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Abstract

Answer Set Programming (ASP) is a well-known declarative AI formalism developed in the area of

logic programming and nonmonotonic reasoning. Modern ASP systems are based on the ground&solve

approach. Although effective in industrial and academic applications ground&solve ASP systems are

still unable to handle some classes of programs because of the so-called grounding bottleneck problem.

Compilation of ASP programs demonstrated to be an effective technique for overcoming the grounding

bottleneck. In the paper titled “Compilation of Aggregates in ASP Systems”, which we presented in

the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2022), the first compilation-based

approach for ASP programs that contain aggregates has been presented. In this paper, we outline the

benefits of compiling ASP programs and mention possible developments in this line of research.

1. Introduction

Answer Set Programming (ASP) [1] is a fully declarative AI formalism. ASP was developed in

the Logic Programming and Knowledge Representation communities and represents the most

well-known logic formalism that is based on stable model semantics [2]. ASP demonstrated to

be very useful for representing and solving many classes of problems. Indeed, ASP features

both a standardized first-order language and several efficient systems [3]. ASP has many

applications both in academia and in industry such as planning, scheduling, robotics, decision

support, natural language understanding, and more (cfr. [4]). ASP is supported by efficient

systems, but the improvement of their performance is still an open and challenging research

topic. State-of-the-art ASP systems are based on the ground&solve approach [5]. The first-

order input program is transformed by the grounder module in its propositional counterpart,

whose stable models are computed by the solver, implementing a Conflict-Driven Clause

Learning (CDCL) algorithm [5]. ASP implementations based on ground&solve, basically, enabled

the development of ASP applications. However, there are classes of ASP programs whose

evaluation is not efficient (sometimes not feasible) due to the combinatorial blow-up of the

program produced by the grounding step. This issue is known under the term grounding
bottleneck [6, 7]. Many attempts have been done to approach the grounding bottleneck, from

language extensions [6, 8, 9, 10, 11, 12, 13] to lazy grounding [14, 15, 16]. These techniques

obtained good preliminary results, but lazy grounding systems are still not competitive with

ground&solve systems on common problems [3]. Recent research suggests that compilation-

based techniques can mitigate the grounding bottleneck problem due to constraints [17, 18].
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Essentially, their idea is to identify the subprograms causing the grounding bottleneck, and

subsequently translate them to propagators, which are custom procedures that lazily simulate

the ground&solve on the removed subprograms. Problematic constraints are removed from

the non-ground input program and the corresponding propagator is dynamically linked to the

solver to simulate their presence at running time. Compilation of ASP programs demonstrated

to be an effective technique for overcoming the grounding bottleneck. This approach is meant

to speed-up computation by avoiding full grounding and exploiting information known at

compilation time to create custom procedures that are specific to the program at hand. In the

paper titled “Compilation of Aggregates in ASP Systems”, that we presented in the Thirty-

Sixth AAAI Conference on Artificial Intelligence (AAAI 2022) [19], the first compilation-based

approach for ASP programs that contain aggregates [20] has been presented
1
, despite aggregates

are among the most relevant and commonly-employed constructs of ASP [21]. In this paper,

we propose a compilation-based approach for ASP programs with aggregates. We identify the

syntactic conditions under which a program with aggregates can be compiled, thus extending

the definition of compilable subprograms of [17]. Then, we implement the approach on top

of the state-of-the-art ASP solver wasp [22]. In this paper we overview our compilation

technique, outline the benefits of compiling ASP programs, and mention possible developments

in this line of research. In the following, we assume the reader familiar with Answer Set

Programming syntax and semantics, and refer the reader to introductory and founding papers

for details [1, 2, 20].

2. Compilation-based approaches

In recent years, compilation-based approaches have been proposed to overcome the grounding

bottleneck problem. Basically, the idea behind these approaches is to compile the grounding-

intensive part of an ASP program into a dedicated procedure, named propagator, that simulates

it into an ASP solver during the solving phase. A first attempt has been proposed in [17] where

the authors identified some syntactic conditions that allow the compilation of a subprogram into

a lazy propagator. In this approach, the compiled program is omitted in the original program

and is simulated by a procedure that, as soon as a candidate stable model, 𝑀 , of the remaining

program is computed, checks whether 𝑀 is coherent or not with omitted subprogram. If it

is the case then the candidate stable model is also a model of the original program otherwise

violated constraints are added into the solver and the model computation process restarts. This

strategy proved to be very effective on grounding-intensive benchmarks and so it motivated the

idea to push forward the concept of propagators. Another compilation-based approach for ASP

constraints has been proposed in [18]. This work introduced the translation of constraints of

an ASP program into a propagator of the CDCL algorithm that works on partial interpretation.

More precisely, constraints are removed from the input program and they are compiled into an

eager propagator, that simulates the propagation of the omitted constraints during the solving

phase. In this approach solver and propagator works together in order to prevent constraints

failure and so, unlike lazy propagators, the candidate stable model produced by the solver

will be coherent also with the omitted constraints. Eager compilation of grounding-intensive
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constraints introduced significant improvements outperforming traditional ASP solvers but,

unfortunately, it is limited to simple constraints that do not contain aggregates. Aggregates are

among the most used constructs that make ASP effective in representing complex problems in a

very compact way and very often their grounding could be a bottleneck. An attempt to extend

the compilation also to constraints with aggregate has been proposed in [23]. Basically, this

approach provides a compilation strategy for constraints with a count aggregate into an eager

propagator. Count aggregates are normalized under a unique comparison operator, ≥, and then,

following the idea described in [18], they are compiled into a custom procedure that simulates

aggregates propagations. Results obtained by this extension highlighted the strength of the

contribution solving more instances than state-of-the-art system wasp on hard benchmarks

from ASP competitions [7] containing constraints with count aggregate. Starting from the

idea proposed in [23] we generalized the compilation of aggregates to rules with sum or count

aggregate [19]

2.1. Conditions for Splitting and Compiling Programs

An ASP program 𝜋 is a set of rules of the form:

ℎ← 𝑏1, . . . , 𝑏𝑘,∼𝑏𝑘+1, . . . ,∼𝑏𝑚 (1)

with 𝑚 ≥ 𝑘 ≥ 0, where ℎ is a standard atom referred to as head and it can absent, whereas

𝑏1, . . . , 𝑏𝑘,∼𝑏𝑘+1, . . . ,∼𝑏𝑚 is the body, 𝑏1, . . . , 𝑏𝑘 are atoms, and 𝑏𝑘+1, . . . , 𝑏𝑚 are standard

atoms. Moreover, for a rule 𝑟, 𝐻𝑟 and 𝐵𝑟 are two sets containing the head and the body of a

rule 𝑟, respectively, 𝐵+
𝑟 and 𝐵−

𝑟 are two sets containing the positive and the negative body of

𝑟, respectively, 𝐵𝑎
𝑟 denotes the set of aggregate atoms appearing in 𝐵𝑟, and Conj+(𝐵𝑎

𝑟 ) and

Conj−(𝐵𝑎
𝑟 ) denotes the set of positive and negative standard literals appearing in the aggregate

atoms of the body, respectively. Given a program 𝜋, a sub-program of 𝜋 is a set of rules 𝜆 ⊆ 𝜋.

In what follows, we denote with preds(𝑋) the set of predicate names appearing in 𝑋 where

𝑋 is a structure (literal, conjunction, rule, program, etc). Moreover, given a set of rules 𝜆, let

head(𝜆) = {𝑎 | 𝑎 ∈ 𝐻𝑟, 𝑟 ∈ 𝜆}.

Definition 1. Given an ASP program 𝜋, the dependency graph of 𝜋, denoted 𝐷𝐺𝜋 , is a labeled
graph (𝑉,𝐸) where 𝑉 is the set of predicate names appearing in some head of 𝜋, and 𝐸 contains
(i) (𝑣1, 𝑣2,+), if there is 𝑟 ∈ 𝜋 | 𝑣1 ∈ preds(𝐵+

𝑟 ) ∪ preds(Conj+(𝐵𝑎
𝑟 )), 𝑣2 ∈ preds(𝐻𝑟); (ii)

(𝑣1, 𝑣2,−), if there is 𝑟 ∈ 𝜋 | 𝑣1 ∈ preds(𝐵−
𝑟 ) ∪ preds(Conj−(𝐵𝑎

𝑟 )), 𝑣2 ∈ preds(𝐻𝑟).

Definition 2. Given an ASP program 𝜋, an ASP sub-program 𝜆 ⊆ 𝜋 is compilable w.r.t. 𝜋 if (i)
𝐷𝐺𝜆 has no loop in it; (ii) for each 𝑝 ∈ pred(head(𝜆)), 𝑝 /∈ pred(𝜋 ∖ 𝜆); (iii) given two rules
𝑟1, 𝑟2 ∈ 𝜆, 𝑟1 ̸= 𝑟2, preds(𝐻𝑟1) ∩ preds(𝐻𝑟2) = ∅; and (iv) for each 𝑟 ∈ 𝜆, |𝐵𝑎

𝑟 | ≤ 1.

2.2. Normalization of the Input Program

In the following, we describe the main preprocessing steps that are performed to compile the

input sub-program. First of all the sub-program 𝜆 is analyzed in order to be split into two

sub-programs, namely 𝜆lazy and 𝜆eager . This analysis consists of navigating the dependency



graph starting from nodes that have no incoming edges and recursively label predicates that

appear in the body of a rule whose head predicate has been already labeled. In this way, the rules

whose head predicate has not been labeled could be treated in a lazy way (𝜆lazy ); other rules are

in 𝜆eager . For 𝜆eager , we perform a rewriting to obtain a normalized form with rules of a specific

format in order to have a uniform treatment of all the rules to compile. Also, for a structure (set,

list, conjunction, etc.) of elements 𝑋 , let vs(𝑋) be the set of all variables appearing in 𝑋 .

Step 1. Each rule 𝑟 ∈ 𝜆eager of the form (1), with |𝐵𝑎
𝑟 | = 1, 𝑓({Vars : Conj}) ≺ 𝑇 ∈ 𝐵𝑎

𝑟 ,

and ≺∈ {<,≤, >,≥}, is replaced by the following rules:

1. as𝑟(Vars, 𝜌)← Conj ;

2. bd𝑟(𝜌, 𝑇 )← 𝐵𝑟 ∖𝐵𝑎
𝑟 ;

3. aggr 𝑟(𝜌, 𝑇 )← dm𝑟(𝜌, 𝑇 ), 𝑓({Vars : as𝑟(Vars, 𝜌)}) ≥ 𝐺, where 𝐺 = 𝑇 if≺∈ {≥, <},
and 𝐺 = 𝑇 + 1 if ≺∈ {≤, >};

4. ℎ← bd𝑟(𝜌, 𝑇 ), aggr 𝑟(𝜌, 𝑇 ) if ≺∈ {>,≥} and

ℎ← bd𝑟(𝜌, 𝑇 ),∼aggr 𝑟(𝜌, 𝑇 ) if ≺∈ {<,≤};

where 𝜌 is vs(Conj ) ∩ vs(𝐵𝑟 ∖ 𝐵𝑎
𝑟 ). Intuitively, 𝜌 is a set of all variables appearing in both

aggregate set and body.

Example 1. Let assume 𝑟 to be the following rule:

𝑎(𝑋,𝑊 )← 𝑏(𝑋,𝑌 ), 𝑐(𝑌,𝑊 ),
#𝑠𝑢𝑚{𝑍 : 𝑑(𝑋,𝑍),∼𝑒(𝑍)} ≥𝑊.

Then, 𝑟 is replaced by the following rules:

𝑟1 : as𝑟(𝑍,𝑋) ← 𝑑(𝑋,𝑍),∼𝑒(𝑍)
𝑟2 : bd𝑟(𝑋,𝑊 ) ← 𝑏(𝑋,𝑌 ), 𝑐(𝑌,𝑊 )
𝑟3 : aggr 𝑟(𝑋,𝑊 ) ← dm𝑟(𝑋,𝑊 ),

#𝑠𝑢𝑚{𝑍 : as𝑟(𝑍,𝑋)} ≥𝑊
𝑟4 : 𝑎(𝑋,𝑊 ) ← bd𝑟(𝑋,𝑊 ), aggr 𝑟(𝑋,𝑊 )

Step 2. Each rule 𝑟 ∈ 𝜆eager of the form (1), with |𝐵𝑎
𝑟 | = 1, 𝑓({Vars : Conj}) ≺ 𝑇 ∈ 𝐵𝑎

𝑟 ,

and ≺∈ {=}, is replaced by the rules 1., 2., and by the following rules:

5. aggr1𝑟(𝜌, 𝑇 )← dm𝑟(𝜌, 𝑇 ), 𝑓({Vars : as𝑟(Vars, 𝜌)}) ≥ 𝑇 ;

6. aggr2𝑟(𝜌, 𝑇 )← dm𝑟(𝜌, 𝑇 ), 𝑓({Vars : as𝑟(Vars, 𝜌)}) ≥ 𝑇 + 1;

7. ℎ← bd𝑟(𝜌, 𝑇 ), aggr
1
𝑟(𝜌, 𝑇 ),∼aggr

2
𝑟(𝜌, 𝑇 ).

Step 3. Each rule 𝑟 ∈ 𝜆eager , with |𝐵𝑎
𝑟 | = 0, is replaced by the following rules:

8. ℎ← aux 𝑟(vs(𝐵
+
𝑟 ));

9. ← aux 𝑟(vs(𝐵
+
𝑟 )), 𝑏𝑖 ∀𝑖 ∈ {1, . . . ,𝑚};

10. ← 𝐵𝑟,∼aux 𝑟(vs(𝐵
+
𝑟 )).

This step is applied also to rules from steps 1 and 2.



Example 2. Let assume 𝑟 to be the following rule:

𝑎(𝑍,𝑋)← 𝑑(𝑋,𝑍),∼𝑒(𝑍).

Then, 𝑟 is replaced by the following rules:

𝑟8 : 𝑎(𝑍,𝑋) ← aux 𝑟(𝑋,𝑍)
𝑟′9 : ← aux 𝑟(𝑋,𝑍),∼𝑑(𝑋,𝑍)
𝑟′′9 : ← aux 𝑟(𝑋,𝑍), 𝑒(𝑍)
𝑟10 : ← 𝑑(𝑋,𝑍),∼𝑒(𝑍),∼aux 𝑟(𝑋,𝑍).

Intuitively, the normalization ensures that aggregate functions are applied to a set of atoms,

and rules are subject to a form of completion [24]. After applying the normalization step the

program contains only rules of the form:

(1) ℎ← 𝑏
(2) ℎ← 𝑑,#𝑐𝑜𝑢𝑛𝑡({𝑉 𝑎𝑟𝑠 : 𝑏}) ≥ 𝑔
(3) ℎ← 𝑑,#𝑠𝑢𝑚({𝑉 𝑎𝑟𝑠 : 𝑏}) ≥ 𝑔
(4) ← 𝑐1, ..., 𝑐𝑛

Thus, the compiler will only have to produce propagators simulating the above-mentioned four

rule types. Finally, it is important to emphasize that atoms of the form dm𝑟(·) and aux 𝑟(·) do

not appear in the head of any rule in the program, and thus the ASP semantics would make them

false in all stable models. Therefore, in our approach, they are treated as external atoms [25],

whose instantiation and truth values are defined at running time in the propagator when the

base 𝐵𝜆eager is determined.

2.3. Compilation

The compilation step, basically, follows the baseline described in [18]. In particular, a rewritten

subprogram 𝜆 will be compiled into a C++ procedure that includes propagator code for each

rule 𝑟 ∈ 𝜆. Afterward, the eager propagator procedure is nested into the state-of-the-art system

wasp as a dynamic library. In order to better understand the idea behind our approach let us

consider the following rules produced by the normalization step:

𝑟1 : 𝑎(𝑋) :– 𝑎𝑢𝑥(𝑋,𝑌 ).
𝑟2 : 𝑎𝑔𝑔𝑟(𝑋) :– 𝑑𝑚(𝑋),#𝑐𝑜𝑢𝑛𝑡{𝑍 : 𝑎𝑠(𝑍,𝑋)} ≥ 2.

Basically, the idea behind generated propagators is reported in Algorithms 1 and 2. For more

details on the automatic generation of such propagators we refer the reader to [19].

3. Experiments

Our approach has been evaluated in three different settings: (𝑖) A simple benchmark used to

show the limits of ground&solve (cfr. [19]). (𝑖𝑖) All benchmarks from ASP competitions [7]

including at least one rule with aggregates that can be compiled under our conditions. (𝑖𝑖𝑖)
Grounding-intensive benchmarks from the literature: Component Assignment Problem [26],

Dynamic In-Degree Counting and Exponential-Save [27].



Algorithm 1 Propagator example for 𝑟1

1: if ∃ 𝑎(𝑋) ∈ 𝐼 then
2: 𝑇 = {𝑌 : 𝑎𝑢𝑥(𝑋,𝑌 )is true}
3: 𝑈 = {𝑌 : 𝑎𝑢𝑥(𝑋,𝑌 )is not assigned}
4: if | 𝑇 ∪ 𝑈 |= 1 then
5: 𝐼 = 𝐼 ∪ {𝑎𝑢𝑥(𝑋,𝑌 ) | 𝑌 ∈ 𝑈}
6: end if
7: else

8: if ∃ ∼ 𝑎(𝑋) ∈ 𝐼 then
9: 𝐼 = 𝐼 ∪ {𝑎𝑢𝑥(𝑋,𝑌 ) |

𝑎𝑢𝑥(𝑋,𝑌 ) 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑎𝑙𝑠𝑒}
10: else
11: if ∃𝑌 | 𝑎(𝑋,𝑌 ) ∈ 𝐼 then
12: 𝐼 = 𝐼 ∪ {𝑎(𝑋)}
13: end if
14: end if
15: end if

Algorithm 2 Propagator example for 𝑟2

1: for all 𝑋 : ∃ 𝑑𝑚(𝑋) do
2: 𝑇 = {𝑍 : 𝑎𝑠(𝑍,𝑋) 𝑖𝑠 𝑡𝑟𝑢𝑒}
3: 𝐹 = {𝑍 : 𝑎𝑠(𝑍,𝑋) 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒}
4: 𝑈 = {𝑍 : 𝑎𝑠(𝑍,𝑋) 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑}
5: if ∼ 𝑎𝑔𝑔𝑟(𝑋) ∈ 𝐼 then
6: if | 𝑇 |= 1 then
7: 𝐼 = 𝐼 ∪ {∼ 𝑎(𝑍) | 𝑍 ∈ 𝑈}
8: end if
9: else

10: if 𝑎𝑔𝑔𝑟(𝑋) ∈ 𝐼 then
11: if | 𝑇 ∪ 𝑈 |= 2 then
12: 𝐼 = 𝐼 ∪ {𝑎(𝑍) | 𝑍 ∈ 𝑈}
13: end if

14: else
15: if | 𝑇 ∪ 𝑈 |< 2 then
16: 𝐼 = 𝐼 ∪ {∼ 𝑎𝑔𝑔𝑟(𝑋)}
17: else
18: if | 𝑇 |>= 2 then
19: 𝐼 = 𝐼 ∪ {𝑎𝑔𝑔𝑟(𝑋)}
20: end if
21: end if
22: end if
23: end if
24: end for

Hardware and Software. In all the experiments, the compilation-based approach, reported

as wasp-comp, has been compared with the plain version of wasp [22] v. 169e40d and with the

state-of-the-art system clingo v. 5.4.0 [25]. Moreover, for Dynamic In-Degree Counting and

Exponential-Save we considered also the system alpha [16], which is based on lazy-grounding

techniques. alpha cannot be used for other experiments since it does not support some of the

language constructs used in the benchmarks (e.g., choice rules with bounds). Experiments were

executed on Xeon(R) Gold 5118 CPUs running Ubuntu Linux (kernel 5.4.0-77-generic), time and

memory are limited to 2100 seconds and 4GB, respectively.

Table 1
Solvers evaluation on setting (𝑖).

k 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 20000 30000 40000

CLINGO
t 0.66 3.23 7.68 13.62 22.23 32.73 42.88 - - - - - -

mem 40.2 303.5 709.5 1216.8 1933.3 2871.1 3576.7 - - - - - -

WASP
t 1.02 4.36 9.98 18.47 28.80 42.47 58.31 - - - - - -

mem 59.6 286.5 696.3 1168.1 2215.4 2807.2 3402.0 - - - - - -

WASP-COMP
t 0 0.1 0.24 0.53 0.93 1.19 1.44 1.96 2.89 3.87 12.52 26.43 58.88

mem 0 18.6 38.5 53.7 74.6 109.8 142.3 152 191.6 254.7 898.5 1888.3 3319.6



Table 2
Solvers evaluation on settings (𝑖𝑖) and (𝑖𝑖𝑖).

Benchmark #

wasp-comp wasp clingo

sol. sum t avg mem comp. t sol. sum t avg mem sol. sum t avg mem

Abs. Dia. Fram. 200 117 23467.7 118.9 6.47 123 24311.1 117.2 200 1244.6 26.4

Bottle Filling 100 100 2208.3 773.8 11.98 100 545.8 761.8 100 394.0 213.4

Con. Max. Den. 26 6 2166.8 26.4 31.8 6 427.5 31.4 4 85.4 11.1

Crossing Min. 85 84 305.3 16.4 8.97 84 257.3 14.5 51 10013.0 20.4

Incr. Sched. 500 329 25960.7 96.6 6.94 317 42282.4 210.9 345 18952.8 253.7

Partner Units 112 52 35525.7 160.9 12.51 69 29612.5 247.6 80 7147.8 73.8

Solitaire 27 25 601.7 27.0 12.03 25 140.2 18.4 25 273.1 9.8

Weighted Seq. 65 65 6663.4 36.1 8.46 65 4713.5 32.3 65 569.6 14.5

Comp. Assign. 302 188 56137.2 814.4 20.79 70 15325.81 973.3 118 36832.0 1288.6

Dyn. Ind. Cou. 80 80 48.0 62.0 6.48 80 1374.6 619.4 80 1282.1 551.8

Exp.-Save 27 21 2594.1 527.0 * 6 18.5 369.8 7 24.4 365.4

Results. Concerning the setting (𝑖), we report execution time (t) and used memory (mem)

for each instance in Table 1. In particular, we observe that clingo and wasp cannot solve

instances with 𝑘 ≥ 8000, whereas wasp-comp can efficiently handle instances up to values

of 𝑘 = 40000. Concerning the setting (𝑖𝑖) and (𝑖𝑖𝑖) we report for each solver the number

of solved instances (sol.), the sum of running times (sum t) in seconds and the average used

memory (avg mem) in MB. Concerning wasp-comp we report also the compile time in seconds

(comp t) that in general cases is not included in the sum of the time, since the compilation

is done only once for each benchmark (with the exception of Exponential-Save) and, thus,

can be done offline. Concerning the setting (𝑖𝑖), we observe that clingo obtains the best

performance overall, and it is faster than wasp and wasp-comp. This setting is useful to analyze

the performance of the proposed technique on benchmarks that do not present a grounding

issues and comparing wasp-comp and wasp, we observe that the former is competitive with the

latter in all the benchmarks but Abstract Dialectical Framework and Partner Units, where wasp

solves 6 and 17 more instances than wasp-comp. Nonetheless, wasp-comp performs better than

wasp on the benchmark Incremental Scheduling, solving 12 more instances. Interestingly, on

this benchmark, wasp-comp also uses less memory than wasp and clingo. Indeed, if only 512

MB are available (as reasonable in some cases) wasp-comp solves 57 and 53 instances more than

wasp and clingo, respectively. Concerning the setting (𝑖𝑖𝑖), wasp-comp outperforms wasp in

all the tested benchmarks solving 133 more instances overall. It is important to observe that each

instance of Exponential-Save requires to be compiled since aggregates to be compiled are part of

the instances. Therefore, in this benchmark, the solving time includes also the compilation time.

Concerning Dynamic In-Degree Counting, wasp-comp and wasp solve the same number of

instances, but wasp-comp is much faster. Moreover, we observe that wasp-comp solves 84 more

instances than clingo overall. Finally, we observe that wasp-comp is competitive also with

alpha, since the latter solves 80 instances of Dynamic In-Degree Counting in 492.0 seconds

using 649.1 MB, and 27 instances of Exponential-Save in 332.9s using 227.8 MB.



4. Discussion

The grounding bottleneck is a limiting factor for ASP systems based on the ground&solve

architecture. Compilation-based approaches proposed by [18] offer the possibility to mitigate

this issue in presence of constraints while keeping the benefits of state-of-the-art approaches.

Compilation of aggregates introduced significant improvements in grounding-intensive domains

outperforming state-of-the-art systems. It is worth observing that, compilation techniques

currently are applicable to a limited class of programs. Indeed, the conditions for a subprogram

to be compilable cover many cases of practical interest (constraint-like subprograms) and they

are orthogonal to many available constructs, such as weak constraints, cautious reasoning and

qualitative preferences among answer sets [28], but are far from covering the entire range of

possible cases. Indeed, the support for the compilation of rules is limited, since the system does

not support: unfounded sets propagation, and answer-sets-generator rules (eg., disjunction,

choice rules, and unrestricted negation). The missing constructs are not easy to support, thus

there is a long promising route to follow to deliver a system able to compile any ASP program

that suffers from grounding bottleneck.
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