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Abstract
Case-Based Reasoning (CBR) solves new problems by using experience represented by solved cases. The
acquisition of adaptation knowledge and its subsequent application remains a classic challenge for CBR
applications. In this paper, we present a novel approach for adapting semantic workflows during the
reuse phase of the CBR cycle. A reinforcement learning agent is utilized, which applies different actions
to change nodes of the workflow. Thereby, changes to the workflow are made by replacing, deleting
or adding nodes. The agent is evaluated in a case study outlining its ability to adapt a semantic graph
in a smart manufacturing domain. While the approach is detailed for the application in the particular
domain, it can be adopted for the usage in other process-oriented domains.
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1. Introduction

Case-Based Reasoning (CBR) [1] is a technique that uses experience of problems and their
respective solutions to solve new problems. As a retrieved solution usually cannot be applied
to a new problem out-of-the-box, it often needs to be adapted to fit a new upcoming problem.
However, the acquisition and expression of adaptation knowledge is hard and expensive, which
often leads to the adaptation step being left out entirely or leaving modifications to domain
experts [2]. This is also known as the adaptation knowledge bottleneck [3]. To diminish this
bottleneck, Machine Learning (ML) methods are popular in CBR research [4, 5, 6]. For instance,
based on the difference between problem and solution (case difference heuristic) adaptation rules
can be learned by a neural network for classification and regression domains, and subsequently
applied [7, 8]. However, these methods have so far only been used for simple cases represented
as attribute-value pairs [8] and their applicability to more complex case representations remains
to be examined.
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This work addresses the domain of Process-Oriented Case-Based Reasoning (POCBR) [9]
where CBR methods are extended and applied to processes and workflows [9]. Such workflows
that are usually represented as semantically annotated graphs [10] are utilized in various
domains, for example as cooking recipes [11], scientific workflows [12] or smart manufacturing
workflows [13]. Various adaptation methods have been proposed to learn adaptation knowledge
for these workflows without relying on manual knowledge acquisition from domain experts
[14, 12, 13].

However, due to the inherently complex graph structure in combination with domain-specific
semantic information, these methods are not generic enough to be shared between different
domains. To tackle this and to provide a more streamlined approach to graph adaptation, we
propose a novel framework which combines ML methods with CBR, needing only minor modifi-
cations to work in different domains. We adapt semantic workflows with a Deep Reinforcement
Learning (RL) agent performing structural modifications to the workflows. The proposed work
is the first concept to combine ML approaches to adapt workflows in the context of POCBR. This
paper proceeds as follows: In the following section, the semantic graph representation, RL, and
related work regarding the adaptation of semantic graphs are presented. The proposed approach
to adapt semantic workflows is introduced in Sect. 3 in the context of smart manufacturing
workflows, which is further outlined in Sect. 4. Finally, Sect. 5 concludes the paper and gives an
outlook for future work.

2. Foundations and Related Work

The following sections present an overview of the foundations for this work. Section 2.1
introduces the concept of semantic graphs as a representation of workflows. Section 2.3 gives
an introduction to RL. We also cover related work regarding existing adaptation methods for
graph-based data and applications of GNNs in CBR in Sect. 2.4.

2.1. Semantic Workflow Graphs

In this work, we workflows are represented as semantic graphs, also named NEST graphs
[10], that allow modeling complex semantic information encoded and various types of nodes
and edges. A NEST graph is a quadruple 𝐺 = (𝑁,𝐸, 𝑆, 𝑇 ) where 𝑁 is a set of nodes and
𝐸 ⊆ 𝑁 × 𝑁 represents the edges between nodes. Semantic descriptions 𝑆 can be used
for enriching individual nodes or edges with semantic information. 𝑇 specifies the type of
nodes or edges. An exemplary semantic workflow is depicted as NEST graph in Fig. 1. The
graph illustrates a simplified sheet metal production process and consists of task nodes that
describe the activities during manufacturing, e. g., drilling holes, data nodes that are used for
representing the current state of the product, i. e., the properties of the sheet metal, and semantic
descriptions enriching nodes with domain-dependent properties, e. g., parameters that specify
a manufacturing operation such as quantity of drilling holes. To reduce the expressiveness
of workflows and, thus, to enhance the use of AI methods, we restrict our contribution to
block-oriented workflows [14, pp. 80]. A workflow is block-oriented, 1) if it features only a
single start and end task node, 2) if all edges are properly connected, and 3) if every task node
is connected with control-flow edges and data nodes with data-flow edges (see [14, pp. 80]
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Figure 1: An Exemplary NEST Graph Showing a Manufacturing Process

for more details and the rules that must be satisfied for block-oriented workflows). The given
workflow depicted in Fig. 1 is a block-oriented workflow, as 1) there is only one single start
and end task node in the control-flow order, 2) all edges are properly connected, and 3) all task
nodes are at least connected with one control-flow edge and the data nodes are also connected
with at least one data-flow edge.

Based on the representation of workflows as semantic graphs, it is possible to assess the
similarity during the retrieve phase in POCBR. For this purpose, a graph matching procedure is
required, in which the nodes and edges of the query workflow are mapped to corresponding
nodes and edges of the case workflow. If a mapping is found, the similarity is calculated based
on the local-global principle [15, 10]: For this purpose, local similarity functions are defined
with which the similarity between two nodes or edges is determined based on the semantic
descriptions. These similarities are then aggregated into the global similarity by utilizing an
aggregation function, e. g., a weighted average [10].

2.2. Methods for Workflow Adaptation

Adaptive workflow management [16] is an important topic for enabling flexible adaptations
of workflows in changing environments. However, workflow adaptation is often performed
manually by users, which makes it a complex and error-prone task. Recently, several methods
based on CBR (e. g., [14, 17]) and other AI methods (e. g., [13]) have been proposed to support
users in this process by performing adaptations in a semi-automatic or fully automatic way. In
the following, we present some approaches used for adaptive workflow management.

One adaptation method is based on generalization and specialization [14]. In this approach,
generalized cases are first learned by comparing similar workflows in the case base. Concrete
nodes are generalized based on ontological knowledge, and a stored generalized case covers
several concrete cases. Given the generalized cases, specialization is used to create new concrete
cases that fit the requirements of the query. One drawback of this substitutional adaptation
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method is that the workflow is not changed structurally. For this reason, structural adaptation
methods exist with which the structure of the workflow is modified. One such method is the
adaptation by workflow streams [14]. A workflow stream is a workflow fragment that is extracted
to be reused in other workflows. To learn suitable adaptations automatically, workflow streams
are created from the cases stored in the case base. Based on this learned knowledge, adaptations
can be performed in a compositional way by replacing streams with other suitable streams.
A similar adaptation method is the adaptation with adaptation operators [14]. In this context,
adaptation knowledge is learned based on the cases stored in the case base. Each adaptation
operator consists of small sub-workflows that describe insertions, deletions, or replacements.
During adaptation, valid operators are retrieved and applied to the workflow. Thus, structural
adaptations are possible by inserting new fragments into a workflow, by deleting fragments
from a workflow, or by replacing fragments with other suitable ones. In general, these structural
adaptations can be described at a higher level of abstraction by using change patterns [18].
Change patterns can be divided into two groups: patterns for changes in predefined regions and
adaptation patterns. While the former allows to add information to workflows, the latter allows
for structural changes in the workflow. These range from adding or replacing singular nodes
or edges to moving, swapping, or replacing process fragments, which feature a part of the
process consisting of multiple edges and nodes. Additionally, adaptation patterns support the
adaptation of the control-flow, e. g., by making fragments parallel or looping a fragment.

2.3. Reinforcement Learning

Reinforcement Learning is a strategy for an agent to learn decision-making behavior based on
trial-and-error experiences [19]. To train a machine learning agent to solve problems, a set of
training data is first given. Here, the agent has a state in an environment and can choose actions
according to its policy, from which a reward is generated to adjust the policy [20]. The key parts
of a reinforcement learning model are the agent with its action space as part of the environment,
the environment itself and its states in a state space, the policy with which the agent acts, the
reward design of immediate feedback, and the value function to calculate long-term feedback
[21].

The agent starts in an environment unknown to it. First, it observes its state in the environ-
ment. With its policy, the agent then chooses an action from the predefined action space to
which it has access to and executes that action. Afterward, a reward or penalty is calculated as
a direct result of the observation of the impact that the action had on the environment. This
reward influences a value function that is the base for the agent’s implicit policy for choosing
actions. Next, the action observes its new state in the environment and the cycle starts again
[19]. This is only broken if an end-state is reached or the training metric converges. This is
defined as the end of an episode, with an episode being one training cycle. Reinforcement
learning is episodic and therefore spans multiple training cycles, and the number of episodes has
to be defined according to the specific use case. Many new RL approaches use neural networks
as their policy due to their strong performance across many learning tasks (e. g., [22]).
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2.4. Related Work

Related work to this work is based on existing solutions for adaptation in the context of POCBR
[14, 12, 13], as well as an approach which combines machine learning and CBR [8]. Additionally,
the usage of GNNs in CBR by Hoffmann and Bergmann [6] is of importance.

Ye et al. [7] propose a solution to combine machine learning techniques with CBR during
the adaptation process by using a neural network that learns the case difference heuristic for
problems and their respective solutions. The case difference heuristic generates adaptation rules
which describe the needed changes in attributes to transform one solution into another [3]. The
used neural network predicts the solution difference and passes it onto the CBR system, which
then applies the difference [7]. This approach has been used for classification and regression
tasks [7, 8], but in contrast to the prior methods it is unsuitable for graph adaptation as there is
no suitable way of computing case differences for semantic graphs.

The combination of machine learning methods, graphs and CBR is shown by Hoffmann
and Bergmann [6], who utilize different Graph Neural Networks (GNNs) to approximate the
similarity of two semantic graphs during the retrieval step. This is done by transforming the
nodes and edges of a graph into embeddings and training a GNN to calculate the similarity of
the graphs. Their approach shows a greatly reduced effort to adapt to changes in the similarity
definition or the domain models [6]. Additionally, it shows the successful application of GNNs
in the CBR cycle, albeit in a different phase. We build upon the ability of these GNNs to compute
embeddings as part of the policy of the RL agent.

3. Adaptation of Semantic Workflows with Reinforcement
Learning

This section introduces our proposed approach that utilizes an RL agent to adapt semantic
workflows. Section 3.1 gives an overview of the agent in the context of the CBR cycle and
explains the different parts of the RL agent. The training setup is described in Sect. 3.2.

3.1. Architectural Overview and Approach

Figure 2 gives an overview of our approach. The starting point to the reuse step of the CBR
cycle [1], where the proposed approach operates in, is the retrieved case in form of a workflow
from the retrieve step. The retrieved case as well as the query case are then given to the RL
agent to perform adaptation. As described in Sect. 2.3, an RL agent consists of three parts: An
action space, a reward function, and an unknown environment, which the agent observes. The
action space consists of different actions denoted in the form of change patterns, which are
outlined in Sect. 2.4. The reward function consists of both an intermediate and a final reward
after each episode. The environment consists of two parts: The retrieved case and the query.
The goal of the adaptation is to modify the retrieved case in such a way that it satisfies the
current problem expressed by the query (similar to [13]). Therefore, the agent adapts the case
graph based on its reward function by applying the actions denoted in the form of change
patterns [18] as introduced in Sect. 2.2.
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Figure 2: The Architecture of the Proposed Approach

Environment

The state of the agent is a single node on the graph to adapt, i. e., the Retrieved Case in the
architecture shown in Fig. 2, starting on the first node of this graph (cf. [23]). After applying
one of the possible actions described previously, the agent continues the traversal of the graph
based on its control-flow. Additionally, the agent can also observe the Query. This is needed
to let the agent adapt the case and, thus, to decide which action to apply based on the reward
design.

Action Space

In this work, we use a subset of the change patterns as the notation of the actions. A change
pattern has one of three operations: add, delete, or replace with one or two operands. The first
operand is always a single node 𝑛 ∈ 𝑁𝑊𝐹 of the nodes of the workflow to adapt. The second
operand is a single node 𝑛′ ∈ 𝑁 with 𝑛′ ̸= 𝑛 or a set of nodes 𝑁 ′ ⊆ 𝑁 ∖ {𝑛} connected by
edges 𝐸, with 𝑁 being the set of all learned nodes. The add action adds one or more nodes
after the given node in the control-flow of the workflow, while the delete action allows the
deletion of a single node. The replace action allows the replacement of a single node with one
or multiple nodes. Note that the sets of nodes (𝑁𝑊𝐹 and 𝑁 ) contain both task nodes and data

action:
replace 

Drill Holes

size: 35mm
quantity: 8

Drill Holes

size: 50mm
quantity: 10

Figure 3: An Action Denoted in the Form of a Change Pattern
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Figure 4: The Workflow From Fig. 1 After the Action From Fig. 3 Is Applied

nodes, so that every data or task node can be added, deleted or replaced by any corresponding
node. Furthermore, we propose the addition of a null action that does not change a node so that
the agent can decide to leave a node untouched. This is needed, as not every node has to be
changed to accomplish the successful adaptation of a workflow.

An action in the form of a replace change pattern is shown in Fig. 3. Figure 4 shows the
workflow from Fig. 1, which is introduced in Sect. 2.1, after the application of the action. As
there exist numerous possible combinations of nodes with their semantic descriptions, the
action space consisting of the nodes themselves would have to be classified as continuous [21].
We propose to learn the actions independently of the operands of the actions, i. e., learning the
application of the change patterns independently of the node(s). This means, the agent has to
select both from the discrete actions and the continuous operands as parameters, as seen in
other approaches [24, 25, 22].

Reward Design

Both intermediate rewards after each step and final rewards after the traversal of the graph are
used to steer the RL agent, similar to the approach proposed by You et al. [23].

The immediate rewards are the sum of domain-specific rewards and rewards based on the
structure of the graph, i. e., whether the graph is a valid, block-oriented workflow [14]. We
differentiate between domain-specific and structure-based rewards to make it possible to adapt
this design to other domains. If the application of the action violates the structure of the graph,
a large penalty is applied; otherwise, a small positive reward is assigned, similar to [23]. If,
for example, a change pattern would add a second end node to the workflow, it would violate
the block-orientation of the workflow and, thus, a large penalty is applied. Domain-specific
rewards include rewards or penalties if domain-specific constraints are fulfilled or violated.

The final rewards also include a combination of domain-specific and domain-independent
rewards. The domain-independent rewards feature the semantic similarity (see Sect. 2.1) between
the query workflow and the case workflow [10]. If the similarity is the same or increases after
adaptation, a positive reward is assigned; otherwise, a negative reward is assigned. As this
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reward is computationally expensive and relies on an external system to calculate the similarity
value, it is not feasible to use this as an immediate reward. Therefore, the reward is calculated
at the end of an episode, i. e., after all actions are applied, and discounted to the prior steps
afterward, similar to Darvariu et al. [26].

3.2. Training Setup

To train the model, reinforcement learning is used in the setup according to the previously
defined guidelines to apply it to semantic workflow graphs and use it in the context of adaptation
in a CBR system (see Fig. 5). As the reinforcement learning training can be sensitive regarding
changes, the agent will start with a supervised pretraining similar to Jang and Kim [27]. For
this, the agent gets pairs of semantic graphs (𝑊,𝑊 ′), where one is adapted from the other, as
well as specific change patterns that were used to adapt them. Afterward, the RL training period
can start. The training data is given in the form of pairs of semantic graphs (𝑊,𝑊 ′) from the
case base. Subsequently, these pairs of graphs are converted into embeddings and transferred
to the agent [6]. Here, they can now be used as input for the training of the agent.

As shown in Fig. 5, the agent requires two graphs as input, one as the query graph and one as
the case graph. The generated sets of graphs are utilized in these roles. Because reinforcement
learning is more efficient with the use of more training data [28], each set of generated graphs
can be utilized for training twice. This is achieved by swapping their assigned roles to act as
both the query graph and the case graph for one training episode. The case workflow acts as
the environment 𝜖 for the agent, with every node 𝑛 being a state 𝑠. During training, the agent
observes the current state of the environment, and with its policy, chooses an action from the
predefined action list. The action space is modeled according to the earlier definition in Sect. 3.1.

After choosing and applying an action, the agent observes the changes in the environment
and is given a reward or penalty based on the effects that the chosen action has (see Sect. 3.1).
Therefore, every step, a large penalty or a small reward is calculated based on the structure of
the graph. Additionally, domain-specific rewards or penalties are also calculated at every step.
We propose to use a learning strategy based on a Deep Q Network (DQN) [29, 30]. This is a
model-free approach that uses the Bellman equation [31] to calculate an estimated discounted

Retrieved
Case Query

reward r 
Environment

ε

action a Agent

Q-value

Policy π(a|s)

Training Application

Retrieved
Case Query

Adapted
Graph

Agent with
Learned Policystate s

Figure 5: Training the Reinforcement Learning Agent
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value (Q-value) for taking an action 𝑎 at state 𝑠 and following the policy 𝜋 afterward. The goal
of Q-learning is to maximize the Q-value by adding a learning factor 𝛼 after getting the reward
or penalty from the action taken [32]. The updates of the Q-function are therefore taken at each
step with the following update rule:

𝑄(𝑠, 𝑎)← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎)]

With it, the old Q-value is updated by calculating the difference between itself and the
discounted new value. To achieve that, a learning rate 𝛼 is implemented to control the impact
that the new Q-value has. Additionally, 𝑚𝑎𝑥𝑎′ adds the maximum future reward from following
the action to the new Q-value. Lastly, the discount rate 𝛾 is used as a way to balance the future
reward [28].

Contrary to policy-based methods that greedily estimate the value of a policy based on the
direct policy improvement, Q-learning cumulatively learns from an unknown environment
over multiple episodes and saves the different values independently [29]. This also makes it an
off-policy method where the policy is never directly altered, but instead implicitly derived from
the Q-function [21], as can be seen in Fig. 5. It is preferred for this application because it is less
sensitive to changes in the environment. Additionally, the approach is also used in other similar
research approaches (e. g., [33]). After the Q-value of the short-term rewards is calculated, the
agent observes the next state, which is always the next node in the graph, due to modifications
only affecting the state at which the agent chose it.

In our context, an episode is defined as the agent having been in every state of the environment,
so every node of the case workflow has been observed. After every episode, a final reward
is calculated as described in Sect. 3.1 and then retrospectively applied to the Q-values of the
previously taken actions. The training ends after a set number of episodes that need to be
determined based on the quantity of the training data. If the number of episodes is too low,
the risk of underfitting occurs where the agent is not trained with enough knowledge of the
domain. Otherwise, if there is a small quantity of training data, but the number of episodes is
very high, overfitting on those training examples is highly possible. It is therefore important
that several training episodes are set in accordance with the training data available. After the
initial training is completed, the agent can be used in the domain. In general, the agent should
be routinely retrained, in case of changes in the domain or the training data.

4. Application Scenario: Adaptation of Smart Manufacturing
Workflows

As a case study, we use a scenario based in the smart manufacturing workflow domain [13] (see
Sect. 4.1 for an introduction) in a CBR system. In Sect. 4.2, we further describe the training of
the RL agent in this domain. In Sect. 4.3, we show an exemplary application of the approach.
Finally, we discuss the applicability to other domains in Sect. 4.4.
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4.1. Smart Manufacturing Domain

One domain of semantic workflows is smart manufacturing [13]. Malburg et al. [13, 34] use
semantic workflows to model manufacturing processes that are executed in a smart factory
from Fischertechnik, which is shown in Fig. 6. The factory consists of two shop floors with six
identical machines that are capable of performing various tasks, e. g., two milling machines (one
on each shop floor) which can mill or drill workpieces. The machines are abbreviated based on
the machine name and the shop floor they are on, i. e., the milling machine on the first shop
floor is named 𝑚𝑚_1, while the second milling machine is named 𝑚𝑚_2. Additionally, the
factory features several light barriers, switches, and sensors (see [34] for a detailed overview).

Figure 6: The Physical Fischertechnik Smart Factory Model [34]

Figure 7 shows an exemplary smart manufacturing workflow in the NEST graph format (see
Sect. 2.1). The workflow describes the transport of a workpiece from the human workstation
(ℎ𝑤_1) to the first milling machine (𝑚𝑚_1), which drills holes into the workpiece, followed
by a transport to the third sink of the sorting machine (𝑠𝑚_1) on the first shop floor. Task
nodes denote the production steps executed by actuators such as production machines in the
physical factory. The semantic descriptors of the task nodes further specify the properties
of each activity, e. g., the concrete parameters of the activity. In the depicted workflow, the
Drill Holes task node is configured by the machine to execute the task, as well as the size and
quantity of the holes to be drilled. Additionally, the state of the task is captured in the semantic
description (COMPLETED, ACTIVE, EXECUTABLE, FAILED or BLOCKED). If a machine in the
physical factory is broken, the task is blocked or failed. Data nodes represent the state of the
workpiece throughout the production process, e. g., the position of the workpiece, or the amount
of drilled holes. Hence, state changes of a workpiece are represented in the context of the
execution of the workflow [13].
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Figure 7: Graph Representation of a Smart Manufacturing Workflow

4.2. Training in the Smart Manufacturing Domain

To use the agent in this domain, it needs to be trained with the relevant information. The
setup for the training follows the described methods in Sect. 3.2. First, the agent has a period
of pretraining with pairs of semantic graphs and the change patterns that have been used to
adapt them. These pairs can be obtained by applying different change patterns to a workflow
and using the resulting outputs. Another possible approach is the usage of existing knowledge,
e. g., by utilizing adaptations done by domain experts. All the parameters for the reinforcement
learning agent are set as described in the training setup. For instance, a pair of graphs (𝑊,𝑊 ′)
is used as training input. 𝑊 is a semantic graph with machine states containing a broken
milling machine 𝑚𝑚_1, and 𝑊 ′ is a second semantic graph that can be adapted from 𝑊 by
replacing task nodes that utilize the broken milling machine (see Fig. 8). The agent starts at the

Drill Holes in mm_1

status: BLOCKED
parameters: {size:

35mm, quantity: 8, res.:
mm_1}

sort in sm_1

status: EXECUTABLE
parameters: {start:
sm_1_lb_1, end:
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sm_1}

...

W W'
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35mm, quantity: 8, res.:
mm_2}

sort in sm_2

status: EXECUTABLE
parameters: {start:
sm_2_lb_1, end:

sm_2_sink_1, res.:
sm_2}

...

Figure 8: Abstracted Pair of Training Graphs

first node, going through the graph 𝑊 one node at a time. Here, the agent chooses to take an
action and is assigned rewards or penalties accordingly, as can be seen in Fig. 9. The change
patterns will be stated in the action space exactly as they are presented in Sect. 3.1. This means
that, at every node, the agent can choose one of four actions. To determine an operand for those
actions that need it, the agent also stores possible existing nodes in the action space to use for
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replacement or additions. Therefore, the action space is defined by the actions 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑛𝑡, 𝑛
′
𝑡),

𝑑𝑒𝑙𝑒𝑡𝑒(𝑛𝑡), 𝑎𝑑𝑑(𝑛𝑡, 𝑛
′
𝑡) and null as operators, as well as all possible nodes 𝑁 as operands, as

outlined in Sect. 3.1. If, for example, the agent is at the second node of 𝑊 it has the possibility
to choose between replace(Drill Holes in mm_1, 𝑛′

𝑡), delete (Drill Holes in mm_1), add(Drill Holes
in mm_1, 𝑛′

𝑡) and null, with 𝑛′
𝑡 having to be chosen from the continuous action space as well.

action:
null

Drill Holes in mm_1 sort in sm_1... Drill Holes in mm_1 sort in sm_1...

Reward: -2

Immediate Reward -2 

Final Reward 0

action:
replace 

Drill Holes in mm_1 sort in sm_1... Drill Holes in mm_2 sort in sm_1...

Reward: +2

Immediate Reward +2

Final Reward 0

Figure 9: Abstracted Training Example

As stated in Sect. 3.1, for the reward design, domain-specific constraints need to be defined so
that the reward is appropriate for the application. Here, for the smart manufacturing domain, a
constraint is defined that only functional machines have to be used. If the agent uses an action
which adds or keeps a broken machine, it is assigned a penalty. To continue the example, at
the node Drill Holes in mm_1, if the agent decides on the null action, it is assigned a penalty
because the domain-specific constraints specify that no broken machines have to be used and
the action is still executed by the broken machine mm_1. Meanwhile, the decision for the
action replace(Drill Holes in mm_1, Drill Holes in mm_2) results in a positive reward because it
complies with the domain-specific constraints and the graph is a block-oriented workflow [14].
The discounted final reward for each step will be retroactively applied after the whole training
episode. In accordance with this, the agent adapts his policy to choose optimal actions. The
training ends after a set number of training episodes. After the training episodes are finished,
the agent is ready to be used in the domain for inference.

4.3. Application in the Smart Manufacturing Domain

To use the agent in an application context, the architecture from Fig. 10 can be used, which
extends the architecture from Fig. 2. The cases consist not only of the workflows themselves,
but additionally feature the states of the machines of the factory described in Sect. 4.1. The
machine states contained in the query, i. e., the machine states at the point of process execution,
are also part of the environment of the agent. This is needed to let the agent decide which
action to apply based on the domain-specific reward design described in the previous section.

According to the training described in Sect. 4.2, the policy of the agent has been trained
with a penalty for choosing any actions that result in the broken machine 𝑚𝑚_1 being utilized
in the workflow. Due to this policy training, the agent switches or deletes the node that this
machine is used in. Since the agent’s policy has been trained with a reward on functionality, it
does not delete the node. Instead, it decides on a node that is considered as similar as possible
to the problem expressed in the query graph. Consequently, the agent finds a node with the
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Adapted Case

QueryRetrieved Case

Reinforcement Agent

Workflow IIMachine
States II

Workflow IMachine
States I

Case Base

Action
Space

Change
Pattern
Actions

Reward
Function

Environment

Machine
States IIWorkflow I Workflow II

Adapted
Workflow

Machine
States II

Figure 10: The Architecture for the Smart Manufacturing Domain

most similar functionality. Therefore, as seen in Fig. 11, at the first two states, it chooses the
actions replace(Human Transport from hw_1 to mm_1, Human Transport from hw_1 to mm_2)
and replace(Drill Holes in mm_1, Drill Holes in mm_2) to get rid of the task node that uses the
broken resource. At state 3, which is the last node of this example, the agent chooses the action
replace(sort in sm_1, sort in sm_2) in accordance with its policy, to keep the semantic logic of
the workflow and adapt the case graph accordingly to the problem given in the query. With
this, the adapted graph is built and introduced back into the CBR framework, where it can then
be reused and stored in the case base.

Human
Transport from 
hw_1 to mm_1

status:
COMPLETED

parameters: {start:
hw_1, end: mm_1,

res.: hw_1}

Drill Holes in
mm_1

status: BLOCKED
parameters: {size:
35mm, quantity: 8,

res.: mm_1}

sort in sm_1

status: EXECUTABLE
parameters: {start:
sm_1_lb_1, end:

sm_1_sink_1, res.:
sm_1}

action:
replace 

Human
Transport from 
hw_1 to mm_2

status:
COMPLETED

parameters: {start:
hw_1, end: mm_2,

res.: hw_1}

Drill Holes in
mm_1

status: BLOCKED
parameters: {size:
35mm, quantity: 8,

res.: mm_1}

sort in sm_1

status: EXECUTABLE
parameters: {start:
sm_1_lb_1, end:

sm_1_sink_1, res.:
sm_1}

s1 s2

action:
replace 

Human
Transport from 
hw_1 to mm_2

status:
COMPLETED

parameters: {start:
hw_1, end: mm_2,

res.: hw_1}

Drill Holes in
mm_2

status:
EXECUTABLE

parameters: {size:
35mm, quantity:
8, res.: mm_2}

sort in sm_1

status: EXECUTABLE
parameters: {start:
sm_1_lb_1, end:

sm_1_sink_1, res.:
sm_1}

s3

Human
Transport from 
hw_1 to mm_2

status:
COMPLETED

parameters: {start:
hw_1, end: mm_2,

res.: hw_1}

Drill Holes in
mm_2

status:
EXECUTABLE

parameters: {size:
35mm, quantity:
8, res.: mm_2}

sort in sm_2

status: EXECUTABLE
parameters: {start:
sm_2_lb_1, end:

sm_2_sink_1, res.:
sm_2}

Adapted Graph

action:
replace 

Figure 11: Abstracted Application Example
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4.4. Applicability to Other Domains

To use this agent in other domains, the training data needs to be generated beforehand (see
Sect. 4.2). The data needs to be properly defined as a set of workflow graphs. Additionally,
some parameters of the setup need to be adapted for domain-specific circumstances. The agent
can be used in a wide variety of domains, but it should be assured that the system can provide
an output consisting of a query and a case graph. If this is not the case, it is important to
change this for the agent before proceeding with the training. The change patterns need to be
reviewed and changed if desired. If, for example, it is preferable to not add any new nodes to
a graph, the according change pattern 𝑎𝑑𝑑(𝑛𝑡, 𝑛

′
𝑡) needs to be deleted from the action space.

Additionally, for the reward design, specific domain constraints need to be defined so that the
reward is appropriate for the application. For example, for cooking recipes, the constraints are
not the usage of broken machines but the usage of undesired ingredients [11]. Consequently, a
domain-specific reward can be applied if a desired ingredient is used during the adaptation. If
there are no constraints in the domain, the domain-specific reward would be omitted in the
reward design. It is crucial to design the reward according to the logic in the domain. A second
part is the generation of training data and training of the agent. Once all the parameters are
set up, it is important to get the needed data for training the model. If it is possible to get
workflow pairs and the domain has both query and case graphs, it is possible to proceed as in
Sect. 3.2. If there is no possibility to get pairs of workflows, the pre-training needs to be omitted.
After setting this up, the agent is ready to be trained and used. Although it is still important
to retrain the agent routinely, retraining is also dependent on the domain. Domains that have
many changes will need retraining more frequently than others.

As the proposed approach is domain-agnostic, it can be applied to other domains, e. g., cooking
recipes [11] or scientific workflows [12]. Section 4 demonstrates how to apply the concepts to
the smart manufacturing domain.

5. Conclusion and Future Work

We present a novel approach which uses a Deep Reinforcement Learning (RL) agent for adapting
semantic workflows. We propose to train the RL agent based on a Deep Q Network, which
chooses actions denoted in the form of change patterns [18] to adapt the workflow by a GNN.
These actions allow the addition, deletion, or replacement of nodes in the given workflow. The
agent can then be used in the context of the CBR cycle to enable the adaptation of the workflows.
Using a case study, we show the usability of this approach in the context of smart manufacturing
workflows and outline needed changes to adapt the proposal to other graph-based domains.

In future work, we intend to implement the RL agent in the ProCAKE framework [35]
and provide technical details of the implementation. Additionally, we aim at experimentally
evaluating this implementation and comparing it to existing approaches in the context of smart
manufacturing workflows (e. g., [13]). During this evaluation, we also want to further examine
the transfer to other domains, such as the cooking recipes [11, 14] or scientific workflows [12].
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