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Abstract
In this paper we present a long-term research project that started in 2011. Language Engineering for
Multi-Level Modeling (LE4MM) combines research on fundamental challenges of conceptual modeling
and software engineering with the design and implementation of a tool environment. This interplay
between research and development has proved very fruitful. Notwithstanding, running a research project
over a period of more than 10 years, especially when it involves software development, faces a number
of specific challenges. While the main focus of the paper is on research questions and findings, we will
also present lessons learned in the project.
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1. Introduction

It all started at the conference dinner of the ER conference 2010 in Vancouver. A German
professor told the round table about a problem that had been bothering him for some time and
for which he could not find a solution. The problem was due, among other things, to specific
limitations of object-oriented programming languages. After he had to realize that this topic had
not elicited the hoped-for response at the table, he refrained from going into further detail. But
then his table neighbor, a professor from the UK, pointed out that he might have something that
could be used to address the problem – and, indeed, he had. A short time later, the conception
of a joint research project emerged. The project began in 2011, initially financed from existing
funds of the participating research groups. During the first years, a PhD student and a PostDoc
worked part-time in the project. From 2015 on, a full-time developer joined the team, which
included an ever changing group of doctoral students and student assistants.

The project is based on two main pillars that originate from previous work of its two founders.
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Tony Clark’s extensive work on reflexive language architectures, on language engineering and
the language engineering workbench XModeler [1, 2, 3] proved to be an extremely viable basis
for the further development of methods and tools. Ulrich Frank’s previous work focused on
the development of domain-specific modeling language (DSMLs) [4], methods and tools for
conceptual modeling with specific emphasis on enterprise modeling. Among other things it led
to a comprehensive method for enterprise modeling comprising of various integrated DSMLs
[5], e.g., for goal modeling [6], for business process modeling [7], for modeling organization
structures [8] and IT infrastructures [9], as well as corresponding modeling environments
[10, 11]. Despite the results achieved, this work has also been a constant source of frustration
because it has been constrained by fundamental limitations of existing language architectures,
both modeling languages and programming languages.

From the beginning, the project was driven by the conviction that bringing these two research
directions together would lead to significant synergies. To show that this hope was justified,
we will first present the motivation on which the project is based. We then outline selected
project goals before presenting and discussing key results. A comprehensive description of the
project, including publications, videos, the language engineering environment and exemplary
applications/models are available at the project’s webpages https://le4mm.org.

Due to space limitations, we had to refrain from inserting graphics, even though they would
be useful to support an appropriate understanding of the project. To compensate, we have
included several references to graphics and videos available on the project’s web pages.

2. Motivation

The project is motivated by a vision of application system architectures and the way they are
developed, used and maintained. It evolved from our experience with developing modeling
languages and accompanying tools, which led us to the conviction that the entire lifecycle of
application systems benefits significantly from domain-specific (modeling as well as program-
ming) languages and corresponding models. They should not only be accessible by developers,
but also by users. Thus, they support the involvement of users during analysis and design. In
addition, if they are provided as representation of an application system during its use and
maintenance, they contribute to empowering users, since users get the chance to understand
relevant aspects of the software they work with, which otherwise would widely remain a black
box. A specific manifestation of this vision, referred to as “self-referential enterprise system”, is
outlined in [12]. It comprises an architecture of an enterprise software system that is integrated
with a conceptual model of itself and of the relevant context it operates in, that is, models of
the corporate goal system, of business processes and project, of the organization structure, etc.
In other words: the enterprise software is integrated with an enterprise model during its entire
life time.

Even though we regard this vision as extremely attractive, its realization is fraught with a
number of question marks. They relate mainly to technical and economic challenges, but also to
supposed reservations about modeling in practice. From a technical perspective, the integration
of models and code during a long period of time is hampered by the notorious synchronization
problem. Also, the economics of such an architecture may be seen as disadvantageous, since
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the costs of developing and maintaining large conceptual models add to those required for
the development and maintenance of code. Finally, the popularity of conceptual modeling in
practice is limited, which raises doubts about whether the outlined version is suited to convince
developers and users.

It has been known for long that DSMLs are suited to promote both the productivity of
modelers and the quality of models. However, the design and implementation of DSMLs is a
time-consuming process – especially if it starts from scratch with rudimentary general-purpose
meta languages. Such an approach is in obvious contrast to the development of technical
languages in professional domains: instead of starting from scratch, a more specific technical
language, e.g., to desribe a new production process, will usually be defined in terms of an
existing, more general technical language, which does not only promote productivity by reusing
existing domain-specific concepts, but also language quality, since the more general DSML will
constrain the range of unreasonable specifications.

In order to promote reuse and adaptability, the design of DSMLs should aim at expressing
domain knowledge that is regarded as invariant at the highest possible level of abstraction.
Otherwise, it would have to be repeated at lower levels, resulting in redundancy. Unfortunately,
the implementation of this principle is hindered by the insufficient expressive power of language
architectures such as MOF. For example: when we design a process modeling language, we
know that every process instance has a start and a stop time, but it is not possible to express
this knowledge within the metamodel that is used to specify the process modeling language.

Reference models are a promising approach to significantly increase the economic efficiency
of modeling: lower development costs go hand in hand with higher quality. However, despite
the remarkable attention, reference models received at the beginning [13], they never took
off. While various reasons may have prevented the success story that reference models were
supposed to write, their wide-spread use certainly suffered from principal design conflicts that
are characteristic for many modeling and software development projects. On the one hand,
restricting an artefact to more general requirements promotes its range of reuse and, hence,
economies of scale. On the other hand, making it more specific contributes to its utility in those
cases, where it fits. This well-known “power/generality trade-off” [14, p. 71 ff.] marks a conflict
between integrity and adaptabilty, too, see [15].

3. Research Goals

The problems that hinder the realization of the vision outlined above led to ambitious research
goals, which, however, seemed not exaggerated given the power of the previously developed
reflexive language architecture, the XModeler is based on. Apart from the goals concerning the
basic language architecture (1-4), the research objectives outlined below emerged during the
course of the project.

Goal 1: Enable an arbitrary number of classification levels and allow for deferred instantia-
tion. Rationale: The design of conceptual models and especially the design of DSMLs is often
confronted with the problem that commonalities discovered within a range of classes cannot be
expressed properly through generalization [15]. In these cases, additional levels of classification
are suited to provide for the required abstraction. Achieving goals 1 and 2 is a prerequisite for



being able to specify DSMLs with less specific DSMLs (see goal 3).
Goal 2: Allow for deferred instantiation. Rationale: Sometimes knowledge about a range

of objects or classes is available already above their direct (meta) classes. If this knowledge is
expressed through properties such as attributes, operations or associations, it is required to
make sure that these do not apply to direct instances, but only to instances of classes further
down the instantiation chain. For example: a language for modeling documents may include
the meta-class Document. At this level, we know already that every instance of a specific
document class, e.g. MasterThesis, has a certain page count. But this could not be expressed
without deferred instantiation, that is, without the possibility to define properties at level Mn
that are to be instantiated only at a level below Mn-1.

Goal 3: Provide comprehensive support for the design and implementation of DSMLs –
including concrete syntax. Rationale: The unchallenged advantages of DSMLs are offset by
the considerable effort required to create them. Two more specific goals are suited to clearly
reduce this effort: the development of a comprehensive language engineering environment and
a language architecture that enables the definition of a DSML with a less specific DSML.

Goal 4: Enable a common representation of models and programs. Rationale: A common
representation of models and programs is the best option to avoid effort and risk related the to
synchronization of models and code. Among other things, it requires a programming language
that allows classes at any level to serve simultaneously as objects.

Goal 5: Promote the design and use of reference models through additional abstraction.
Rationale: Achieving this goal, which would include mitigating principle design conflicts, is
suited to invigorate reference models and, hence, to clearly improve reuse.

Goal 6: Different ways of representing models/objects and interacting with them should
be supported. Rationale: User preferences regarding diagrams, browsers, or other kinds of
GUIs vary. Also, there are use cases where it may makes sense to combine different modes of
representation.

Goal 7 : Allow for navigation at runtime. Rationale: Enabling users to navigate to models of
the software they use – as well as to the corresponding meta-models – is an obvious contribution
to their empowerment. This is especially the case, if the models they can navigate to are created
with a DSML.

Goal 8: Enable changes at runtime. Rationale: Users who are sufficiently qualified and
authorized could adapt an application system to changing requirements by changing models
they are familiar with. This would clearly improve an organization’s agility, since there would
be no need for a lengthy detour through developers. Changes are especially challenging, if they
concern deletion, also because of multiple dependencies between objects on different levels.

Goal 9: Provide a method to guide the design of DSMLs and models. Rationale: Traditional
approaches to conceptual modeling are not sufficient to handle additional abstraction, as it is
enabled by multiple levels of classification and deferred instantiation. It is especially important
to aim at invariant relationships between levels.

Goal 10: Support the development of process models at different levels of classification.
Rationale: Current process modeling languages suffer from a lack of abstraction. They offer
only poor reuse. Enabling domain-specific process modeling languages are suited to provide
more reuse and guidance.

Goal 11: Provide an approach to model-based application development that represents an



alternative to current low-code platforms. Rationale: Low-code platforms are based on the
assumption that it suits users to focus on the design of a GUI with the underlying data/object
models being created implicitly. While this assumption may be appropriate for many users,
starting with GUI design has obvious weaknesses.

4. Results to Date

It was clear from the outset that achieving the project’s goals would require some kind of
multi-level modeling approach. Multi-level modeling was introduced by the pioneering work of
Kühne and Atkinson at the beginning of the millennium [16], with ancestors that go back even
further, cf. [17, 18, 19]. The various approaches that have evolved since then have in common
that they allow for multiple classification levels and for classes having state. However, none of
the existing approaches fulfilled our requirements sufficiently, since they focus on modeling
only and did not include a programming language, which is essential for achieving goal 4. In
addition to presenting an overview of the project’s results, we will also briefly report on the
experience gathered during the course of the project.

4.1. Languages, Models, and Tools

Since the scope of this paper is limited, we can only present an overview of the project results
here. As this is hardly sufficient to allow a proper understanding of the main contributions of
the project, the text includes references to additional material provided on the project webpages.

The main results that have been achieved so far comprise the FMMLx (Flexible and executable
Multi-Level Language) [20], the XModelerML [21], a comprehensive language engineering,
modeling and execution environment, and an accompanying design method (goal 7) [22]. The
FMMLx is specified through an extension of XCore, the meta model of the previously developed
XModeler [2, p. 40]. XCore represents the class-based type system of XOCL, an object-oriented
“superlanguage” [1]. While XOCL already allowed the specification of classes at any level, the
FMMLx enables assigning a specific level to a class and to define deferred instantiation. The
metamodel shown at https://le4mm.org/xmodelerml/#FMMLx defines the concepts offered by
the FMMLx . The example model at the same page illustrates the use of these concepts. It
also illustrates the integration of executable languages, models and objects at M0 within one
multi-level model. The demo “DSML for IT Management” (https://le4mm.org/xmodelerml/
#examples-1) shows a multi-level model that integrates DSMLs at different levels, models and
objects at M0. The classes at level 3 represent the specification of a more general DSML for
modeling IT infrastructures. This DSML then serves the specification of a more specific DSML
at level 2, which in turn is used to create the model at level 1. The objects instantiated from
that model, e.g., one representing a particular desktop computer, are also part of the multi-level
model. Since every class, no matter at what level, is an object, too, its operations can be executed
and the returned values can be shown in the diagram. Whenever a class is added to the diagram,
the diagram editor’s palette is updated.

In addition to a diagram editor, the interaction with objects can be done through an object
browser, an object editor, or through some other kind of GUI (goal 6). A further component
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enables the convenient definition of graphical notations and their integration with the corre-
sponding abstract syntax and semantics (see demo at https://le4mm.org/xmodelerml/#Demo-1).
From this it follows that goals 1-4 are achieved, enabling the realisation of self-referential enter-
prise systems (see video and demo at https://le4mm.org/xmodelerml/#Focus-on-Runtime, https:
//le4mm.org/xmodelerml/#Demo-2). The language architecture featured by the XModelerML also
allows for designing reference models that relax the power/generality trade-off. While higher
level languages allow for a wide range of reuse, thus fostering economies of scale, more specific
languages and models increase reuse productivity.

To support non-programmers with developing applications, we chose an approach that is
different from prevalent low-code platforms (goal 11). Users start with developing a model of
their domain using a DSML of choice. If the specification of classes involves the implementation
of elaborate operations, the support of professional developers is required. Once the model
is complete, a default GUI is generated and exported to an external GUI designer that allows
the user to rearrange and polish the GUI elements. The finalized GUI is sent back to the
XModelerML where it is transparently integrated with the model that constitutes the application.
The current implementation [21] is in an early stage and subject of future research. For a demo,
see screencast at https://le4mm.org/xmodelerml/#advancedGUI.

Multiple classification levels, deferred instantiation as well as the fact that the strict separation
of language and model is removed mark an obvious and potentially confusing difference to
traditional approaches to modeling. Therefore, multi-level modeling can be regarded as a
new paradigm of modeling and software design in general. The sudden introduction of a
comprehensive multi-level language engineering and execuation environment is associated
with the risk of overwhelming users. We have made corresponding experiences in our courses
as well as in the exchange with professional software developers. An interative introduction
that gradually reveals the benefits will therefore often be wiser. To this end, one could start with
using the XModelerML as a UML class diagram editor. It offers an immediate advantage over
regular UML editors, since it allows the instantiation of models into objects and the execution
of those within the diagram editor (see screencast at https://le4mm.org/xmodelerml/#UML-pp).
Subsequently, multi-level concepts can be introduced step by step (see further screencast on
same page).

To explore the potential of multi-level modeling and of the XModelerML in particular, it is
recommended downloading it from https://le4mm.org/xmodelerml/#download. In addition to
screencasts that guide the installation, the distribution includes several executable models.

4.2. Lessons Learned

It is demanding to run a research project at universities for more than ten years. This applies
both to the persistence required and to securing funding. We were fortunate in both respects.
We had access to various resources over the course of time that allowed us to fund the project
throughout. Currently, our research is supported by a generous donation from a large American
software company. Nevertheless, it was only possible to give the project a high priority over
such a long period of time, because our enthusiasm for the project has not waned over the years.

In retrospect, the following factors have contributed to the project’s persistence and produc-
tivity. The work in the project was largely oriented to the guiding principle of research through
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development. Research questions were accompanied by challenging development tasks, which
often led to new research questions. In addition to long-term goals such as the realization of a
self-referential enterprise system, the development work regularly enabled tangible successes,
which kept team motivation high. Furthermore, the small, but enthusiastic multi-level modeling
community proved to be very helpful in this respect. The MULTI Workshop series provides a
forum for exchanging and validating ideas. With its regular modeling challenges it fosters a
healthy competition.

Finally, the inclusion of the topic in the teaching program proved to be very beneficial. On
the one hand, teaching forced us to further specify the terminology used, and on the other hand,
it allowed us to recruit a number of students to work on the project.

5. Conclusions and Future Work

So far, the project has been extremely profitable for all participants. It has enabled us to gain a
number of important insights. The results achieved so far exceed our original expectations –
and we are still excited about remaining challenges that will keep us busy for years to come.

Among the most prominent research goals that will occupy us in the near future are applying
multi-level modeling to process modeling and the specification of contingent level classes, that
is, classes that may change their level with the context they are used in, thus increasing the
range of their possible reuse.
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