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Abstract
Anomaly detection is a prominent research direction in machine learning and complex network anal-
ysis. In this paper, we target a special type of complex networks, i. e., bipartite multi-layer networks.
Here, we exploit the properties of such a complex network, i. e., the partitioning of the set of nodes
into two groups, and its multi-layer characteristics. Our proposed approach includes many-objective
optimization, correlation analysis and clustering – based on Eigenvector centrality – incorporated into
a novel framework for identifying candidates for anomalous nodes from multiple perspectives, in a
human-centered interpretable way. We exemplify the application of the proposed approach in a case
study using a real-world dataset on socio-spatial interaction data.

1. Introduction

Complex networks lend themselves to the modeling of complex relationships, with many
applications in science and industry. In the world of today, there is a wide range of possible
application areas. Often, e. g., when considering different groups of entities like different types
of actors in a social network, or different types of machines in a technical network, the resulting
network – considering its set of nodes – can be partitioned into distinct groups. In the case of
partitioning the set of nodes into two groups, we can then form a bipartite network. Likewise,
often several relationships between the nodes can be modeled and analyzed, motivating the
joint application of bipartite multi-layer network analysis [1].

In this paper, we tackle such a setting in the context of anomaly detection, for identifying
candidates of anomalous nodes which indicate deviating, interesting or exceptional sets of nodes,
i. e., which can be considered as anomalies in the network concerning their structural properties.
Specifically, our proposed approach combines three methods for anomaly detection providing
separate perspectives for identifying such anomalies in a human-centered way. At their core,
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these are based on the notion of centrality, specifically Eigenvector centrality for anomaly
detection, forming a combined interpretable approach including many-objective optimization,
as well as correlation and cluster analysis. These methods are combined into a methodological
framework, for providing the different perspectives and to enable assessment by also analyzing
potential commonalities and differences pointed to by the incorporated methods, respectively.

We build on our previous works [2, 3] for (1) anomaly detection using multi-objective
optimization, as well as (2) a complementing approach for applying Eigenvector centrality for
anomaly detection in a human-centered approach. In particular, in this paper we integrate these
methods into a novel framework for recognizing and finding anomalous behavior in a complex
network represented as a bipartite multi-layer network, e. g., relating to different relationships
or edge types connecting the respective nodes of the network.

In short, our presented approach starts by making projections of the bipartite network. Then,
from those projections and each layer, we estimate the centrality of all its contained nodes.
Next, we apply many objective optimization to identify the Pareto Front, as a basis for finding
a set of anomalous nodes with minimal centrality. In addition, we apply correlation analysis
on the centrality properties, and can further categorize nodes using clustering into positively
correlated, negatively correlated (i. e., very different) or non-correlated nodes, as complementing
perspectives in assessing anomalous nodes in an interpretable way.

In more detail, our proposed approach consists of the following steps:

1. Given the network represented as a bipartite multi-layer graph, we perform many-
objective optimization based on minimizing eigenvector centrality on bipartite projections
of the multi-layer network. With the minimization, we aim at obtaining the set of the
least important nodes according to eigenvector centrality, as candidates for anomalous
nodes. This provides us with our first perspective for identifying anomalies, given by
the Pareto-Front of the least important nodes according to their (minimized) eigenvector
centrality.

2. Using the vector of centrality values for a node in each layer, we perform correlation
analysis with respect to all other nodes, resulting in a correlation matrix and according
heatmap perspective, respectively, to visually inspect anomalies.

3. Finally, we can apply clustering on the correlation matrix for obtaining clusters of nodes,
as another perspective for detecting (sets of) anomalous nodes.

Overall, this enables the identification of anomaly candidates from multiple perspectives; this
then facilitates a human-centered process for analysis and assessment with a human-in-the-loop.
In particular, by making use of interpretable representations and visualizations, e. g., given by
subnetwork visualizations of anomaly candidates, heatmap visualizations of clusters at the level
of node vectors as well as comprehensive cluster diagrams. Then, this thus further provides for
a transparent process and comprehensible approach.

It is important to note, that our approach tackles the novel problem of anomaly detection
on bipartite multi-layer networks. There exist methods for anomaly detection in bipartite
networks [4, 5], and multi-layer networks [2, 3], however, to the best of the authors’ knowledge,
there is no approach tackling the combined setting of anomaly detection on bipartite multi-layer



networks. Compared to our previous work in [2, 3], we specifically extend on the integration
of the methods on bipartite multi-layer networks, and present a framework which integrates
different methods for anomaly detection, while providing distinctive and complementing per-
spectives for analysis in a human-centered approach. This also facilitiates interpretability and
explainability of the whole approach and its respective results in anomaly detection.

Our contributions are summarized as follows:

1. We present a novel framework incorporating many-objective optimization and centrality-
based analysis for identifying a set of anomalous nodes on bipartite multi-layers networks,
using complementing distinctive perspectives.

2. We exemplify our proposed approach using a case study. Our context is given by a
real-world dataset of socio-spatial interactions [6]. Applying our approach on the dataset,
we illustrate the key steps providing simple to interpret perspectives on the respective
network structures; altogether, this demonstrates the effectiveness of our approach in
this real-world dataset.

The rest of the paper is organized as follows: Section 2 discusses related work. After that,
Section 3 describes our approach in detail. Next, Section 4 presents and discusses our results.
Finally, Section 5 concludes with a summary and outlines several interesting directions for
future research.

2. Related Work and Background

In the following, we briefly introduce basic notation and background on the foundational
concepts of bipartite and multi-layer networks, represented as graphs. After that, we summarize
related work on anomaly detection, also considering methods for bipartite and multi-layer
networks.

2.1. Bipartite and Multi-Layer Complex Networks

Formally, a bipartite Graph 𝐺 is given by a triple 𝐺 = (𝑈, 𝑉,𝐸) with 𝑈 , 𝑉 being sets of
vertices, where 𝑈 ∩ 𝑉 = ∅. Furthermore, for the set of edges 𝐸 it holds that for every edge
𝑒 ∈ 𝐸 : 𝑒 = (𝑢, 𝑣) with 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 or vice versa 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑈 .

For multi-layer (or multiplex) networks, we distinguish a set of layers – modeling sets of
edges corresponding to relations, denoted by 𝐸𝑙 ⊆ 𝐸, 𝑙 ∈ {1...𝑚}, where 𝑚 indicates the
number of layers. A multiplex network 𝐺𝑀 can then be represented formally as follows:
𝐺𝑀 = (𝐺1, 𝐺2, . . . , 𝐺𝑙, . . . , 𝐺𝑚), where 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), 𝑉𝑖 ⊆ 𝑉 . Figure 1 shows an illustration
of a multi-layer network. Here, each network 𝐺𝑙 is represented by the adjacency matrix 𝐴𝑙 with
the elements 𝑎𝑙𝑖𝑗 , for which 𝑎𝑙𝑖𝑗 > 0, if there is a positive weight of the link between the pair of
nodes 𝑣𝑖𝑙 and 𝑣𝑗𝑙, 𝑣𝑖𝑙, 𝑣𝑗𝑙 ∈ 𝐸𝑙 in layer 𝑙, and 𝑎𝑙𝑖𝑗 = 0 otherwise. To simplify the formalization
of weighted multiplex networks, we will consider only taking a positive integer value or zero
with respect to the link between any pair of such nodes 𝑣𝑖𝑙 and 𝑣𝑗𝑙 in layer 𝑙.



Figure 1: Illustration of a multi-layer network consisting of ten nodes, with two types of different
links (see left part of the figure), as indicated by the respective different colors of the edges.

2.2. Anomaly Detection in Complex Networks

Detecting anomalies in (complex) networks data is a prominent research direction, with many
practical applications. A classical definition of an anomaly [7] states it as “an outlier is an
observation that differs so much from other observations as to arouse suspicion that it was
generated by a different mechanism” [7]. Furthermore, for anomalies in complex networks,
the general graph anomaly detection problem can be defined as follows: “Given a [. . . ] graph
database, find the graph objects [. . . ] that are rare and that differ significantly from the majority
of the reference objects in the graph” [8]. However, as we have already discussed in [2, 3, 9] in
real-world networks often more complex phenomena are modeled using richer representations.
For example, if there are multiple relationships between nodes, and/or multiple types of nodes,
then these instantiations are difficult to capture only using simple networks/graphs.

Beyond simple graphs and multi-layer networks, we extend our view on more complex
structures, i. e., towards (multi-layer) bipartite graph representations, as discussed below in
more detail. In particular, our proposed approach builds on our multi-objective-optimization-
based method for anomaly detection in multi-layer networks [2, 3] which we integrate for
obtaining candidates for anomalous nodes – being complemented by additional methods for
anomaly assessment from multiple (multi-layer) perspectives. Regarding bipartite networks,
[4, 10] investigate neighborhood formation and anomaly detection in bipartite networks, for (1)
identifying similar nodes (relevance) and finding anomalous ones based on their neighborhood
structure. They evaluate their algorithm on synthetic data. Furthermore, [5] discuss anomaly
detection on bipartite graphs in a supervised setting, exploring the bipartite structure of the
networks.

We have proposed a method in [3] which employs many-objective optimization based on
minimizing a given centrality measure. As already discussed, we directly integrate this method
in our proposed approach. Next, [11] discuss anomaly detection in multiplex networks via a
cross-layer metric indicating anomalous nodes. Furthermore, [12] focus on anomaly detection
in social networks, while [13] presents a method for anomaly detection on attributed multiplex
networks.



Altogether, in contrast to those approaches discussed above, we provide an unsupervised
exploratory anomaly detection approach, embedded into a human-centered process, focusing
on interpretable representations and visualizations. Furthermore, we focus on the novel special
case of bipartite multi-layer networks, and present a novel combined approach tackling this. In
a case study using a real-world dataset, we also discuss respective implications.

3. Method

Below, we first provide a bird’s eye view on our proposed approach, before we discuss two
of its core components, i. e., network centrality, and the applied method for many-objective
optimization. Due to the limited space, we summarize correlation and 𝑘-means clustering below
and refer to e. g., [14, 15] for details.

3.1. Analytical Framework – A Bird’s Eye View

Below, we outline the individual steps of proposed approach:

1. We start with the bipartite multi-layer network; here, each layer is a bipartite network.
We preprocess the network, constructing according bipartite projections for the individual
layers of the given multi-layer network. That is, for 𝐺 = (𝑈, 𝑉,𝐸) an edge is created
concerning a pair of nodes in 𝑈 (𝑉 , respectively), whenever their intersection 𝐼 of
connected nodes in 𝑉 (𝑈 , respectively), is not empty, for which we then assign |𝐼| as the
new weight of that edge.

2. Given the preprocessed network, we perform many-objective optimization using min-
imization on the eigenvector centrality values applying the method presented in [3].
This means, that we aim to identify the Pareto-Front of the least important nodes in the
network w.r.t. the nodes’ eigenvector centrality.

3. Using the obtained centrality values, we perform correlation analysis on the multi-layer
network for each node: We create a vector for each node consisting of the centrality
values of each layer. That means, for 𝑛 layers, we create a tuple (𝑐1, . . . , 𝑐𝑛) where 𝑐𝑖
denotes the centrality value of layer 𝑖. Using these tuples, we create a correlation matrix
𝑀 between all nodes, denoting the (Pearson) correlation between every pair of nodes,
such that an entry 𝑚𝑖𝑗 in the matrix 𝑀 indicates the correlation between node 𝑖 and
node 𝑗. Using a heatmap, this can then be visually inspected.

4. In addition, we perform 𝑘-means clustering on a set of nodes, e. g., the Pareto Front
given the correlation matrix 𝑀 . Here 𝑘 is selectable by the user, e. g., in an interactive
approach. For 𝑘 = 3, for example, we can aim to cluster according to positively correlated,
negatively correlated (i. e., very different) and non-correlated nodes. From each cluster,
we can then calculate the average of the node centrality values. The cluster with the
lowest average of the node centrality values can then be used as an indicator regarding
the most anomalous set of nodes.
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Figure 2: Overview on the procedural steps of the proposed approach.

With this approach, we can identify anomaly candidates from those given multiple per-
spectives. First, the obtained Pareto-Front can be applied in order to find a group of nodes as
candidates for anomalies – i. e., having the least importance with respect to their centrality,
as we have discussed in [2, 3]. Second, the correlation analysis together with its heatmap
representation provides a summarized view on the multi-layer centralities which is further
condensed using the clustering approach, as the most abstracted representation. In this way,
these perspectives are both complementary as well as providing different levels of abstraction. In
a human-centered-approach – similar to the Information Seeking Mantra by Shneiderman [16] –
the respective operations overview, browse and zoom and details-on-demand are then enabled
by our presented perspectives.

3.2. Centrality-Based Many-Objective Optimization Approach

In network science, there are special methods for finding the most influential nodes [17] in the
network using the notion of the so-called network centrality, which considers, for example,
degree or the connection (structure) to other nodes. In particular, there is Eigenvector centrality,
which considers the number of links from other nodes, their importance, and to how many
these other nodes the respective nodes themselves point to, e. g., [18, 19]. For our proposed
approach, we apply eigenvector centrality, since this precisely corresponds to our intuition for
estimating the notion of connections to important nodes and/or parts of the network, which is
relevant for anomaly detection, as discussed in [2, 3].

In particular, in our proposed approach, we integrate a method which we presented in [2, 3]. In
summary, it estimates the centrality of all nodes on all layers of multi-layer network, followed by
applying many-objective optimization with full enumeration of all layers based on a minimation
problem to find the Pareto Front. That is, we utilize the Pareto Front as a non-dominated solution
generated by many-objective optimization for minimization as a basis to extract a set of anomaly
candidates, i. e., a set of suspected anomalous nodes from the network. For a detailed discussion,
we refer to [2, 3].



4. Case Study: Results and Discussion

Below, we present the results of a case study exemplifying the presented approach in the context
of a real-world socio-spatial dataset capturing human interactions [6]. Before that, we briefly
summarize the applied dataset and its characteristics.

4.1. Applied Dataset: Interactions, Preferences and Perceptions

For demonstrating our approach, we provide a case study using a real-world dataset of bipartite
network data. For details on the dataset, we refer to [6]. Essentially, the dataset is given by
a set of bipartite networks which form a multiplex network, capturing interactions as well
as preferences and perception of students attending a student career day; here, face-to-face
proximity contacts between participants and companies were estimated between stationary
sensors (denoting companies) and a wearable sensors worn by the participants with different
signal strength thresholds, resulting in three different interaction networks. Furthermore,
participants indicated preferences with respect to companies, as well as their perception which
company they had really visited.

In total, for 59 participants as well as for 26 companies information is modeled. Specifically,
the applied dataset [6] contains the following networks, as described in [6] in detail:

1. Socio-spatial interaction networks, taking the proximity contacts and a threshold on
the received signal strength indicator (RSSI), selecting the contacts (as edges) that are
stronger than the applied threshold. As individual thresholds, values of RSSI={-90, -93,
-95} dBm, relating to stronger to weaker contacts were applied, resulting in the according
networks. For a more detailed discussion we refer to [6].

2. A preference network [6]: An edge is created between participant 𝑝 and company 𝑐
whenever 𝑝 selected 𝑐 as a preference.

3. A perception network [6]: Here, an edge is created between participant 𝑝 and company 𝑐
whenever 𝑝 perceived having visited 𝑐.

4.2. Case Study: Anomaly Detection in Socio-Spatial Interactions

In the following, we apply our approach and its proposed methods for identifying a set of
anomalous nodes on the applied bipartite multi-layer network. Since the bipartite network
consists of nodes in the participant as well as the company group, we first apply respective
bipartite projections of the respective bipartite networks to those groups, respectively their
nodes. The applied bipartite network data consists of five single networks, i. e., on the applied
90, 93, and 95 RSSI thresholds, as well as the perception and preference networks (corresponding
to the layers 𝐹1, . . . 𝐹5 in the tables below). After performing the projections, we merge the
single networks into a multi-layer network. With this, we thus overall obtain two multi-layer
networks, focusing on the student or the company view. With this, each multi layer network
consists of the described 5 layers. In a next step, we estimate the centrality for all nodes in all
layers and applying many-objective optimization through minimization. Via many-objective
optimization (as our first perspective), for the student multi-layer network (59 nodes), we found
18 nodes contained in the Pareto Front as shown in Table 1; from the multi-layer company
network (26 nodes), we found 6 nodes contained in the Pareto Front, as shown in Table 2.



Table 1
Pareto Front Perspective – Many Objective Centrality Optimization on the Student Multiplex Network
(nodes are marked in green color). F1 is a node centrality in layer1, F2 is a node centrality in layer2,
and so forth.

No F1 F2 F3 F4 F5 Label .level
1 0.058435 0.082584 0.336664 0.203168 0.073908 NS1 1
2 0.020032 0.008565 0.071518 0.23928 0.092498 NS11 1
3 0.00834 0.043568 0.021147 0.005369 0.204478 NS14 1
4 0.088539 0.022391 0.043383 0.227554 0.105786 NS16 1
5 0.033832 0.045463 0.044365 0.553628 0.042536 NS18 1
6 0.422805 0.008565 0.029438 0.175686 0.346587 NS19 1
7 0.108552 0.819903 0.164407 0.106101 0.050329 NS22 1
8 0.747846 0.053819 0.018351 0.635604 0.163782 NS25 1
9 0.220744 0.497118 0.153658 0.030283 0.159244 NS27 1
10 0.965811 0.333172 0.428143 0.50591 0.042415 NS28 1
11 0.179811 0.336341 0.334383 0.18536 0.111162 NS33 1
12 NA 0.711633 0.187118 0.040174 0.347735 NS57 1
13 NA 0.239367 0.991194 0.396993 0.315568 NS58 1
14 NA 0.552809 0.337983 0.542295 0.131849 NS59 1
15 NA 0.079951 0.437543 0.461424 0.175005 NS6 1
16 NA 0.017427 0.241566 0.333288 0.442596 NS7 1
17 NA 0.508283 0.015032 0.454032 0.074468 NS8 1
18 NA NA 0.360343 0.720698 0.221801 NS9 1
19 0.239912 0.276464 0.23333 0.299679 0.393432 NS10 2
20 0.152972 0.054808 0.211162 0.409675 0.18891 NS24 2
21 0.286974 0.151257 0.093821 0.947345 0.152569 NS26 2

Table 2
Pareto Front Perspective – Many Objective Centrality Optimization on the Company Multiplex Network
(nodes are marked in green color).

No F1 F2 F3 F4 F5 Label .level
1 0.4482975 0.1905443 0.4089364 0.3641929 0.5381588 NC1 1
2 0.6246017 0.4006532 0.2552298 0.3146327 0.5828198 NC14 1
3 0.159209 0.2224548 0.3331644 0.0195039 0.0072467 NC17 1
4 0.0625617 0.1134566 0.2490524 0.3322918 0.6890849 NC22 1
5 0.1044334 0.1031209 0.080126 0.3188913 0.6595348 NC24 1
6 0.0728712 0.0871649 0.0726725 0.4365817 0.642153 NC26 1
7 0.4553215 0.4814703 0.3724962 0.293394 0.5510949 NC12 2
8 0.6744349 0.4325141 0.382043 0.2237861 0.5357821 NC18 2
9 0.1151643 0.1267584 0.1394879 0.5209188 0.6889977 NC3 2
10 0.1979351 0.2372188 0.4171418 0.2635447 0.5853475 NC5 2
11 0.1653118 0.2630649 0.1768858 0.5340186 0.654309 NC8 2
12 0.6250001 0.679367 1 0.5199702 0.5782924 NC13 3
13 0.668332 0.5616736 0.5084357 0.4447854 0.7714854 NC19 3
14 0.7034202 1 0.8774036 0.5149992 0.5609705 NC2 3
15 0.4214642 0.4096859 0.4808022 0.5928846 0.7992488 NC21 3
16 0.2192858 0.4292074 0.7068541 0.854632 1 NC25 3
17 0.5923108 0.524016 0.4940392 1 0.6630276 N4 3
18 0.371011 0.6057899 0.9353183 0.2984418 0.7740636 NC10 3
19 0.2124341 0.4775924 0.7428361 0.4999265 0.6660691 NC23 3
20 0.4065302 0.3365142 0.216268 0.7253887 0.7394951 NC6 3
21 0.5491494 0.5007099 0.5251708 0.6648729 0.615604 NC9 3
22 0.6537326 0.7977356 0.6635758 0.8285424 0.9111193 NC11 4
23 0.5164128 0.7350974 0.8935396 0.5111472 0.6999271 NC16 4
24 0.5454632 0.6279124 0.7710405 0.6988572 0.7537753 NC20 4
25 1 0.9845064 0.9193236 0.8309337 0.8904896 NC15 5
26 0.6932629 0.9393032 0.8035952 0.8669217 0.9324355 NC7 5

Using the set of nodes in the Pareto Front as a candidate basis of anomalous nodes, we can
apply correlation analysis as a complementing perspective (visualized as a heatmap) in order
to understand the correlation and the proximity of each node compared to all other nodes in
the Pareto Front better in the context of node centrality. For this, we compute the Pearson
correlation values as described above. In Figure 3 we show the resulting heatmaps. The cluster
perspectives are shown in Figure 4 given the respective Pareto fronts and visualization the
according dimensions as discussed above.



Figure 3: Correlation matrix / heatmap perspective regarding Student relations (left) as well as Com-
pany relations (right).

Figure 4: Cluster perspectives: Pareto front of the Student multi-layer network (left) as well as the
company multi-layer network (right). Dim1 indicates the dimension of being positively correlated and
Dim2 indicates the dimension being negatively correlated

As shown in Figure 3, for the correlation analysis in the student multi-layer network, we
observe that the node of student 1 (NS1) is highly correlated regarding centrality (i. e., with
very similar role of centrality) compared to the nodes NS58, NS6 and NS59 that are depicted in
dark blue color; on the contrary, node NS1 is conflicting (i. e., with a different role of centrality)
compared to nodes NS19, NS27, NS25, and NS57. Also, it is visible that NS1 has a considerable
“conflict” with node NS14 (depicted in darker red color). Likewise, for the correlation analysis in
the company multi-layer network, we can identify some distinctive results, regarding the set of
nodes in the Pareto Front. In Figure 3, for example, we observe that the node of company 1 (NC1)



is highly correlated with nodes NC14, NC22, NC24 and NC26; however, here we also observe
that node NC1 is conflicting with NC17. For grouping the nodes according to their correlation,
we utilize 𝑘-means clustering for further assessing interesting nodes (in the Pareto Front and/or
as indicated by correlation analysis). Then, from the formed clusters, we continue by calculating
the average of the centrality for each cluster and compare these centrality averages to all other
clusters in order to estimate the lowest average centrality. This lowest average centrality of a
cluster can then be applied in categorizing clusters of anomalous nodes in the network.

In our case, considering the nodes in the respective Pareto Fronts, for the student
multi-layer network we obtained 18 nodes, consisting of 3 clusters, for which 𝐶1 =
{NS1 ,NS6 ,NS7 ,NS9 ,NS11 ,NS16 ,NS18𝑎𝑛𝑑NS58}, 𝐶2 = {NS14 ,NS19 ,NS25 ,NS26}
and 𝐶3 = {NS8 ,NS22 ,NS27 ,NS33 ,NS58 ,NS59}. From those clusters, we ob-
serve that cluster 𝐶3 has the lowest average centrality, and therefore the nodes
NS8 ,NS22 ,NS27 ,NS33 ,NS58 ,NS59 can be categorized as anomalous node candidates for
the student network. Likewise, from the company multi-layer network, we obtain 3 clusters,
𝐶1 = {NC17}, 𝐶2 = NC14}, and 𝐶3 = {NC1 ,NC22 ,NC24 ,NC26}, where the lowest
average centrality is found at cluster 𝐶1.

5. Conclusions

In this paper, we proposed an approach for anomaly detection on bipartite multi-layer networks.
We exemplified the approach in the context of socio-spatial interactions using a real-world
dataset of human interactions. Specifically, our proposed approach integrates many-objective
optimization, correlation analysis, as well as clustering for obtaining different yet complementing
perspectives for anomaly detection in a human-centered way. This is facilitated, in particular, by
the transparent and interpretable representations and visualizations, as we have also exemplified
in our case study. For future work, we intend to extend the analysis by incorporating further
methods and metrics investigating further real-world phenomena about potential anomalies [20],
e. g., also including profiling [21] as well as exceptional subgraph mining techniques [22]. In
addition, we aim to extend the analysis by incorporating attributed network information into
the detection algorithms, e. g., [23, 24].
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