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Abstract
Explainable AI (XAI, for short) aims to explain the behavior of closed AI systems that act as black-boxes
(like many Machine Learning and Deep Learning systems). In this paper, we propose NT4XAI, a model-
agnostic framework carrying out explainable AI on classifiers. NT4XAI is based on network theory
and, consequently, is able to take advantage of the enormous amount of results found over the years
by researchers in this area. Here, we describe both the data model and the approach used by NT4XAI
to achieve its goals. Furthermore, we contextualize our framework within the existing XAI research
scenarios. Finally, we illustrate some tests we carried out to assess its adequacy in performing the tasks
for which it was designed.
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1. Introduction

Explainable AI (XAI, for short) aims to identify transparent and interpretable explanations to the
decisions and actions of black-box AI systems [1, 2, 3, 4, 5]. It aims to know, at least partially, how
a black-box AI model acts and to use that information for improving its performance, increasing
confidence in it, as well as the level of acceptance of the knowledge it returns [6, 7]. With
the pervasive diffusion of Deep Learning (DL, for short), the number of black-box models has
grown tremendously and, in hand, interest in XAI has increased. One of the most challenging
issues in XAI concerns the study and development of “model-agnostic” XAI approaches. These
are capable of interpreting and explaining the decisions of any black-box system, regardless of
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the model on which it is based. Therefore, they are extremely general, and investing in them
provides a considerable return since they can be applied to explain very varied AI models. The
downside is that these systems are very difficult to design because they must feature a high
abstraction level with respect to the black-box models they want to explain.

In this paper, we aim to make a contribution in this setting by proposing NT4XAI (Network
Theory for Explainable AI), a model-agnostic framework for explainability of classifiers. NT4XAI
operates on a classifier model whose behavior is unknown. The classifier receives as input a
set of instances, all characterized by the same set of features, and assigns a class to each of
them. As its name indicates, NT4XAI is based on network theory [8]; in fact, it builds and
maintains a fully connected network. In it, nodes represent instances, while the direction of
the arc between two nodes is an indicator of the confidence level with which the classifier has
classified the corresponding instances. Once the network is constructed, NT4XAI computes
the “dyscrasia” of each feature for all instances. This measure indicates the effectiveness of a
feature in discriminating instances. Starting from the values of dyscrasia thus obtained and the
properties of the constructed network, NT4XAI computes the relevance of each feature during
the classification process [9, 10, 11, 12, 13]. For this purpose, it uses a version of PageRank
[14] specifically defined to address this issue. The knowledge of the most relevant features
provides valuable information about the behavior of the black-box classifier, as it has already
been shown in the scientific literature on XAI [1, 15, 9, 16, 17]. The choice to use network theory
in NT4XAI is motivated by the extreme generality and flexibility characterizing network-based
representations. Furthermore, network theory has been intensively studied in the past, in terms
of both its theoretical aspects and its possible applications [18, 19, 20]. Therefore, NT4XAI can
benefit from the wide range of past results in this research field adapting them to address the
issue for which it was thought.

The outline of this paper is as follows: In Section 2, we describe NT4XAI in detail. In Section
3, we present some experiments we performed to evaluate it. Finally, in Section 4, we draw
some conclusions and define some possible future developments of this research.

2. Description of NT4XAI

In this section, we illustrate the model underlying NT4XAI and the behavior of the latter. Let ℐ =
{𝐼1, 𝐼2, · · · , 𝐼𝑙} be a set of instances to be classified and let 𝒞 = {𝐶1, 𝐶2, · · · , 𝐶𝑚} be the set of
possible classes. Let ℱ = {𝐹1, 𝐹2, · · · , 𝐹𝑛} be the set of features characterizing the instances
of ℐ . Accordingly, an instance 𝐼𝑖 ∈ ℐ can be represented by the set ℱ𝑖 = {𝐹1𝑖 , 𝐹2𝑖 , · · · , 𝐹𝑛𝑖}
of the values of its features. Here, 𝐹𝑘𝑖 ∈ ℱ𝑖 indicates the value of the feature 𝐹𝑘 in 𝐼𝑖. Each
feature 𝐹𝑘 can be numeric, categorical or textual.

Suppose we have a classifier model ℳ that was already trained. For each instance 𝐼𝑖 ∈ ℐ , ℳ
assigns a class of 𝒞 to it with a confidence level 𝑐𝑖1 belonging to the real interval [0, 1]; the higher
𝑐𝑖, the more confident ℳ in classifying 𝐼𝑖. The behavior of ℳ can be represented by a network
𝒩 = ⟨𝑁,𝐴⟩. The nodes of 𝒩 represent the instances of ℐ , while its arcs indicate the confidence
level of ℳ in classifying the instances associated with the corresponding nodes. Formally
speaking, there is a node 𝑛𝑖 ∈ 𝑁 for each instance 𝐼𝑖 ∈ ℐ . Since a biunivocal correspondence

1Our classifier model assumes that each instance can be assigned to exactly one class.



exists between a node 𝑛𝑖 and an instance 𝐼𝑖, in the following we will use the terms “node” and
“instance”, as well as the symbols 𝑛𝑖 and 𝐼𝑖, interchangeably. There is an arc of 𝐴 for each pair
of nodes (𝑛𝑖, 𝑛ℎ) of 𝒩 . It is directed from 𝑛𝑖 to 𝑛ℎ if 𝑐𝑖 < 𝑐ℎ; otherwise, if 𝑐ℎ < 𝑐𝑖, it is directed
from 𝑛ℎ to 𝑛𝑖. Finally, if 𝑐𝑖 = 𝑐ℎ, its direction is set randomly.

Having defined the model underlying NT4XAI, let us now see how our framework defines
the dyscrasia 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ) between the values 𝐹𝑘𝑖 and 𝐹𝑘ℎ of the feature 𝐹𝑘 for the instances 𝐼𝑖
and 𝐼ℎ. The concept of dyscrasia is intended to capture the “disharmony” in the role that two
occurrences 𝐹𝑘𝑖 and 𝐹𝑘ℎ of the same feature 𝐹𝑘 played in the classification of two instances
𝐼𝑖 and 𝐼ℎ made by ℳ. As we shall see below, the dyscrasia between two occurrences of the
same feature will play a key role in calculating the relevance of the latter. The reasoning
behind the definition of 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ) is as follows: If ℳ assigned 𝐼𝑖 and 𝐼ℎ to the same class,
the value of 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ) is the greater the more: (i) 𝐹𝑘𝑖 and 𝐹𝑘ℎ have dissimilar values, and (ii)
the confidences 𝑐𝑖 and 𝑐ℎ with which ℳ classified 𝐼𝑖 and 𝐼ℎ are low (meaning that there is no
significant confidence about the correctness of the actions of ℳ). In contrast, if ℳ assigned 𝐼𝑖
and 𝐼ℎ to different classes, the value of 𝛿 is the greater the more: (i) 𝐹𝑘𝑖 and 𝐹𝑘ℎ have similar
values, (ii) the value of 𝑐ℎ is high and the one of 𝑐𝑖 is low (meaning that the possibility that ℳ
classified 𝐼ℎ correctly and 𝐼𝑖 incorrectly is significant).

The dyscrasia 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ) can be formalized as follows:

𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ) =

{︂
𝜀(𝑛𝑖) · 𝜀(𝑛ℎ) · 𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ

) if ℳ assigned 𝐼𝑖 and 𝐼ℎ to the same class
𝜀(𝑛𝑖) · 𝛾(𝑛ℎ) · [1− 𝜆(𝐹𝑘𝑖

, 𝐹𝑘ℎ
)] otherwise

Here, 𝜆(·, ·) is a function that receives two values 𝐹𝑘𝑖 and 𝐹𝑘ℎ and returns a value in the real
interval [0, 1] indicating the dissimilarity degree between 𝐹𝑘𝑖 and 𝐹𝑘ℎ . Clearly, the definition
of 𝜆(·, ·) depends on the type of 𝐹𝑘. For example, if 𝐹𝑘 is numeric, 𝜆(·, ·) might return the
absolute value of the dissimilarity between 𝐹𝑘𝑖 and 𝐹𝑘ℎ , suitably normalized. 𝛾(·) is a function
that receives a node 𝑛𝑖 and returns the confidence 𝑐𝑖 of ℳ in classifying the instance 𝐼𝑖
corresponding to 𝑛𝑖. Finally, 𝜀(·) receives a node 𝑛𝑖 and returns the error of ℳ in classifying
𝐼𝑖. It is defined as 𝜀(𝑛𝑖) = 1− 𝛾(𝑛𝑖).

Having defined the dyscrasia between two occurrences of a feature, we are now able to
describe how NT4XAI defines the relevance of a feature during a classification process performed
by a (possibly) black-box classifier. Recall that, based on the definition of the model underlying
NT4XAI, given a node 𝑛𝑖 ∈ 𝑁 , its incoming (resp., outgoing) arcs start from nodes whose
associated instances have been classified with lower (resp., higher) or equal confidence. The
two sets can be defined as follows: 𝑁𝑜𝑢𝑡

𝑖 = {𝑛ℎ|𝑛ℎ ∈ 𝑁,𝑛ℎ ̸= 𝑛𝑖, (𝑛𝑖, 𝑛ℎ) ∈ 𝐴} and 𝑁 𝑖𝑛
𝑖 =

{𝑛ℎ|𝑛ℎ ∈ 𝑁,𝑛ℎ ̸= 𝑛𝑖, (𝑛ℎ, 𝑛𝑖) ∈ 𝐴}. Let 𝐹𝑘 be the feature whose relevance NT4XAI must
determine. In order to carry out this task, NT4XAI must preliminarily determine the relevance
of 𝐹𝑘𝑖 for each instance 𝐼𝑖 ∈ ℐ . Let 𝑛𝑖 be the node corresponding to 𝐼𝑖 in 𝑁 . Based on what we
said above, in determining the role of 𝐹𝑘 in the classification task, 𝑛𝑖 can act as a “guide” for
the nodes of 𝑁 𝑖𝑛

𝑖 , while it should be “guided” by the nodes of 𝑁𝑜𝑢𝑡
𝑖 . One way to formalize this

reasoning is to adapt PageRank centrality [14] to this scenario. Proceeding in this way, we have



that the relevance 𝜌(𝐹𝑘𝑖) of 𝐹𝑘𝑖 can be defined as:

𝜌(𝐹𝑘𝑖) =
1− 𝑑𝑘𝑖
|𝑁 |

+ 𝑑𝑘𝑖 ·

⎛⎝ ∑︁
𝑛ℎ∈𝑁 𝑖𝑛

𝑖

𝜌(𝐹𝑘ℎ)

|𝑁𝑜𝑢𝑡
ℎ |

⎞⎠
As can be seen from this formula, the relevance of 𝐹𝑘𝑖 includes a fixed and a variable

component. The former depends on the number of nodes in 𝒩 . The latter depends on the
relevance of the feature occurrences related to the starting nodes of the arcs incoming into 𝑛𝑖.
The relevance 𝜌(𝐹𝑘ℎ) of each of these nodes 𝑛ℎ is weighted by the number of arcs outgoing
from 𝑛ℎ. In fact, the greater the number of these arcs, the lower the weight of 𝜌(𝐹𝑘ℎ). This is
justified considering that the number of arcs outgoing from 𝑛ℎ indicates the number of nodes
having a higher confidence than 𝑛ℎ.

Unlike the original PageRank formula [14], the damping factor 𝑑𝑘𝑖 in the definition of 𝜌(𝐹𝑘𝑖)
has not a constant value, but varies for each node 𝑛𝑖 ∈ 𝑁 and depends on the characteristics of
the latter. In particular, it depends on the number of arcs outgoing from 𝑛𝑖 and the dyscrasia
between the feature occurrence of each of these nodes and the feature occurrence 𝐹𝑘𝑖 of 𝐹𝑘 in

𝑛𝑖. More specifically, 𝑑𝑘𝑖 can be defined as follows: 𝑑𝑘𝑖 = 𝜎

(︂∑︀
𝑛ℎ∈𝑁𝑜𝑢𝑡

𝑖
𝛿(𝐹𝑘𝑖

,𝐹𝑘ℎ
)

|𝑁𝑜𝑢𝑡
𝑖 |

)︂
.

The rationale for this definition is the following: the value of 𝑑𝑘𝑖 depends on the magnitude
of the dyscrasia between the occurrence of 𝐹𝑘 for 𝑛𝑖 and the occurrence of 𝐹𝑘 for all the ending
nodes of the arcs outgoing from 𝑛𝑖, thus characterized by a higher confidence than the one
of 𝑛𝑖. Therefore, there is a positive correlation between the values of the damping factor and
those of dyscrasia. Let us now consider the definition of 𝜌(𝐹𝑘𝑖); in it, if the value of 𝑑𝑘𝑖 is high,
the weight of the first term in the formula tends to be very low. The second term depends
strongly on the number of arcs incoming into 𝑛𝑖. If that number is low (implying that the
confidence of ℳ in the classification of 𝐼𝑖 is low) then the relevance of 𝐹𝑘𝑖 will be low. This
is correct since ℳ did not show a high confidence in classifying 𝐼𝑖, and 𝐹𝑘𝑖 showed a high
dyscrasia with the feature occurrences of the nodes whose instances were classified by ℳ with
a higher confidence than 𝐼𝑖. The function 𝜎(·) present in the formula of 𝑑𝑘𝑖 is the sigmoid
function. It varies between 0 and 1 when its argument varies from −∞ to +∞. In particular, if
the argument can only be non-negative, as in our case, 𝜎(·) varies between 0.5 and 1 and acts
as an amplifier of the differences in the values taken on by the argument as it goes along.

Having defined the relevance of a single feature occurrence 𝐹𝑘𝑖 , we can define the relevance

of a feature 𝐹𝑘 as the mean of the relevances of all its occurrences: 𝜌(𝐹𝑘) =

∑︀
𝑛𝑖∈𝑁 𝜌(𝐹𝑘𝑖

)

|𝑁 | .

3. Experimental campaign

We implemented NT4XAI in Python 3.9 and performed our tests on a 2019 MacBook Pro
equipped with 16GB of RAM and 2.6 GHz Intel Core i7 6 core. In addition, we chose multiple
classifier models among those most widely used in the literature [11, 21, 22]. Specifically, the
classifiers we chose are: (i) Naive Bayes (hereafter, NB); (ii) SVM with polynomial kernel
(hereafter, SVMP); (iii) SVM with radial basis function kernel (hereafter, SVMR); (iv) Multi-Layer
Perceptron (hereafter, MLP); (v) Random Forest (hereafter, RF). Naive Bayes is a probabilistic



classifier, unlike SVM. Regarding the latter, we considered two kernels. The first, polynomial,
considers features and their combinations. The second, radial, separates data using a nonlinear
decision-boundary. Multi-Layer Perceptron is a special case of neural network and therefore
is a totally black-box model. Finally, Random Forest is an ensemble learning model. In these
experiments, we chose classifiers of different types, which exhibit very different behaviors,
because we wanted to test the real ability of NT4XAI to be model-agnostic.

During the test campaign, we used the Iris dataset [23] published on the UCI Machine
Learning Repository [24]. It consists of 150 instances, 4 features and 3 classes. Specifically, the
features are: (i) sepal_length, representing the sepal length in centimeters; its values range
in the real interval [4.3, 7.9]; (ii) sepal_width, denoting the sepal width in centimeters; its
values range in the real interval [2.0, 4.4]; (iii) petal_length, indicating the petal length in
centimeters; its values range in the real interval [1.0, 6.9]; (iv) petal_width, representing the
petal width in centimeters; its values range in the real interval [0.1, 2.5]. Although all features
are numerical, their values are very heterogeneous. To homogenize them, we performed a
normalization task by using a min-max scaler [25]. It operates as follows: given the value 𝐹 ′

𝑘𝑖
of a feature, whose maximum and minimum values are 𝐹 ′

𝑘𝑚𝑎𝑥
and 𝐹 ′

𝑘𝑚𝑖𝑛
, the scaler obtains

the normalized value 𝐹𝑘𝑖 of 𝐹 ′
𝑘𝑖

as: 𝐹𝑘𝑖 =
𝐹 ′
𝑘𝑖
−𝐹 ′

𝑘𝑚𝑖𝑛
𝐹 ′
𝑘𝑚𝑎𝑥

−𝐹 ′
𝑘𝑚𝑖𝑛

. 𝐹𝑘𝑖 belongs to the real interval [0, 1].

Now, since all feature occurrences are normalized between 0 and 1, we chose as the dissimilarity
function 𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ) between two feature occurrences 𝐹𝑘𝑖 and 𝐹𝑘ℎ the absolute value of their
difference: 𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ) = |𝐹𝑘𝑖 − 𝐹𝑘ℎ |.

The first test we carried out was the computation of the accuracy of classifiers. In Table 1,
we report the results obtained. As can be seen from this table, the values are very high. This
allows us to conclude that all classifiers considered can guarantee high confidence values and,
therefore, can be employed in the next tests.

Model Accuracy

Naive Bayes 0.93
SVM with polynomial kernel 0.98
SVM with radial basis function kernel 0.96
Multi-Layer Perceptron 0.93
Random Forest algorithm 0.96

Table 1
Classifier accuracy with the Iris dataset

Before proceeding further, a premise is necessary. The main objective of our analysis is to
check whether there are any features that have a higher relevance value than others. Therefore,
if all classifiers showed no significant differences between the relevance values of the various
features, we could reasonably conclude that the latter all have the same relevance. In contrast,
if some or all of the classifiers show significantly different relevance values for the various
features and agree in indicating which of them are the most relevant, we could reasonably
conclude that the relevance values of the features are significantly different and could determine
which features are most relevant. In this case, the best classifiers would be those that can best
show the differences in the relevances among the various features. Having this in mind, we
can proceed with the next tests. The first of them aims to compute the value of the damping



factor for the various features and classifiers. Figure 1 reports the corresponding distributions
represented by means of boxplots.
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Figure 1: Distribution of the values of the damping factor

From the analysis of this figure we can see that the classifiers show completely different
behaviors. In fact:

• Naive Bayes tends to assign similar and very low values to the damping factor for all
features.

• Polynomial SVM assigns very different values to the damping factor for different features.
Therefore, it shows a very good ability to discriminate features.

• Radial SVM shows differences in the values of the damping factor, although these are
smaller than the ones shown by Polynomial SVM.

• Multi-Layer Perceptron returns very different values of the damping factor for the occur-
rences of the same feature. In contrast, median values are all very high. This classifier
proved less capable of discriminating features than the two SVM classifiers, although it
seems better than Naive Bayes.

• Random Forest returns results similar, albeit less extreme, to the ones returned by Naive
Bayes. It does not reveal much ability to discriminate features.

The results on the damping factor shown above are indicative of potential trends but are still
preliminary. In fact, they need to be confirmed or corrected by the analysis of the relevance
values, which represent the final outcome of our XAI process. These results are shown in
Figure 2. From the analysis of this figure we can conclude that:

• Naive Bayes and Random Forest are unable to discriminate feature relevances.
• The two SVM classifiers and Multi-Layer Perceptron are capable of discriminating feature

relevances, although to different degrees.



• The differences identified by the various classifiers are concordant. In fact, the two SVM
classifiers and, to some extent, also Multi-Layer Perceptron, show that petal_length
and petal_width are more relevant than sepal_length and sepal_width.

• Polynomial SVM and Radial SVM prove to be the most capable of discerning differences
in feature relevances.
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Figure 2: Distribution of the relevance values

The conclusions drawn from the examination of Figure 2 are qualitative and only partially
quantitative. Actually, it would be important to find a way to quantify the different abilities of
the classifiers to discern feature relevance. A first way to achieve this goal is to compare the
median values of the occurrence relevances for each feature and for each classifier. These values
are reported in Table 2. The analysis of this table shows that, even at the quantitative level,
petal_length and petal_width are more relevant than sepal_length and sepal_width.

Model Feature Relevance Model Feature Relevance

NB sepal_length 0.014598 SVMP sepal_length 0.005608
sepal_width 0.014572 sepal_width 0.002904
petal_length 0.014696 petal_length 0.007408
petal_width 0.014714 petal_width 0.007660

SVMR sepal_length 0.009293 MLP sepal_length 0.000108
sepal_width 0.009238 sepal_width 0.000082
petal_length 0.011012 petal_length 0.001598
petal_width 0.011139 petal_width 0.001454

RF sepal_length 0.014313
sepal_width 0.014280
petal_length 0.014504
petal_width 0.014534

Table 2
Median relevance of each feature returned by the five classifiers



A second, more accurate way to achieve the goal above is to introduce a new function 𝛼(·).
It receives a classifier ℳ and returns a real number in the interval [0, 100] that measures the
ability of ℳ to differentiate feature relevances. 𝛼(·) can be defined as follows:

𝛼(ℳ) =
𝑚𝑎𝑥ℳ −𝑚𝑖𝑛ℳ
𝑀𝑎𝑥𝐶𝑃𝐼ℳ

· 100

Here, 𝑚𝑎𝑥ℳ (resp., 𝑚𝑖𝑛ℳ) is the maximum (resp., minimum) value taken by the median
relevance of a feature when ℳ is adopted. 𝑀𝑎𝑥𝐶𝑃𝐼ℳ (Maximum Central Percentile Interval)
is obtained in the following way: first we compute the widths of the intervals between the values
corresponding to the 25th and 75th percentiles of the distributions of the feature relevances
returned by ℳ. Then, we calculate the maximum of these widths. In the formula of 𝛼(·), we
decided to take the values corresponding to the 25th and 75th percentiles, instead of all values,
to avoid 𝛼(·) being sensitive to outliers.

In Table 3, we report the values returned by 𝛼(·) for the classifiers of our interest. This table
gives us an accurate quantitative result of what we had guessed qualitatively from examining
Figures 1 and 2 and Table 2. In particular, it allows us to conclude that the best classifier in
differentiating feature relevances is Polynomial SVM, with a value of 𝛼(·) equal to 37.47%,
while the second best classifier is Radial SVM, with a value of 𝛼(·) equal to 17.62%. Multi-Layer
Perceptron is still a good classifier, while Naive Bayes and Random Forest are incapable of
discriminating which features are most relevant.

Naive Bayes Polynomial SVM Radial SVM Multi-Layer Perceptron Random Forest
Value of 𝛼(·) 1.29% 37.47% 17.62% 11.43% 2.50%

Table 3
Values of the function 𝛼(·) for the classifiers into consideration

4. Conclusion

In this paper, we have proposed NT4XAI, a model-agnostic, network-based XAI framework to
explain the behavior of any classifier. As its name indicates, NT4XAI is based on network theory
and the vast amount of results obtained in this research area in the past. NT4XAI achieves its
goal by evaluating the relevance of features in the behavior of a classifier. We also described
some tests that allowed us to evaluate the effectiveness of NT4XAI both quantitatively and
qualitatively. The main contributions of this paper are: (i) the definition of NT4XAI, a new
model-agnostic network-based XAI framework; (ii) the definition of the concept of dyscrasia,
by which the consistency of the occurrences of a feature during the classification process can
be qualitatively evaluated; (iii) the definition of an approach for calculating the relevance of a
feature in classifying the corresponding instances.

As for possible future developments of this research, we can first think of extending NT4XAI
by considering latent structural properties in our network-based model. Also, we could use a
totally different network model, such as a multilayer network [8, 26], to support NT4XAI. This
would allow us to have a new point of view and capture different properties [1] using local
model knowledge.
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