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Abstract
The evaluation of Information Retrieval (IR) relies on human-made relevance assessments whose col-
lection is time-consuming and expensive. To alleviate this limitation, Query Performance Prediction
(QPP) models have been developed to estimate system performance without relying on human-made
relevance judgements. QPP models have been applied to traditional IR methods with varying success.
The shift towards semantic signals thanks to Neural IR (NIR) models has changed the retrieval paradigm.
In this study, we investigate the ability of current QPP models to predict the performance of NIR systems.
We evaluate seven traditional IR systems and seven NIR (BERT-based) approaches, as well as nineteen
QPPs, on two collections: Deep Learning ’19 and Robust ’04. Our results highlight that QPPs perform
significantly worse on NIR systems. When semantic signals are prevalent, such as in passage retrieval,
their performance on neural models decreases by up to 10% compared to bag-of-words approaches.

1. Introduction

The advent of Neural IR (NIR) and Pre-trained Language Models (PLM) induced considerable
changes in several central Information Retrieval (IR) research and application areas, with
implications that are yet to be fully tamed by the research community. Query Performance
Prediction (QPP) is defined as the prediction of the performance of an IR system without human-
crafted relevance judgements and is one of the areas the most interested by advancements in
NIR and PLM domains. In fact, i) PLM can help developing better QPP models, and ii) it is not
fully clear yet whether current QPP techniques can be successfully applied to NIR. With this
paper, we aim to explore the connection between PLM-based first-stage retrieval techniques and
the available QPP models. We are interested in investigating to what extent QPP techniques can
be applied to such IR systems, given i) their fundamentally different underpinnings compared
to traditional lexical IR approaches, ii) that they hold the promise to replace – or complement –
them in multi-stage ranking pipelines. In return, QPP advantages are multi-fold: it can be used
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to select the best-performing system for a given query, help users in reformulating their needs,
or identify pathological queries that require manual intervention from the system administrators.
Said otherwise, the need for QPP still holds for NIR methods. Among the plethora of available
QPP methods, most of them rely on lexical aspects of the query and the collection. Such
approaches have been devised, tested, and evaluated in predicting the performance of lexical
bag-of-words IR systems – from now on referred to as Traditional IR (TIR) – with various
degrees of success. Recent advances in Natural Language Processing (NLP) led to the advent
of PLM-based IR systems, which shifted the retrieval paradigm from traditional approaches
based on lexical matching to exploiting contextualized semantic signals – thus alleviating the
semantic gap problem. To ease the readability throughout the rest of the manuscript, with an
abuse of notation, we use the more general term NIR to explicitly refer to first-stage IR systems
based on BERT [2]. At the current time, no large-scale work has been devoted to assessing
whether traditional QPP models can be used for NIR systems [3]. To address such a gap, we
compare the performance of nineteen QPP methods applied to seven traditional TIR systems,
with those achieved on seven state-of-the-art first-stage NIR approaches based on PLM. We
consider both pre- and post-retrieval QPPs, and include in our analyses post-retrieval QPP
models that exploit lexical or semantic signals to compute their predictions. To instantiate
our analyses on different scenarios we consider two widely adopted experimental collections:
Robust ‘04 and Deep Learning ‘19. As contributions:

• we apply and evaluate several state-of-the-art QPP approaches to multiple NIR retrievers
based on BERT, on Robust ‘04 and Deep Learning ‘19;

• we show that currently available QPPs perform reasonably well when applied to TIR
systems, while they fail to properly predict the performance for NIR systems, even on
NIR oriented collections;

• we highlight how such a decrease in QPP performance is particularly prominent on
queries where TIR and NIR performances differ the most.

The remainder of this paper is organized as follows: Section 2 outlines the main related
endeavours. Section 3 details our methodology and experimental setting. Empirical results are
reported in Section 4. Section 5 draws the conclusions.

2. Related Work

Large PLMs like BERT [2] have given birth to a new generation of NIR systems. Indeed,
dense representations based on contextualized embeddings, combined with approximate near-
est neighbors algorithms, have proven to be effective and efficient first-stage retrieval ap-
proaches [4, 5, 6, 7, 8, 9]. In the meantime, another research branch brought lexical models by
learning contextualized term weights [10, 11, 12, 13], query or document expansion [14], or
both mechanisms jointly [15, 16]. This new wave of NIR systems demonstrate state-of-the-art
results on several datasets [17, 18, 19].

A well-known problem linked to IR evaluation is the variation in performance achieved by
different IR systems, even on a single query [20, 21]. To account for it, a large body of work



has focused on predicting the performance that a system would achieve for a given query,
using QPP models. Such models are typically divided into pre- and post-retrieval predictors.
Traditional pre-retrieval QPPs leverage statistics on the query terms occurrences [22]. For
example, SCQ [23], VAR [23] and IDF [24, 25] combine query tokens’ occurrence indicators,
such as Collection Frequency (CF) and Inverse Document Frequency (IDF), to compute their
performance prediction score. Post-retrieval QPPs exploit the results of IR models for the given
query [20]. Among them, Clarity [26] compares the language model of the first 𝑘 retrieved
documents with the one of the entire corpus. NQC [27], WIG [28] and SMV [29] exploit the
retrieval scores distribution for the top-ranked documents to compute their predictive score.
Finally, Utility Estimation Framework (UEF) [30] serves as a general framework that can be
instantiated with many of the mentioned predictors, pre-retrieval ones included. We further
divide QPP models into traditional and neural approaches. Among neural predictors, one of the
first approaches is NeuralQPP [31] which computes its predictions by combining semantic and
lexical signals using a feed-forward neural network. A similar approach for Question Answering
is NQA-QPP [32], which also relies on three neural components but, unlike NeuralQPP, exploits
BERT [2] to embed tokens semantics. Similarly, BERT-QPP [33] encodes semantics via BERT,
but directly fine-tunes it to predict query performance based on the first retrieved document.
Only a little work has been done to apply traditional QPP on NIR models [32, 34]. Similarly,
neural QPP methods – which model the semantic interactions between query and document
terms – have been mostly designed for and evaluated on TIR models. Hence, there is an urgent
need to deepen the evaluation of QPP on state-of-the-art NIR models to understand where we
are, what are the challenges, and which directions are more promising.

3. Experimental Methodology and Setup

To assess the effect induced by NIR systems on QPP performance, we employ the following
ANalysis Of VAriance (ANOVA) models, using sARE [35, 36] as a performance measure. The
first model, dubbed MD1, aims at explaining the sARE performance given the predictor, the
type of IR model and the collection. Therefore, we define it as follows:

𝑠𝐴𝑅𝐸𝑖𝑗𝑝𝑞𝑟 = 𝜇+ 𝜋𝑝 + 𝜂𝑖 + 𝜒𝑗 + (𝜂𝜒)𝑖𝑗 + 𝜖𝑖𝑗𝑝𝑞𝑟, (MD1)

where 𝜇 is the grand mean, 𝜋𝑝 is the effect of the 𝑝-th predictor, 𝜂𝑖 represents the type of IR
model (either TIR or NIR), 𝜒𝑗 stands for the effect of the 𝑗-th collection on QPP’s performance,
and (𝜂𝜒)𝑖𝑗 describes how much the type of run and the collection interact and 𝜖 is the associated
error. Secondly, since we are interested in determining the effect of different predictors in
interaction with each query, we define a second model, dubbed MD2, that also includes the
interaction factor and is formulated as follows:

𝑠𝐴𝑅𝐸𝑖𝑝𝑞𝑟 = 𝜇+ 𝜋𝑝 + 𝜏𝑞 + 𝜂𝑖 + (𝜋𝜏)𝑞𝑝 + (𝜋𝜂)𝑝𝑖 + (𝜏𝜂)𝑖𝑞 + 𝜖𝑖𝑝𝑞𝑟, (MD2)

Differently from MD1, we apply MD2 to each collection separately. Therefore, having a single
collection, we replace the effect of the collection with 𝜏𝑞 , the effect for the 𝑞-th topic. Furthermore,
the model includes also all the first-order interactions. The Strength of Association (SOA) [37]



is assessed using 𝜔2. As a rule-of-thumb, 𝜔2 < 6% indicates a small SOA, 6% ≤ 𝜔2 < 14% is a
medium-sized effect, while 𝜔2 ≥ 14% represent a large-sized effect.

Our analyses focus on Robust ‘04 [38], and TREC Deep Learning 2019 Track (Deep Learning
‘19) [39] collections. The collections have respectively 249 and 43 topics each and are based
on TIPSTER and MS MARCO passages corpora. Robust ‘04 is one of the most used collections
to test lexical approaches, while providing a reliable benchmark for NIR models [40].Deep
Learning ‘19 concerns passage retrieval from natural questions making the retrieval harder for
TIR approaches, while NIR systems tend to have an edge in retrieving relevant documents.

As reference points, we consider seven TIR methods: Language Model with Dirichlet (LMD) and
Jelinek–Mercer (LMJM) smoothing [41], BM25, vector space model [42] (TFIDF), InExpB2 [43]
(InEB2), Axiomatic F1-EXP [44] (AxF1e), and Divergence From Independence (DFI) [45]. For
the NIR methods, we focus on BERT-based first-stage models. We consider state-of-the-art
models from the three main families of NIR models. We consider dense models, i) a “standard”
bi-encoder (bi) trained with negative log-likelihood, ii) TAS-B [7] (bi-tasb) whose training
relies on topic-sampling and knowledge distillation iii) and finally CoCondenser [8] (bi-cc)
and Contriever [9] (bi-ct) which are based on contrastive pre-training. We also consider
two models from the sparse family: SPLADE [15] (sp) with default training strategy, and its
improved version SPLADE++ [46, 16] (sp++) based on distillation, hard-negative mining and
pre-training. We finally consider the late-interaction ColBERTv2 [19] (colb2). Models are
fine-tuned on the MS MARCO passage dataset and applied in a zero-shot manner on Robust
‘04 [18, 19].We focus our analyses on Normalized Discounted Cumulated Gain (nDCG) with
cutoff 10, as it is employed across NIR benchmarks consistently.

Concerning QPP models, we consider 9 pre-retrieval models: Simplified query Clarity Score
(SCS) [47], Similarity Collection-Query (SCQ) [23], VAR [23], IDF and Inverse Collection Term
Frequency (ICTF) [24, 25]. For SCS, we use the sum aggregation, while for others we use max
and mean, which empirically produce the best results. In terms of post-retrieval QPP models,
our experiments are based on Clarity [26], Normalized Query Commitment (NQC) [27], Score
Magnitude and Variance (SMV) [29], Weighted Information Gain (WIG) [28] and their UEF [30]
counterparts. Among post-retrieval predictors, we also include a supervised approach, BERT-
QPP [33], using both bi-encoder (bi) and cross-encoder (ce) formulations. We train BERT-QPP1

for each IR system on the MS MARCO training set, as proposed in [33]. Similarly to what is
done for NIR models, we apply BERT-QPP models on Robust ‘04 queries in a zero-shot manner.

4. Experimental Results

Figures 1a and 1b refer, respectively, to Robust ‘04 and Deep Learning ‘19 collections and report
the Pearson’s 𝑟 correlation between prediction scores and nDCG@10, for both TIR and NIR
runs. For Robust ‘04, we notice that pre-retrieval (top) predictors (mean correlation: 15.9%)
tend to perform 52.3% worse than post-retrieval ones (bottom) (mean correlation: 30.2%). The
phenomenon is more evident (darker colors) for NIR runs (right) than TIR ones (left). Pre-
retrieval predictors fail in predicting the performance of NIR systems (mean correlation 6.2% vs
25.6% for TIR), while in general we notice that post-retrieval predictors tend to perform similarly

1We use the implementation provided at https://github.com/Narabzad/BERTQPP
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Figure 1: Pearson’s 𝑟 correlation observed for different pre (top) and post (bottom) retrieval predictors
on lexical (left) and neural (right) runs. To avoid cluttering, we report the results for the 3 main TIR
models, other models achieve highly similar results.

on TIR and NIR (34.5% vs 32.3%) – with some exceptions. For instance, for bi, post-retrieval
predictors either perform extremely well or completely fail. This happens particularly on Clarity,
NQC, and their UEF counterparts. Note that bi is the worst performing approach on Robust
‘04, with 23% of nDCG@10 – the second worst is bi-cc which achieves 30% nDCG@10.

The patterns observed for Robust ‘04 hold only partially on Deep Learning ‘19. For example,
we notice again that pre-retrieval predictors (mean correlation: 14.7%) perform 58.3% worse than
post-retrieval ones (mean correlation: 35.3%). On the contrary, the difference in performance is
far more evident between NIR and TIR. On TIR runs, almost all predictors perform particularly
well (mean correlation: 38.1%) – even better than on Robust ‘04 collection. Conversely, on NIR
the performance is overall lower (13.1%) and relatively more uniform between pre- (5.4%) and
post-retrieval (19.9%) models. The maximum correlation achieved by pre-retrieval predictors
for NIR on Deep Learning ‘19 is much higher than the one achieved on Robust ‘04, especially
for bi-ct, sp, and bi-tasb runs. On the other hand, post-retrieval predictors, perform worse
than on the Robust ‘04. The only exception to this pattern is again represented by bi, on
which some post-retrieval predictors, namely WIG, UEFWIG, and UEFClarity work surprisingly
well. Interestingly, on Robust ‘04, post-retrieval QPPs achieve, on average, top performance
on the late interaction model (colb2), followed by sparse approaches (sp and sp++). Finally,
dense approaches are those where QPP perform the worst. In this sense, the performance that
QPP methods achieve on NIR systems seems to correlate with the importance these systems
give to lexical signals. BERT-QPP shows a trend similar to other post-retrieval predictors
on Deep Learning ‘19 (42.3% mean correlation against 52.9% respectively) for what concerns
TIR, with performance in line with the one reported in [33]. This is exactly the setting where
BERT-QPP has been devised and tested. If we focus on Deep Learning ‘19 and NIR systems, its
performance (mean correlation: 4.5%) is far lower than those of other post-retrieval predictors
(mean correlation without BERT-QPP: 23.8%). Finally, its performance on Robust ‘04 – applied
in zero-shot – is considerably lower compared to other post-retrieval approaches.To further
statistically quantify the phenomena observed in the previous subsection, we apply MD1 to our
data, considering both collections at once. From a quantitative standpoint, we notice that all the
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Figure 2: Comparison between the mean sARE (sMARE) achieved over TIR or NIR on different corpora.

Table 1
p-values and 𝜔2 SOA using MD2 on each collection

Deep Learning ‘19 Robust ‘04
p-value 𝜔2 p-value 𝜔2

topic < 10−4 22.5% < 10−4 24.0%
qpp < 10−4 1.65% < 10−4 2.21%

run type < 10−4 4.35% < 10−4 0.11%
topic*qpp < 10−4 22.7% < 10−4 17.2%

topic*run type < 10−4 15.2% < 10−4 10.0%
qpp*run type 0.0012 0.23% < 10−4 0.30%

factors included in the model are statistically significant (p-value < 10−4). In terms of SOA,
the collection factor has a small effect (0.02%). The run type, on the other hand, impacts for
𝜔2 = 0.48%. Finally, the interaction between the collection and run type, although statistically
significant, has a small impact on the performance (𝜔2 = 0.05%): in both collections QPPs
perform better on TIR models. All factors are significant but have small-size effects. This is in
contrast with what was observed for the performance of IR systems [48, 21], where most of
the SOA range between medium to large. Nevertheless, it is in line with what was observed by
Faggioli et al. [35] for the performance QPP methods, who showed that all the factors besides
the topic are small to medium.

We are now interested in breaking down the performance of the predictors according to the
collection and type of run. Figure 2 reports the average performance (measured with sMARE,
the lower the better) for QPPs applied on NIR or TIR runs over different collections. The
performance achieved by predictors on NIR models is on average worse than the one achieved
on TIR runs. QPP models perform better on TIR than NIR on both collections: this explains the
small interaction effect between collections and run types. There is no statistical difference
between the performance achieved by QPPs applied to TIR models when considering Deep
Learning ‘19 and Robust ‘04– the confidence intervals are overlapping. This goes in contrast
with what happens when considering NIR models: QPPs approaches applied on Deep Learning
‘19 perform by far worse than on the former Robust ‘04. While on average we will be less
satisfied by QPP predictors applied to NIR regardless of the type of collection, there might be
good performing predictors also for NIR systems. To verify this hypothesis, we apply MD2 to
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Figure 3: sMARE observed for different predictors on Deep Learning ‘19 (left) and Robust ‘04 (right).

each collection separately, and measure what happens to each predictor individually2. Table 1
reports the p-values and 𝜔2 SOA for the factors included in MD2, while Figure 3 depicts the
phenomena visually. We observe that concerning Deep Learning ‘19, the run type (TIR or NIR)
is significant, while the interaction between the predictor and the run type is small: indeed
predictors always perform better on TIR runs than on NIR ones. The only model that behaves
slightly differently is Clarity, with close performance for both classes of runs – this can be
explained by the fact that Clarity is overall the worst-performing predictor. Notice that, the
best predictor on TIR runs – NQC – performs almost 10% worse on NIR ones. Finally, we notice
a large-size interaction between topics and QPP models. This indicates that whether a model
will be better than another depends on the topic considered. An almost identical pattern was
observed also in [35]. Therefore, to improve QPP’s generalizability, it is important to address
challenges caused by differences in NIR and TIR as well as to take account of the large variance
introduced by topics.

If we consider Robust ‘04, figure 3 shows that predictors performances are much more similar
for TIR and NIR runs compared to Deep Learning ‘19. This is further highlighted by the far
smaller 𝜔2 for run type on Robust ‘04 in Table 1 – 4.35% against 0.11%. The widely different
pattern between Deep Learning ‘19 and Robust ‘04 suggests that current QPPs are doomed
to fail when used to predict the performance of IR approaches that learned the semantics of
a collection – which is the case for Deep Learning ‘19 that was used to fine-tune the models.
Current QPPs evaluate better IR approaches that rely on lexical clues. Such approaches include
both TIR models and NIR models applied in a zero-shot fashion, as it is the case for Robust ‘04.
Thus, QPP models are expected to fail where NIR models behave differently from the TIR ones.
This poses at stake one of the major opportunities provided by QPP: if we fail in predicting the
performance of NIR models where they behave differently from TIR ones, then a QPP cannot
be safely used to carry out model selection. To further investigate this we select from Robust
‘04 25% of the queries that are mostly “semantically defined” and rerun MD2 on the new set of
topics. We call “semantically defined” those queries where NIR behave, on average, oppositely
w.r.t. the TIR, either failing or succeeding at retrieving documents.

Figure 4a shows the performance of topics that maximize the difference between TIR and
NIR and can be considered as more “semantically defined” [49]. If we consider the results of

2We focus on post-retrieval predictors – similar observations hold for pre-retrieval ones.
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Figure 4: left: topics selected to maximize the difference between lexical and neural models; right:
results of MD2 applied on Robust ‘04 considering only the selected topics.

applying MD2 on this set of topics, we notice that compared to Robust ‘04 (Table 1, last column)
the effect of the different QPPs increases to 2.29%: on these topics, there is more difference
between different predictors. The interaction between predictors and run types grows from
0.30% to 0.91%. Furthermore, the effect of the run type grows from 0.11% to 0.67% – 6 times
bigger. On the selected topics, arguably those where a QPP is the most useful to help select the
right model, using NIR systems has a negative impact (6 times bigger) on the performance of
QPPs. Figure 4b, compared to Figure 3b, is more similar to Figure 3a – using only topics that
are highly semantically defined, we get similar patterns as those observed for Deep Learning
‘19 on Figure 3a. The only methods that behave differently are BERT-QPP approaches, whose
performance is better on NIR runs than on TIR ones, but are the worst approaches in terms of
predictive capabilities for both run types. In this sense, even though the contribution of the
semantic signals appears to highly important to define new models with improved performance
in the NIR setting, it does not suffice to compensate for current QPPs limitations.

5. Conclusion and Future Work

This study examined the applicability of current QPPs on first-stage NIR models based on PLMs.
The study evaluated 19 diverse QPP models on seven TIR and seven first-stage NIR methods
based on BERT, applied to the Robust ‘04 and Deep Learning ‘19 collections. We observe that
indeed QPPs are effective in predicting TIR systems’ performance but fail in dealing with NIR
ones. Moreover, the study found that QPPs tend to fail on those topics where NIR and TIR
models differ the most, which impairs the possibility of using QPP models to choose between
NIR and TIR approaches where it is most needed. Furthermore, semantic QPP approaches such
as BERT-QPP do not solve the problem and work properly only on lexical IR systems. These
results highlight the need for QPPs specifically tailored to neural IR.

Future work will consider query variations to understand the impact of changing how a topic
is formulated on QPP, and the development of QPP methods explicitly designed for NIR models
that take into consideration the large variance introduced by topics.
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