
How Many Inconsistencies Are In Your Database?⋆

(Discussion Paper)

Francesco Parisi1, John Grant2

1DIMES Department, University of Calabria, Italy
2University of Maryland at College Park, USA

Abstract
Measuring inconsistency is an approach that provides ways to quantify the severity of inconsistency and
helps understanding the primary sources of conflicts. In this paper, we discuss inconsistency measures for
indefinite databases, which allow for indefinite or partial information which is formally expressed by means
of disjunctive tuples. We introduce inconsistency measures for indefinite databases with denial constraints,
and explore the complexity of the problem of computing the value of the proposed inconsistency measures
as well as of the problems of deciding whether the inconsistency value is lower than, greater than, or equal
to a given threshold for indefinite and definite databases.
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1. Introduction

Handling conflicting information is an important challenge. In fact, data of poor quality can
significantly limit the implementation of effective AI solutions [2, 3]. So, having information on
the quality of data used in data-driven approaches is crucial, as poor quality data can have serious
adverse consequences on the quality of decisions made using AI [4]. Measuring inconsistency [5,
6] is a well-understood approach that can be used towards assessing data quality, as it provides
ways to quantify the severity of inconsistency that help understanding the primary sources of
conflicts and devising ways to deal with them. In this regard, inconsistency measurement has
been extensively investigated for propositional logic (e.g., [7, 8, 9, 10, 11, 12]), and explored in
other settings such as software specifications [13] and ontologies [14, 15], among others.

In this paper, we explore inconsistency measures for definite and indefinite databases (DBs).
Classical relational DBs can store definite information only, while in practical situations much
of the information is not precise. Indefinite DBs, also known as disjunctive DBs, represent
disjunctive information in the form of indefinite tuples, i.e., disjunctive facts. They have been
studied for a long time [16, 17, 18, 19, 20], and their potential applications include e.g. data
integration, extraction and cleaning [21, 22]. Classical relational DBs are a special case of
indefinite DBs where the information is definite, i.e., there is no disjunction of tuples.

There are few interesting works addressing the problem of measuring inconsistency in rela-
tional DBs. [23] first developed single-dependency axioms for dirtiness functions quantifying
inconsistency w.r.t. one functional dependency (FD)—a simple type of denial constraint (DC)—
considered in isolation, and proposed a measure that satisfies these axioms. Then a single axiom
for dirtiness functions that handle multiple FDs was proposed, although such functions are sup-
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posed to be built on top of a dirtiness function for single FDs. The approach in [24, 25, 26] deals
with relational databases from the point of view of first-order logic, as in logic programming.
Its purpose is to show how database inconsistency measures (IMs) can be applied to integrity
checking [27, 28], relaxing repairs, and repair checking, which are applications that also fit within
our framework. However, the degrees of inconsistency defined in [26] form a partially ordered
set; hence it is not always possible to compare the inconsistency of different DBs. An IM based
on an abstract repair semantics is proposed in [29], where the degree of inconsistency depends
on the distance between the database instance and the set of possible repairs under a given repair
semantics; an instantiation for cardinality-repairs that can be computed via answer-set programs
is proposed in [30]. Provenance-informed annotations of the base tuples are used in [31, 32] to
characterize the level of inconsistency of data and query results. In particular, building upon the
computed annotations, different measures of inconsistency which consider single and multiple
violations of DCs are introduced. IMs have been considered as the basis of progress indicators
for data-cleaning systems in [33], where properties that account for operational aspects of repair
systems are introduced as well as a measure satisfying such properties. Finally, the Shapley
value [34] of tuples is investigated in [35] to calculate the contribution of a tuple to inconsistency
for inconsistent DBs w.r.t. FDs. The work in [36], which is an early version of [1], as well
as all those discussed above focus on definite DBs only. An approach to translate a general
information space into an inconsistency equivalent propositional knowledge base is introduced
in [37, 38], enabling propositional IMs to be applied also to DBs. However, this approach makes
no distinction between DB tuples and integrity constraints as it blames simultaneously tuples
and constraints without considering that inconsistency in DBs typically refers to the tuples rather
than the integrity constraints.

We explore the problem of tailoring propositional inconsistency measures to indefinite (and
definite) DBs, and in particular analyze the computational complexity of the resulting inconsis-
tency measures for both the general case of indefinite DBs and the special case of definite DBs [1].
Our work contributes to understanding how the database counterpart of well-established methods
to quantify inconsistency in propositional logic behaves in the relational database context, where
data are generally the reason for inconsistency, not the integrity constraints.

2. Indefinite Databases

We assume that the reader is familiar with the relational model and the basic concept of definite
DBs [39]. An indefinite tuple over relational scheme 𝑅(𝐴1, . . . , 𝐴𝑛) is a set of (definite) tuples
over 𝑅(𝐴1, . . . , 𝐴𝑛). An indefinite relation instance (or simply relation) is a finite set of indefinite
tuples over a given relation scheme, and an indefinite DB instance (database) is a set of indefinite
relations over a given DB scheme. Under the model-theoretic approach to relational DBs, an
indefinite DB is a set of minimal models [40] (instead of a unique model of the underlying first-
order theory as for the case of definite DBs). Under the proof-theoretic approach, an indefinite
tuple corresponds to a logical formula with inclusive disjunctions. The information content of an
indefinite DB 𝐷 consists of a set of definite DBs called possible worlds. A possible world for 𝐷
is a set of (definite) tuples that contains a tuple from each element of 𝐷 and is minimal w.r.t. set
inclusion. More formally, let Def(𝐷) be the set of all the definite DBs that can be obtained from
an indefinite DB 𝐷 by selecting a (definite) tuple from each indefinite one in 𝐷. The meaning
of 𝐷 is given by the set of possible worlds 𝒲(𝐷) = {𝑊 | 𝑊 ∈ Def(𝐷),∄𝑊 ′ such that 𝑊 ′ ∈
Def(𝐷) and 𝑊 ′ ⊂ 𝑊}.

We use the terminology element to refer to an indefinite tuple of a database 𝐷. A definite DB
is a special case of an indefinite DB, where each element is a definite tuple and only one possible



Id Name Birth Year Parent Death Year

𝑡1 1 James 1668 Mary 1751
𝑒1

𝑡2 1 James 1670 Mary 1751
𝑡3 1 Michael 1643 Mary 1600 𝑒2
𝑡4 1 Robert 1668 Michael 1600

𝑒3
𝑡1 1 James 1668 Mary 1751
𝑡5 2 David 1838 Patricia 1905 𝑒4
𝑡6 3 Jennifer 1841 Sarah 1923 𝑒5
𝑡7 3 Jennifer 1841 Joseph 1923 𝑒6
𝑡8 4 Jennifer 1841 Susan 1923

𝑒7
𝑡9 4 Jennifer 1841 Jessica 1923

Table 1
Database 𝐷𝑒𝑥, instance of Ancestor.

world exists, that is, 𝒲(𝐷) = {𝐷}.

Example 1. Consider a genealogical DB whose scheme 𝒟𝒮𝑒𝑥 consists of the relation scheme
Ancestor (Id, Name, Birth Year, Parent, Death Year), where every record has an id and contains
the name, the birth and death year of a person as well as the name of her/his parent. An instance
𝐷𝑒𝑥 of 𝒟𝒮𝑒𝑥 consisting of 7 elements (obtained from 9 different definite tuples) is shown in
Table 1. A possible world for 𝐷𝑒𝑥 is {𝑡1, 𝑡3, 𝑡5, 𝑡6, 𝑡7, 𝑡8}, which is obtained from 𝐷𝑒𝑥 by selecting
the tuple 𝑡1 from the elements 𝑒1 and 𝑒3, the tuples 𝑡3, 𝑡5, 𝑡6, and 𝑡7 from the singleton elements
𝑒2, 𝑒4, 𝑒5, and 𝑒6, respectively, and 𝑡8 from element 𝑒7. Let 𝑇 = {𝑡3, 𝑡5, 𝑡6, 𝑡7}, the set of possible
worlds for 𝐷𝑒𝑥 is 𝒲(𝐷𝑒𝑥) = {𝑇 ∪ {𝑡1, 𝑡8}, 𝑇 ∪ {𝑡1, 𝑡9}, 𝑇 ∪ {𝑡2, 𝑡4, 𝑡8}, 𝑇 ∪ {𝑡2, 𝑡4, 𝑡9}}.

It is worth noting that an indefinite DB may contain redundant information because an indefi-
nite tuple is part of another one. For instance, the database {{𝑅(1, 1), 𝑅(1, 2)}, {𝑅(1, 1)}}
is equivalent to {{𝑅(1, 1)}}, that is, they have the same set of possible worlds. Redun-
dancy can be removed by deleting redundant tuples, that is, indefinite tuples that subsume
other tuples. This is polynomial in the number of indefinite tuples, assuming that the size
of the largest indefinite tuple is a constant (usually a small integer). In the following, we
assume that the given DB is not redundant. It is also worth noting that since each indef-
inite tuple corresponds to a logical formula with inclusive disjunctions, it is possible for
more than one tuple within an indefinite tuple to be the real world truth. For instance, for
the database {{𝑅(1, 1), 𝑅(1, 2)}, {𝑅(1, 1), 𝑅(1, 3)}, {𝑅(1, 2), 𝑅(1, 3)}}, a possible world is
{𝑅(1, 1), 𝑅(1, 2)}, which is obtained from the DB by selecting the definite tuple 𝑅(1, 1) from
the first two indefinite tuples and 𝑅(1, 2) from the third one.

A denial constraint (DC) over a database scheme 𝒟𝒮 is a first-order sentence of the form:
∀ �⃗�1, . . . , �⃗�𝑘 [¬𝑅1(�⃗�1) ∨ · · · ∨ ¬𝑅𝑘(�⃗�𝑘) ∨ 𝜙(�⃗�1, . . . , �⃗�𝑘)] where: (i) ∀ 𝑖 ∈ [1..𝑘], �⃗�𝑖 are tuples
of variables and 𝑅𝑖(�⃗�𝑖) are atoms over 𝒟𝒮; and (ii) 𝜙 is a disjunction of built-in predicates
of the form 𝜏𝑖 ∘ 𝜏𝑗 where 𝜏𝑖 and 𝜏𝑗 are variables in �⃗�1, . . . , �⃗�𝑘 or constants, and ∘ ∈ {=
, ̸=, >,<,≥,≤}. In the following, we will omit the prefix of universal quantifiers and write
[¬𝑅1(�⃗�1) ∨ · · · ∨ ¬𝑅𝑘(�⃗�𝑘) ∨ 𝜙(�⃗�1, . . . , �⃗�𝑘)] for a denial constraint.

A functional dependency (FD) is a DC of the form [¬𝑅(�⃗�, 𝑦, �⃗�) ∨ ¬𝑅(�⃗�, 𝑢, �⃗�) ∨ (𝑦 = 𝑢)]
where �⃗�, �⃗�, �⃗� are tuples of variables. It is written as 𝑅 : 𝑋 → 𝑌 (or simply 𝑋 → 𝑌 ), where 𝑋
is the set of attributes of 𝑅 corresponding to �⃗� and 𝑌 is the attribute corresponding to 𝑦 (and 𝑢).

For a DB scheme 𝒟𝒮 and a set 𝒞 of integrity constraints over 𝒟𝒮, an indefinite DB instance
𝐷 of 𝒟𝒮 is said to be consistent w.r.t. 𝒞 (denoted as 𝐷 |= 𝒞) iff there is at least one possible
world of 𝐷 which is consistent w.r.t. 𝒞 (in the standard model-theoretic sense), that is, {𝑊 |𝑊 ∈
𝒲(𝐷),𝑊 |= 𝒞} ̸= ∅; otherwise, 𝐷 is said to be inconsistent (w.r.t. 𝒞).



Example 2. Continuing from Example 1, let 𝒞𝑒𝑥 be the set of the following DCs:
∙ 𝑐1 = [¬Ancestor(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∨ 𝑥5 > 𝑥3], stating that the death year must be greater
than the birth year.
∙ 𝑐2 = [¬Ancestor(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∨ ¬Ancestor(𝑥1, 𝑥6, 𝑥7, 𝑥8, 𝑥9) ∨ 𝑥2 = 𝑥6], that is the
FD Id→Name.
∙ 𝑐3 = [¬Ancestor(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∨ ¬Ancestor(𝑥6, 𝑥2, 𝑥7, 𝑥8, 𝑥9) ∨ ¬Ancestor(𝑥10, 𝑥2,
𝑥11, 𝑥12, 𝑥13) ∨ 𝑥4 = 𝑥8 ∨ 𝑥4 = 𝑥12 ∨ 𝑥8 = 𝑥12], that is the numerical dependency [41]
Name→2Parent stating that for every person there can be at most 2 parents.

We have that 𝐷𝑒𝑥 is inconsistent w.r.t. 𝒞𝑒𝑥. In particular, going through the constraints we find
that 1) 𝑒2 ̸|= 𝑐1, while e.g. 𝑒3 |= 𝑐1 as one of its two tuples (disjuncts) satisfies the constraint;
2) the pairs of elements 𝑒1, 𝑒2 and 𝑒2, 𝑒3 are inconsistent with 𝑐2 (notice that {𝑒1, 𝑒3} |= 𝑐2 as
there is a world consisting of their common tuple 𝑡1 which is consistent); 3) the three elements
𝑒5, 𝑒6, and 𝑒7 together are inconsistent with 𝑐3. None of the possible worlds for 𝐷𝑒𝑥 is consistent
w.r.t. 𝒞𝑒𝑥, as each one violates one or more constraints (e.g., 𝑐1 is violated by all of them).

3. Database Inconsistency Measures

The idea of an inconsistency measure is to assign a nonnegative number to a knowledge base
that measures its inconsistency [42]. We introduce inconsistency measures (IMs) for indefinite
DBs with denial constraints. We use D to denote the set of all indefinite database instances over a
fixed but arbitrary database scheme 𝒟𝒮 . In general, we will omit the database scheme and the set
𝒞 of integrity constraints in the terminology.

Definition 1 (Inconsistency Measure). A function ℐ : D → R≥0
∞ is an inconsistency measure iff

the following two conditions hold for all 𝐷,𝐷′ ∈ D:
1) Consistency ℐ(𝐷) = 0 iff 𝐷 is consistent; 2) Monotony If 𝐷 ⊆ 𝐷′, then ℐ(𝐷) ≤ ℐ(𝐷′).

Consistency and Monotony are called (rationality) postulates. We require that a function on
databases must at least satisfy these two postulates in order to be called an IM. Consistency
means that all and only consistent DBs get measure 0. Monotony means that the enlargement of a
DB cannot decrease its measure. Note that we are limiting the integrity constraints to DCs. This
means that inconsistencies cannot be resolved by insertions. This is not the case in the presence
of existential constraints, such as inclusion dependencies, where Monotony is not appropriate.
Additional postulates are given in [1], where satisfaction for definite and indefinite DBs is studied.

We now give some basic definitions needed to define IMs. A minimal inconsistent subset
(MIS) of 𝐷 is a set of elements 𝑋 ⊆ 𝐷 such that 𝑋 is inconsistent (w.r.t. 𝒞) and no proper subset
of 𝑋 is inconsistent. We denote by MI(𝐷) the set of minimal inconsistent subsets of 𝐷. Similarly,
a maximal consistent subset is a set of elements 𝑌 that is consistent and no proper superset of
𝑌 is consistent. We write MC(𝐷) for the set of maximal consistent subsets (of 𝐷). Any element
that occurs in a MIS is problematic; otherwise it is free. We use Problematic(𝐷) and Free(𝐷)
to denote the sets of problematic and free elements of 𝐷. An element 𝑒 is contradictory if {𝑒} is
inconsistent w.r.t. 𝒞. We write Contradictory(𝐷) for the set of contradictory elements.

3.1. Measures using Minimal Inconsistent Subsets

We start with the measures that rely on MISs and the related concepts defined above.

Definition 2 (Database IMs). For any DB 𝐷, the IMs ℐ𝐵 , ℐ𝑀 , ℐ𝑃 , ℐ𝐴, and ℐ𝐻 are such that

• ℐ𝐵(𝐷) = 1 if 𝐷 is inconsistent and ℐ𝐵(𝐷) = 0 if 𝐷 is consistent.



• ℐ𝑀 (𝐷) = |MI(𝐷)|.
• ℐ𝑃 (𝐷) = |Problematic(𝐷)|.
• ℐ𝐴(𝐷) = (|MC(𝐷)|+ |Contradictory(𝐷)|)− 1.
• ℐ𝐻(𝐷) = min{|𝑋| 𝑠.𝑡. 𝑋 ⊆ 𝐷 and ∀𝑀 ∈ MI(𝐷), 𝑋 ∩𝑀 ̸= ∅}.

We explain the measures as follows. ℐ𝐵 is also called the drastic measure [43]: 0 means
consistent; 1 means inconsistent. ℐ𝑀 counts the number of MISs [43]. The rationale is that a MIS
represents a minimal inconsistency for a set of database elements; hence this measure counts
the number of such inconsistencies. ℐ𝑃 counts the number of elements that are in one or more
minimal inconsistencies [44]. ℐ𝐴 uses the cardinality of the set of maximal consistent subsets [44]
(corresponding to repairs for DBs [45]). Intuitively, the larger this set, the larger is the space of
different ways to get consistency, the higher the degree of inconsistency. Contradictory elements
are added as they do not appear in any way in a maximal consistent set; then 1 must be subtracted
to obtain ℐ𝐴(𝐷) = 0 for a consistent 𝐷 because every consistent DB has a maximal consistent
subset, namely 𝐷 itself. ℐ𝐻 counts the minimal number of elements whose deletion makes the
DB consistent [46]. Hence ℐ𝐻 can be written as ℐ𝐻 = min{|𝑋| 𝑠.𝑡. 𝐷 ∖𝑋 is consistent }. In
fact, both ℐ𝐴 and ℐ𝐻 link the inconsistency measurement to the ways of restoring consistency,
an idea explored for definite DBs in [29, 30] where the degree of inconsistency depends on the
distance between the DB and the set of possible repairs under a given repair semantics.

Example 3. Continuing with our running example, MI(𝐷𝑒𝑥) = {{𝑒2}, {𝑒5, 𝑒6, 𝑒7}}. Note
that {𝑒1, 𝑒2} as well as {𝑒2, 𝑒3} are not included because they contain {𝑒2}. Thus
there are 4 problematic elements in 𝐷𝑒𝑥, and 3 free elements. Also, MC(𝐷𝑒𝑥) =
{{𝑒1, 𝑒3, 𝑒4, 𝑒5, 𝑒6}, {𝑒1, 𝑒3, 𝑒4, 𝑒5, 𝑒7}, {𝑒1, 𝑒3, 𝑒4, 𝑒6, 𝑒7}}. Therefore, the values of the IMs for
𝐷𝑒𝑥 are as follows. ℐ𝐵(𝐷𝑒𝑥) = 1 as the database is inconsistent. ℐ𝑀 (𝐷𝑒𝑥) = 2 as there are
2 MISs. ℐ𝑃 (𝐷𝑒𝑥) = 4 as 4 elements are in MI(𝐷𝑒𝑥). ℐ𝐴(𝐷𝑒𝑥) = 3 as there are 3 maximal
consistent subsets and one contradictory element (that is, 𝑒2). Finally, ℐ𝐻(𝐷𝑒𝑥) = 2 as no less
than 2 elements intersect with each MIS.

3.2. A Measure Using 3VL

We now consider the Contension measure [44], which uses a three-valued (3VL) logic. A 3VL
interpretation is a function 𝑖 that assigns to each atom 𝑅(�⃗�) in 𝐷 one of the three truth values: 𝑇
(true), 𝐹 (false), or 𝐵 (both). The logical connectives are extended to 3VL interpretations using
Priest’s three-valued logic, the Logic of Paradox [47]. This interpretation uses an ordering on
the truth values where 𝐹 < 𝐵 < 𝑇 and ∧ computes the minimum value while ∨ computes the
maximum value; also ¬(𝐵) = 𝐵. So, for example, 𝐵 ∧ 𝐹 = 𝐹 and 𝐵 ∨ 𝐹 = 𝐵. In classical
two-valued logic, an interpretation is a model for a set of formulas if every formula gets the value
𝑇 (the unique designated value). But in 3VL there are two designated values, 𝑇 and 𝐵. This
means that for a given DB 𝐷 with a set 𝒞 of constraints, a 3VL interpretation is a 3VL model iff
all the integrity constraints and elements get the value 𝑇 or 𝐵. We use Models(𝐷) to denote the
set of 3VL models for 𝐷 (with the constraints in the background). Also, for a 3VL interpretation
𝑖 we define Conflictbase(𝑖) = {𝑅(�⃗�) | 𝑖(𝑅(�⃗�)) = 𝐵}, the atoms that have truth value 𝐵.

Definition 3 (Contension measure ℐ𝐶). For any database 𝐷, ℐ𝐶 is such that ℐ𝐶(𝐷) =
min{|Conflictbase(𝑖)| | 𝑖 ∈ Models(𝐷)}.

For our running example, we have that ℐ𝐶(𝐷𝑒𝑥) = 2 as the minimal number of 𝐵 values for
an interpretation occurs when assigning 𝐵 to the tuple in 𝑒2 and a tuple in either 𝑒5 or 𝑒6.

For definite DBs, it can be shown that ℐ𝐶(𝐷) = ℐ𝐻(𝐷). No other pair of measures considered
in this paper is identical for definite DBs. For indefinite DBs, ℐ𝐻 and ℐ𝐶 need not give the same



result. For instance, 𝐷′ = {{𝑅(−1), 𝑅(−2)}, {𝑅(−1), 𝑅(−3)}} and 𝒞′ = {¬𝑅(𝑥) ∨ 𝑥 > 0}.,
we have that ℐ𝐻(𝐷′) = 2 > ℐ𝐶(𝐷′) = 1 because both elements in 𝐷′ are self-contradictions,
while for 3VL it suffices to assign 𝑅(−1) the value 𝐵 and both 𝑅(−2) and 𝑅(−3) the value 𝐹
to eliminate the inconsistency. In general, ℐ𝐶(𝐷) ≤ ℐ𝐻(𝐷) holds for all indefinite DBs because
assigning 𝐵 to one of the disjuncts in an element that needs removal for ℐ𝐻 suffices to eliminate
the inconsistency for ℐ𝐶 as well.

3.3. A Probabilistic Measure

Finally, we define the database counterpart of the probabilistic measure 𝐼𝜂 that uses the PSAT
(probabilistic satisfiability) concept [48]. A PSAT instance is a set, Γ = {𝑃 (𝜑𝑖) ≥ 𝑝𝑖 | 1 ≤ 𝑖 ≤
𝑚}, that assigns probability lower bounds to a set {𝜑1, . . . , 𝜑𝑚} of formulas; hence 0 ≤ 𝑝𝑖 ≤ 1
for 1 ≤ 𝑖 ≤ 𝑚. A probability distribution over a set 𝑋 is a function 𝜋 : 𝑋 → [0, 1] such that∑︀

𝑥∈𝑋 𝜋(𝑥) = 1. Let 𝐼𝑛𝑡 be the set of all classical interpretations (of the set of formulas) and 𝜋 a
probability distribution over 𝐼𝑛𝑡. The probability of a formula 𝜑 according to 𝜋 is the sum of the
probabilities assigned to the interpretations assigning 𝑇 to 𝜑, that is, 𝑃𝜋(𝜑) =

∑︀
𝑖∈𝐼𝑛𝑡,𝑖(𝜑)=𝑇 𝜋(𝑖)

for every formula 𝜑 in the knowledge base. A PSAT instance is satisfiable if there is a probability
distribution 𝜋 over 𝐼𝑛𝑡 such that 𝑃𝜋(𝜑𝑖) ≥ 𝑝𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.

𝐼𝜂 finds the maximum probability lower bound 𝜂 that one can consistently assign to all
formulas in a knowledge base; if 𝜂 is equal to 1 then the knowledge base is consistent. In our
setting, it means interpreting a DB as a PSAT instance, where every element in the DB is assigned
probability 𝜂, and every (ground) integrity constraint is assigned a probability 1. Thus, given
a DB 𝐷, a set of integrity constraints 𝒞, and a probability threshold 𝜂 ∈ [0, 1], we define the
PSAT instance Γ𝒞,𝜂(𝐷) = {𝑃 (𝑒) ≥ 𝜂 | 𝑒 ∈ 𝐷} ∪ {𝑃 (𝑔(𝑐)) = 1 | 𝑔(𝑐) is a ground constraint
for 𝑐 ∈ 𝒞}, which enables the following definition.

Definition 4 (Probabilistic measure ℐ𝜂). Given any DB 𝐷 and a set of integrity constraints 𝒞, the
inconsistency measure ℐ𝜂 is such that ℐ𝜂(𝐷) = 1−max

{︀
𝜂 ∈ [0, 1] | Γ𝒞,𝜂(𝐷) is satisfiable

}︀
.

Thus, ℐ𝜂(𝐷) is one minus the maximum probability lower bound one can consistently assign
to all elements in 𝐷. For the database of our running example we have that ℐ𝜂(𝐷𝑒𝑥) = 1 because
the maximum probability that can be assigned to (the contradictory) element 𝑒2 is zero.

4. Complexity of Database Inconsistency Measures

We investigate the data-complexity of the following three decision problems, which intuitively
ask if a given rational value 𝑣 is, respectively, lower than, greater than, or equal to the value
returned by a given IM when applied to a given database. Observe that every IM returns a rational
number, including ℐ𝜂 (as shown in [48]).

Definition 5 (Lower (LV), Upper (UV), and Exact Value (EV) problems). Let ℐ be an IM.
Given a DB 𝐷 over a fixed database scheme with a fixed set of constraints, and a positive value
𝑣 ∈ Q>0, LVℐ(𝐷, 𝑣) is the problem of deciding whether ℐ(𝐷) ≥ 𝑣. Given 𝐷 and a non-negative
value 𝑣′ ∈ Q≥0, UVℐ(𝐷, 𝑣′) is the problem of deciding whether ℐ(𝐷) ≤ 𝑣′, and EVℐ(𝐷, 𝑣′) is
the problem of deciding whether ℐ(𝐷) = 𝑣′.

We also consider the problem of determining the IM value.

Definition 6 (Inconsistency Measurement (IM) problem). Let ℐ be an inconsistency measure.
Given a DB 𝐷 over a fixed database scheme with a fixed set of constraints, IMℐ(𝐷) is the
problem of computing the value of ℐ(𝐷).



LVℐ(𝐷, 𝑣) UVℐ(𝐷, 𝑣) EVℐ(𝐷, 𝑣) IMℐ(𝐷)
def. indefinite def. indefinite def. indefinite def. indefinite

ℐ𝐵 𝑃 𝑐𝑜𝑁𝑃 -c 𝑃 𝑁𝑃 -c 𝑃 𝐷𝑝 𝐹𝑃 𝐹𝑁𝑃

ℐ𝑀 𝑃 𝑐𝑜𝑁𝑃 -h, 𝐶𝑁𝑃 𝑃 𝑁𝑃 -h, 𝐶𝑁𝑃 𝑃 𝐷𝑝-h, 𝐶=𝐷
𝑝 𝐹𝑃 # · 𝑐𝑜𝑁𝑃

ℐ𝑃 𝑃 Σ𝑝
2-c 𝑃 Π𝑝

2-c 𝑃 𝐷𝑝
2 -c 𝐹𝑃 𝐹𝑃Σ

𝑝
2 [𝑙𝑜𝑔 𝑛]

ℐ𝐴 𝐶𝑃 𝐶𝑁𝑃 𝐶𝑃 𝐶𝑁𝑃 𝐶𝑃 𝐶=ℬ(𝑁𝑃 ) #𝑃 -c #𝑃 -h, # · 𝑐𝑜𝑁𝑃

ℐ𝐻 𝑐𝑜𝑁𝑃 -c 𝑁𝑃 -c 𝐷𝑝-c 𝐹𝑃𝑁𝑃 [𝑙𝑜𝑔 𝑛]-c
ℐ𝐶 𝑐𝑜𝑁𝑃 -c 𝑁𝑃 -c 𝐷𝑝-c 𝐹𝑃𝑁𝑃 [𝑙𝑜𝑔 𝑛]-c
ℐ𝜂 𝑐𝑜𝑁𝑃 -c 𝑁𝑃 -c 𝐷𝑝 𝐹𝑃𝑁𝑃

Table 2
Complexity of Lower Value (LV), Upper Value (UV), Exact Value (EV), and Inconsistency Mea-
surement (IM) problems for definite and indefinite databases. For a complexity class 𝒞, 𝒞-c (resp.,
𝒞-h) means 𝒞-complete (resp., 𝒞-hard); only 𝒞 means membership in 𝒞. For two classes 𝒞, 𝒞′,
the separation by a comma means 𝒞-hard and in 𝒞′.

A summary of the complexity results obtained for the above-mentioned problems is given
in Table 2. We found that while ℐ𝐵 , ℐ𝑀 , and ℐ𝑃 become tractable for definite DBs and the
complexity of ℐ𝐴 decreases, ℐ𝐻 , ℐ𝐶 and ℐ𝜂 remain as hard as in the propositional case [10] even
under data complexity for both definite and indefinite DBs. Moreover, while ℐ𝐵 , ℐ𝑀 , and ℐ𝑃 are
tractable for definite DBs, for indefinite DBs they are intractable. Specifically, the complexity of
LV, UV, and EV for ℐ𝐵 and ℐ𝑃 is in the first and second level of the polynomial hierarchy [49],
respectively, while that for ℐ𝑀 relies on classes from the counting polynomial hierarchy [50] (as
that for ℐ𝐴)—we briefly recall complexity classes in Appendix A. Except for the measures ℐ𝐵 ,
ℐ𝑀 , and ℐ𝑃 that are tractable in the case of definite DBs, for indefinite DBs the complexity of
the function problem IM ranges from being in the classes 𝐹𝑁𝑃 for ℐ𝐵 , 𝐹𝑃𝑁𝑃 [𝑙𝑜𝑔 𝑛] for ℐ𝐻 and
ℐ𝐶 , 𝐹𝑃𝑁𝑃 for ℐ𝜂, and 𝐹𝑃Σ𝑝

2[𝑙𝑜𝑔 𝑛] for ℐ𝑃 to the counting class # · 𝑐𝑜𝑁𝑃 [51], which includes
#𝑃 [52], for ℐ𝑀 and ℐ𝐴.

It is worth noting that almost all the results in Table 2 hold even if the set of integrity constraints
consists of FDs only. On the one hand, all the membership results trivially hold for FDs since
they have been shown to hold for DCs. On the other hand, all the hardness results except the
𝐷𝑝

2-hardness for EVℐ𝑃 , the 𝐷𝑝-hardness for EVℐ𝐻 , and the 𝐹𝑃𝑁𝑃 [𝑙𝑜𝑔 𝑛]-hardness for IMℐ𝐻
can be shown to hold for FDs [1].

5. Conclusions and Future Work

We have introduced a framework for measuring inconsistency in DBs that relies on absolute IMs,
measuring by some criteria the total amount of inconsistency. In contrast, relative IMs recently
explored in [53] provide a ratio of the amount of inconsistency w.r.t. some parameter, e.g. the
size of the DB. Many interesting issues concerning IMs in DBs remain unexplored. We plan to
extend our work to other types of integrity constraints, and in particular to inclusion dependencies.
Also, we plan to identify tractable cases for the hard measures, possibly exploiting connections
with work done on inconsistent DBs, and devise efficient algorithms for evaluating IMs. In this
regard, a dichotomy for FDs for the problem of computing the cost of a cardinality repair (that is
equivalent to computing the value of measure ℐ𝐻 ) for definite DBs has been recently presented
in [54]. In fact, the polynomial-time 2-approximation given in [54] entails an approximability
result for the problem IMℐ𝐻 . The IMs we have considered work at the tuple-level, without
distinguishing inconsistencies arising from different (sets of) attributes, which is another issue



we want to address in the future by following the idea of dimensional inconsistency measures
proposed in [55] for spatio-temporal databases, where the dimensions considered are those
concerning space, time, and (moving) objects [56, 57]. Finally, as indefinite DBs considered in
this paper allow the representation of a form of incomplete information (disjunctive information),
another interesting direction for future work is considering other forms of incomplete information
such as maybe information [17] as well as dealing with databases with null values [16, 58].

A. Appendix: Complexity Classes

The classical classes Σ𝑝
𝑘,Π

𝑝
𝑘 and ∆𝑝

𝑘, with 𝑘 ≥ 0, are defined as follows [49]: i) Σ𝑝
0 = Π𝑝

0 = ∆𝑝
0 =

𝑃 ; ii) Σ𝑝
1 = 𝑁𝑃 and Π𝑝

1 = 𝑐𝑜𝑁𝑃 ; iii) ∆𝑝
𝑘 = 𝑃Σ𝑝

𝑘−1 , Σ𝑝
𝑘 = 𝑁𝑃Σ𝑝

𝑘−1 , and Π𝑝
𝑘 = 𝑐𝑜Σ𝑝

𝑘, ∀𝑘 > 0.
Thus, 𝑃 𝒞 (resp., 𝑁𝑃 𝒞) denotes the class of the decision problems that can be solved in polynomial
time by using an oracle in the class 𝒞 by a deterministic (resp., non-deterministic) Turing machine.
It holds that Σ𝑝

𝑘 ⊆ ∆𝑝
𝑘+1 ⊆ Σ𝑝

𝑘+1 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸 and Π𝑝
𝑘 ⊆ ∆𝑝

𝑘+1 ⊆ Π𝑝
𝑘+1 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸.

Moreover, a decision problem is in 𝐷𝑝
𝑘 iff it is the conjunction of a problem in Σ𝑝

𝑘 and a problem
in Π𝑝

𝑘. 𝐷𝑝
1 is also denoted as 𝐷𝑝. It holds that 𝐷𝑝 ⊆ ∆𝑝

2.
We also use the classes 𝐶𝑃 [59] and 𝐶𝑁𝑃 from the counting polynomial hierarchy defined

in [50]. These classes rely on a counting quantifier 𝐶 defined as follows. Given a predicate
𝐻(𝑥, 𝑦) with free variables 𝑥 and 𝑦, 𝐶𝑘

𝑦𝐻(𝑥, 𝑦) holds iff |{𝑦 : 𝐻(𝑥, 𝑦) is true}| ≥ 𝑘, i.e., the
counting quantifier is true for predicate 𝐻 and bound 𝑘 iff the number of values of 𝑦 such that
𝐻(𝑥, 𝑦) holds is at least 𝑘. The polynomially bounded version of the counting quantifier is
defined as follows. Given a class 𝒞 of decision problems, we say that a problem 𝐴 is in 𝐶𝒞 iff
there is a problem 𝐵 ∈ 𝒞, a polynomial-time computable function 𝑓 , and a polynomial 𝑝 such
that 𝑥 is a positive instance of 𝐴 iff 𝐶𝑓(𝑥)

𝑦, |𝑦|≤𝑝(𝑥)(𝑥, 𝑦) ∈ 𝐵. That is, instance 𝑥 ∈ 𝐴 iff there are
at least 𝑓(𝑥) many 𝑦’s whose size is polynomially bounded by that of 𝑥 such that a predicate
for (𝑥, 𝑦) holds, with checking the predicate being in 𝐵. The class 𝐶𝑃 coincides with the class
𝑃𝑃 of the decision problems that can be solved in polynomial time by a probabilistic Turing
machine [59, 50]. The relationships between the classes 𝑁𝑃 , 𝐶𝑃 and 𝑐𝑜𝑁𝑃 are as follows:
𝑁𝑃 ⊆ 𝐶𝑃 and 𝑐𝑜𝑁𝑃 ⊆ 𝐶𝑃 . Differently from 𝑁𝑃 that is closed under union and intersection
and is not known to be closed under complement, the class 𝐶𝑃 is closed under complement.
Like 𝑁𝑃 , 𝐶𝑃 is closed under union and intersection, though this question remained open for
several years [60]. Like 𝐶𝑃 , 𝐶𝑁𝑃 is closed under complement. It holds that 𝐶𝑃 ⊆ 𝐶𝑁𝑃 .
Moreover, 𝐶𝑁𝑃 = 𝐶ℬ(𝑁𝑃 ), where ℬ(𝑁𝑃 ) is the Boolean closure of 𝑁𝑃 [50], that implies
that 𝐷𝑝 ⊆ ℬ(𝑁𝑃 ) and 𝐶𝑁𝑃 = 𝐶𝐷𝑝. The class 𝐶=𝒞 is defined exactly as 𝐶𝒞 except that the
counting quantifier holds iff it is satisfied by equality.
𝐹𝑃 (resp., 𝐹𝑁𝑃 ) is the class of the function problems that can be solved by a deterministic

(resp., non-deterministic) Turing machine in polynomial time. 𝐹𝑃 𝒞 is the class of functions
computable by a deterministic polynomial-time Turing machine using a 𝒞-oracle. Thus, FPNP

(resp., FPΣ𝑝
2 ) is the class of problems that can be solved by a polynomial-time Turing machine

that can ask a polynomial number of queries to an 𝑁𝑃 oracle (resp., Σ𝑝
2 oracle). If a logarithmic

number of queries is asked by the machine, then we have the class FPNP [log𝑛] (resp., FPΣ𝑝
2[log𝑛]).

Finally, given a class 𝒞 of decision problems, # · 𝒞 is the class of the counting problems
defined by means of witness functions 𝑤 that assign to a given input 𝑥 a set 𝑤(𝑥) of witnesses.
Herein, a counting problem returns the cardinality |𝑤(𝑥)| of a set of witnesses. For the witness
function 𝑤, (i) for every input 𝑥, the size of every witness 𝑦 ∈ 𝑤(𝑥) is polynomially bounded by
that of 𝑥; and (ii) given 𝑥 and 𝑦, deciding whether 𝑦 ∈ 𝑤(𝑥) is in class 𝒞. A canonical problem
for # · 𝑃 is counting the satisfying assignments of a SAT formula. This problem is in #𝑃 [52],
which coincides with # · 𝑃 . It holds that # · 𝑃 ⊆ # · 𝑐𝑜𝑁𝑃 and # · 𝑐𝑜𝑁𝑃 = # ·∆𝑝

2.
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