a simple encoder-
decoder structure, where the model parameters are op-
timized to minimize the difference between the input
sample and the decoded data, as shown in Figure 1. The
trained model is able to compress the inputs into a latent
representation with a smaller dimension. VAEs extend
regular autoencoders by substituting the exact inference
of the likelihood by the lower bound of the log-likelihood,
given by the evidence lower bound (ELBO):

log 𝑝𝜃(x) ≥ ℰ𝑞𝜑(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)]−
𝐷𝐾𝐿[𝑞𝜑(𝑧|𝑥)||𝑝(𝑧)]

≜ ℒ(𝑥; 𝜃, 𝜑),
(1)

where 𝑥 is the observed variable, 𝑧 is the latent variable
with prior 𝑝(𝑧) and a conditional distribution 𝑝𝜃(𝑥|𝑧),
𝑞𝜑(𝑧|𝑥) is an approximation to the true posterior dis-
tribution 𝑝𝜃(𝑧|𝑥). 𝑞𝜑(𝑧|𝑥) and 𝑝𝜃(𝑥|𝑧) are neural net-
works parametrized by 𝜑 and 𝜃 (encoder and decoder,
respectively). 𝐷𝐾𝐿 is the Kullback–Leibler divergence.
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Figure 1: Example of an autoencoder network.

3.3. Uncertainty estimation based on
Variational Auto Encoders

OOD detection using VAEs assumes that the model as-
signs higher likelihoods to the samples drawn from the
in-distribution (ID) pool than the OOD samples, which
is valid for different benchmarks as shown in [12]. Met-
rics derived from the model likelihood are then used as
uncertainty estimates. We follow the Evidence Lower
Bound (ELBO) Ratio method proposed in the same pa-
per, which represents the ratio of lower bounds of the
log-likelihood of a given sample and the maximum ELBO
obtained with the ID samples [12]. For notation simplifi-
cation, considering a fixed VAE model parametrized by 𝜑
and 𝜃, the ELBO value ℒ(𝑥; 𝜃, 𝜑) will be represented as
𝐸𝐿𝐵𝑂(𝑥), with 𝐸𝐿𝐵𝑂𝐼(𝑥) representing the ELBO for
a VAE model only trained with ID samples. Following
this notation, the ELBO Ratio uncertainty 𝒰(𝑥0) for an
arbitrary input 𝑥0 is shown in equation 2.

𝒰(𝑥0) =
𝐸𝐿𝐵𝑂(𝑥0)

𝐸𝐿𝐵𝑂𝐼(𝑥𝑚𝑎𝑥)
, (2)

where 𝐸𝐿𝐵𝑂𝐼(𝑥𝑚𝑎𝑥) is the maximum 𝐸𝐿𝐵𝑂 value
calculated for all ID samples (a sort of calibration based
on the training data).

4. Experiments and Preliminary
Results

Environment: To better support the proposed idea, ex-
periments were conducted, and the preliminary results
will be presented as further evidence. For the experi-
ments, a custom environment was created using PyBullet
[29]. It was designed to represent a warehouse with a
configurable layout limited by walls, goods to be trans-
ported by an automated guided vehicle (AGV), and a set
of obstacles that might be in the way. The goal is to reach
a certain location that contains a good to be transported,

Figure 2: Examples of ID and OOD obstacles (top images and
bottom images respectively). In the ID scenario, the obstacles
are blue and dark red, while the OOD obstacles are green.

represented by a wooden pallet, while avoiding obstacles
or hitting the walls.

An RGB camera is attached to the AGV and its control
decisions are made based on the state 𝑠𝑡 encoded by the
input images and the coordinates of the AGV and the
goal. The image resolution can be configured, but for
the results shown below, RGB images with 84 x 84 pixels
were used. The observation encoding also includes the
positions of the AGV and the goal. The AGV action is
a 2-dimensional vector, 𝑢𝑡, representing the linear and
angular velocities. A reward of 100 is given if the agent
reaches the goal position, -100 if it hits an obstacle, and
-10 if it times out (i.e., it reaches the maximum number
of steps).

To attest to the capacity of the uncertainty estimator
to spot critical failures that might be related to OOD
instances, an ID and an OOD environment were designed.
The differences consist of the type of static obstacles
present in each environment, with obstacles that differ
in color and shape, as shown in figure 2.

AGV controller framework: The controller used to
solve the motion planning described above is shown in
figure 3. The first module is a path planner, responsible
to determine the optimal path to reach the goal position
based on the agent’s location. The planner takes the AGV
kinematic model and solves the planning with the 𝐺1

Hermite Interpolation Problem with clothoids. Interpo-
lating a sequence of waypoints using clothoid splines
will result in a smooth trajectory, suitable for the motion
planning of mobile robots, as shown in [30, 31]. The
planner takes a simplified observation �̃�𝑡, consisting of
the AGV and goal coordinates, as input. Its output is a
position in the polar coordinate system 𝑝𝑡 = (𝜌𝑡, 𝜃𝑡),
where 𝜌𝑡 and 𝜃𝑡 are the radial and angular coordinates
at time 𝑡, respectively. Note that the planner does not
account for obstacles, since it is assumed that obstacles
are not known a priori and the RL agent should be re-
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Figure 3: RL-based controller framework.

sponsible to react and adjust if an unexpected obstacle
is in the way. The second module is a non-linear con-
troller used to calculate the control action 𝑢𝑡 necessary
to reach the coordinate 𝑝𝑡. The last module is the RL
agent. Its goal is to follow the proposed trajectory, i.e.,
keeping 𝑢𝑡 ≈ 𝑢*

𝑡 as much as possible, proposing a differ-
ent control action 𝑢*

𝑡 ̸= 𝑢𝑡 only to avoid a collision. To
fulfil this task, an intrinsic reward 𝑟𝑖𝑡 was added, with
𝑟𝑖𝑡 = 0.0 if 𝑢*

𝑡 = 𝑢𝑡 (a small difference is tolerated) and
𝑟𝑖𝑡 = −0.1 otherwise. The optimal policy becomes a
tradeoff between avoiding the risk of collision (with the
expressive -100 reward as punishment) and following the
path planner to avoid the small punishments. The RL
agent was trained in the ID environment using the Soft
Actor-Critic algorithm [32].

Uncertainty estimator: The VAE uncertainty estima-
tion model was trained to fit instances randomly sampled
from the ID environment in a Supervised Learning man-
ner. To that end, 20.000 images were collected from the
ID environment and 2.000 from the OOD, which are used
for validation purposes during the model training. The
model was trained for 10 epochs.

After training the RL agent and the VAE uncertainty es-
timator, rollouts are performed in the OOD environment
with this agent, and (state, action, reward) tuples are
saved for post-analysis. The episode termination states
are then passed through the uncertainty estimator to
verify if crashes present a significant correlation to high
uncertainty levels. The hypothesis is that if a crash hap-
pens due to the agent not being able to avoid an obstacle
semantically different from the ones experienced during
training, the OOD detector could flag this instance before
the crash occurs. ID inputs on the other hand should sig-
nal low uncertainty, indicating that the RL agent is able
to handle such situations. It is worth mentioning that
these experiments only consider a very limited number
of distinguishing features for the OOD obstacles. Since

(a) ID input images. (b) ID reconstructed images.

Figure 4: VAE model compression-decompression capabilities
with ID images after 10 epochs of training.

(a) OOD input images. (b) OOD reconstructed im-
ages.

Figure 5: VAE model compression-decompression capabilities
with OOD images after 10 epochs of training.

in reality the number of unknown obstacles can be ex-
tremely high, these experiments should be extended to
a set of obstacles that is statistically significant to the
problem dimension.

Figure 4 shows how the VAE learns to reconstruct the
images observed in the environment populated with ID
obstacles, with the input and reconstructed images. After
10 epochs of training, the obstacles are recovered with a
good definition. However, the model is not able to recon-
struct the floor textures completely, which is of minor
relevance in this scenario but should be investigated if
such features would represent safety-critical aspects (e.g.,
oil in the floor, large cracks or holes).

Figure 5 on the other hand, represents the same model
trained in the ID environment trying to reconstruct im-
ages with OOD obstacles in it. It is visible that, even after
10 epochs of training, the model is not able to recover the
obstacle color or shape correctly, with blurred obstacles
rendered in the output. That inability to correctly com-
press and decompress the images with OOD obstacles is
responsible for increasing the calculated uncertainty.

Figure 6 shows the obtained results for the RL agent
running in the OOD environment. The agent ran for
10.000 steps, which was equivalent to around 70 episodes.
The y-axis represents the ELBO Ratio, which was normal-
ized to get the values in the interval [0,1]. Episodes that
ended with a crash are represented by the red bars while
the blue bars picture the remaining episodes. The results
show that some crash episodes presented high uncer-



Figure 6: Uncertainty estimates on terminating states of
episodes for the OOD environment.

tainty, while very few non-crash episodes presented sig-
nificant uncertainty levels. On the other hand, some fail-
ures did not trigger a high uncertainty level. These states
could represent residual insufficiencies of the trained RL
agent (e.g., caused by lack of training), that the OOD
detector is not accurate for these inputs, or that the colli-
sion was not caused by an OOD element (e.g., the AGV
crashed to a wall). To attest to the calibration of the uncer-
tainty quantification, the same experiment was repeated
in the ID environment, with the results shown in figure 7.
The ELBO Ratio values are much lower for the entirety
of the episodes and more consistent. That is expected,
since in this case all the states should be considered ID,
showing that the VAE is not outputting false positives
for these data samples.

5. Discussion and Future
Perspective

This paper focuses on motivating the promising perspec-
tive of using uncertainty quantification for improving
the safety case of RL systems deployed in industrial ap-
plications, concentrating on camera-based systems. For
that end, an environment modeling a typical warehouse
was created. The preliminary results obtained with a
VAE-based uncertainty estimator suggest this monitor
can distinguish some of the states that result in accidents
related to environmental distributional shifts. However,
it is important to notice that not all accidents are caused
by OOD obstacles, but can rather be influenced by the
reward function definition, observation encoding, model
generalization capabilities, among other aspects. Iden-
tifying and separating accidents caused by the inability
of the agent to handle novel obstacles from accidents
caused by other unrelated limitations is necessary before
assessing the effectiveness of the OOD detection monitor.

Many published works already discuss the importance

Figure 7: Uncertainty estimates on terminating
states of episodes for the ID environment.

of uncertainty estimation and OOD detection in the
whole Safe AI spectrum, but we believe a more structured
way to integrate these systems and empirical results to
create a compelling safety assurance case is needed, es-
pecially for RL systems. To reach this long-term goal, we
suggest the following future steps:

• Operational Design Domain (ODD) [33]: In
real-world applications, the number of contextual
combination possibilities makes any attempt for
extensive testing intractable. Therefore, precise
system specification is paramount before starting
to build the assurance case. The ODD should
include all contextual information that covers the
intended operation of the system.

• Extensive experimentation: Once an appropri-
ate ODD is derived, the experiments described
in this document can be extended to a much
broader scope. Varying parameters, changing
scenario configuration, considering more obsta-
cles, and adding sensor noise are just a few
aspects that should be extensively considered.
Strong safety arguments will depend on the ex-
periments achieving a high statistical confidence
level for the contexts described in the ODD. This
should also include multiple uncertainty estima-
tion methods, not covered in this paper.

• Qualitative analysis: Understanding the system
at a higher level of abstraction is also important to
build a strong safety case. For that, it is important
to visualize the scenarios that lead to high or low
uncertainty and try to understand patterns that
lead to wrong predictions, outliers, false positives
and negatives, etc.

• Residual error: The uncertainty monitor is not
intended to cover every safety aspect, but rather
covers failures caused by the inability of the sys-
tem to handle domain shifts. Therefore, risks



associated with other aspects will still be present
and should be addressed by other methods.

• Integration of uncertainty monitor and RL
agent: This paper focuses on how OOD scenar-
ios might lead to system failures and how OOD
detection can help in detecting such states before
the failure happens. However, an important ques-
tion is not addressed here and should be a high
priority next step: what to do when an OOD in-
put is detected? In other words, how to integrate
OOD detection and a safe fallback policy into the
decision-making system.

• Failure rate calibration: The uncertainty values
are not sufficient to estimate a failure probabil-
ity because an OOD instance does not necessar-
ily imply a failure will happen. However, upper
bound probabilities could be derived from the un-
certainty estimates, i.e., if the model predicts that
there is a 30% probability of the 𝑠𝑡 being OOD,
the risk of failures caused by distributional shifts
should be below 30%.

• SOTIF: As shown in Section 2, traditional func-
tional safety standards fail to properly address ML
systems. In contrast, SOTIF is a much more appro-
priate framework to build a safety argumentation
for such cases. However, building an assurance
case based on an uncertainty-aware RL agent, to
the best of our knowledge, was not yet done. In
SOTIF it is necessary to attest to the absence of
unreasonable risk due to hazards resulting from
functional insufficiencies of the intended func-
tionality, which is challenging due to the nature
of model-free RL and sequential decision-making
systems in general.

Not necessarily those items were touched on in this pa-
per, but this list serves as a roadmap to guide our research
efforts in the near future, as we believe that covering
these points in deeper detail will result in incremental
progress towards achieving a sound argumentation to
enable uncertainty-aware RL agents to be deployed in
safety-critical applications.
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