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Abstract
In the healthcare domain, the analysis of images and omics data by means of methods based on Artificial Intelligence (AI) is
increasingly providing meaningful insights into a number of diseases. However, accurate diagnoses and effective treatments
require, in general, complex and multimodal analyses of medical data; making fruitful use of such data, due to their complex,
sensitive and heterogeneous nature, is not straightforward. In recent years, Machine Learning and Deep Learning techniques
emerged as powerful tools to perform specific disease detection and classification. In this work, we describe the ongoing
projects of our research group related to this field.
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1. Introduction
With the advancement of technology and the availabil-
ity of data, Artificial Intelligence (AI) has become an
essential tool for medical professionals to improve pa-
tient outcomes, optimize treatment plans, and facilitate
the diagnosis of various medical conditions. In particular,
AI has been extensively applied in medical imaging and
omics analysis, which has led to more accurate diagnoses
and personalized treatment plans. Among the different
approaches of AI, Deep Learning (DL) has become a pop-
ular method for medical image analysis due to its ability
to automatically learn relevant features from images and
provide accurate results.

Medical imaging is a technique used to create vi-
sual representations of the internal anatomy of the hu-
man body for clinical analysis and medical intervention.
Medical imaging techniques include X-rays, magnetic
resonance imaging (MRI), computed tomography (CT),
positron emission tomography (PET), and ultrasound
imaging. AI-based techniques have been developed to
analyze medical images and provide accurate diagnoses
for various medical conditions, such as cancer, cardiovas-
cular diseases, and neurological disorders. Unfortunately,
collecting large medical image datasets is typically a non-
trivial process. Consequently, it is not always possible
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to acquire the huge amounts of data needed for effec-
tively tackling more general tasks, such as the diagnosis
of several diseases. In this context, novel applications
have been proposed to allow models to learn continu-
ously from new streams of data without forgetting the
previously learned knowledge. This is the principle of
Continual Learning (CL), a novel paradigm by which the
trained model is computed via data streams where tasks
and data are only available over time. With this approach,
the model can incrementally learn and autonomously
change its behavior without forgetting the original task
[1]. Indeed, in medical contexts, the training from scratch
of models that would be able to accomplish and predict
a wide number of possible tasks and activities requires
a huge (annotated) dataset, containing, for example, all
possible disease or image modalities. This makes such
approaches non-scalable. In a more realistic scenario,
physicians receive a model already trained on typical
tasks and, when a (completely) new activity occurs, the
model can be trained again to solve new problems [2].

Considering the ability of DL to learn complex pat-
terns, such methods have been particularly successful
also in analyzing omics data. Omics analysis involves
the study of biological molecules, including DNA, RNA,
proteins, and metabolites. They can provide insights into
the underlying molecular mechanisms of diseases and
help identify biomarkers for diagnosis, prognosis, and
personalized treatment. AI-based techniques, particu-
larly DL, have been extensively applied in omics analysis,
including genomics, transcriptomics, proteomics, and
metabolomics. DL methods have been shown to provide
accurate predictions of disease outcomes, discover novel
biomarkers, and support clinicians in the proper treat-
ment design. In the field of functional genomics, starting
from the results of the Human Genome Project, the evo-
lution of high-throughput and next-generation sequencing
techniques provide big volumes of genomic-scale data.
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Figure 1: Example of images in MedMNIST dataset. Source: https://medmnist.com/

Indeed, by using such sequencing techniques it is pos-
sible to measure the expression of thousands of genes
for each patient and hence to collect quantitative Gene
Expression Profiles (GEP) to be used for research and
clinical purposes. In recent years, DL has been widely
adopted in this field, providing breakthrough results and
meaningful insights into the relationship between ge-
nomics and cancer. A number of recent studies propose
and evaluate new approaches for feature selection (FS)
on GEP for cancer diagnosis and prognosis[3]. They aim
to select the most informative genes able to characterize
classes and identify groups of patients.

Although very promising, DL models are in general
not immediately interpretable, making it difficult to un-
derstand the causal relationship between the inputs and
their outcomes. In the bioinformatics domain, this is an
even more severe problem. Models interpretability is
indeed crucial to understand, for example, in the case
of genomics, how the expression of a gene affects the
progression of oncological disorders.

In this context, the adoption of Explainable Artificial
Intelligence (XAI) methods has started to gain momen-
tum for interpretability purposes as well as to enhance
FS [4, 5, 6].

More in general, the black-box nature of Neural Net-
works (NNs) often limits the interpretability of their re-
sults. Advances in XAI provide various methods for inter-
preting black box models, offering a clearer understand-
ing of their predictions. For example, shapely Additive
ex-Planation (SHAP) [7] is a game theory-based approach
for interpreting black box models. It assigns an impor-
tance value, called a SHAP value, to each feature, based
on its contribution to the predictions. The SHAP method
provides a way to understand the underlying workings of

NNs predictions, leading to improved insights and better
decision-making. Another state-of-the-art XAI approach
for imaging is Gradient-weighted Class Activation Map-
ping (Grad-CAM) [8] which is a popular technique for
visualizing and understanding decisions made by a CNN
model. Specifically, it allows for visualizing the regions
of an input image that are most important for predicting
a particular class. In particular, Grad-CAM produces a
heatmap that highlights the relevant regions in the input
image that the model used during the decision-making
process.

Despite the increasing number of DL-based applica-
tions in medical imaging and omics analysis, there are
still challenges that need to be addressed, such as the
limited availability of high-quality annotated datasets,
the interpretability of DL models, and the generalization
of the models to new datasets. Therefore, our research
activities aim at facing such challenges by designing inno-
vative solutions based on DL. In the following sections,
we describe our research activities applied to medical
imaging, in Section 2, and genomics-scale data analysis,
in Section 3. Eventually, we discuss the future direction
and challenges for AI in the medical field and draw the
conclusion in Section 4.

2. AI for Medical Imaging

2.1. Continual Learning for medical
image classification

We proposed the use of CL approach to support DL archi-
tectures in classifying medical images [2]. In particular,
we used a collection of standardized biomedical photos,



Figure 2: Example results obtained using 2 different patients. From left to right: raw image (a), ground truth segmentation (b),
semantic segmentation obtained using the U-net network (c), semantic segmentation obtained includin ASP in the training (d),
post-processing applied on the results displayed in d (e).

MedMNIST v2 [9] that is composed of 12 datasets for 2D
images and 6 datasets for 3D. An example of the dataset
is shown in Figure 1.

We focused our experiments on the following data sets:
Colon Pathology, Dermatoscope, Retinal OCT, Blood Cell
Microscope, and Kidney Cortex Microscope. We used
and compared different CL strategies (i.e., Naive, Replay,
CWR*, ICaRL, Cumulative) [10].

Our results show that Replay strategies do not reach a
good performance; this is probably due to the unbalanced
distribution of images across classes and a high number
of images.

Instead, we found promising results for both CWR* and
ICaRL according to the accuracy and forgetting value.

2.2. XAI in Chest X-ray classification
We investigated the use of CNNs to perform multiple-
disease classification from Chest X-ray images [11]. Dis-
eases that are a matter of concern for our experiments are
COVID-19 and tuberculosis (TB) Pneumonia. In partic-
ular, we achieved promising results in the classification
task (i.e., Recall mean value: 0.89).

Furthermore, we analyzed the CNNs-based model to
identify the mechanisms and the motivations steering
NN decisions in the classification task. Specifically, we
used Grad-CAM to identify the image areas used by the
model to take a particular decision. The Grad-CAM tech-
nique uses the gradient information flowing into the final
convolutional layer of a NN to compute the importance
of each feature map. It then weights the activation maps
of the final convolutional layer based on the importance
of each feature map and averages them to produce a
heatmap that highlights the important regions in the
input image.

Then, the highlighted regions represent the most im-

portant features in the classification of a particular dis-
ease, as shown in Figure 3.

Once these regions are identified, they can be analyzed
to discover patterns in Chest X-ray images related to the
disease in question.

In addition to identifying patterns, we used these high-
lighted regions to analyze the correlation between these
areas and classification accuracy. This involves examin-
ing the performance of the model when these regions
are removed and comparing it to the performance when
the full image is used. If the removal of these regions re-
sults in a significant reduction in classification accuracy,
it suggests that these regions are indeed important for
accurate disease diagnosis.

In particular, in our experiments, we performed both
quantitative and qualitative analyses to confirm that the
portions identified by Grad-CAM are actually significant.
As for a quantitative assessment, a substantial decrease of
Recall after the removal (on average around 5%) is shown.
As for a qualitative assessment, we took advantage from
the TB dataset, which features labels provided by ex-
pert clinicians, representing the approximate location of
the abnormality in the lung. In many cases, Grad-CAM
highlights the same areas suggested by clinicians.

2.3. Segmentation
Semantic segmentation deals with labeling each pixel
on the image with a specific class. In the medical field,
semantic segmentation represents a huge breakthrough
and it has been widely used for the detection of tumors,
identifying different organs, and classifying specific tis-
sue [12].



Figure 3: Visual example of achieved results. For each diagnostic class, we show the raw Chest X-ray image (left) and
Grad-CAM result (right). Images on the right sides highlight the most important areas involved in the classification process.

2.3.1. Laryngeal Endoscopic Images

We proposed a DL-based approach to perform semantic
segmentation of Laryngeal Endoscopic Images [13, 14].
The dataset consists of 536 manually segmented in vivo
color images (512×512 pixels) of the larynx captured dur-
ing two different resection surgeries. In particular, im-
ages are categorized in 7 classes: void, vocal folds, other
tissue, glottal space, pathology, surgical tool and intubation.
In order to improve the quality of our prediction, we took
advantage of the potential coming from the declarative
nature of rule-based languages such as Answer Set Pro-
gramming (ASP). In particular, we included ASP in the
training to drive NN decisions and penalize misclassifi-
cation according to prior knowledge. Also, we refined
the prediction via rule-based methods, removing noise
(i.e., small “islands” of misclassified pixels) and wrong
predicted classes (i.e., classes that do not respect medical
requirements).

Figures 2 show a visual example of the results achieved
by U-Net on two images.

In general, our approach achieved a mean IoU value
higher than 0.7, with a relevant improvement after post-
processing.

3. AI for Omics Data Analysis
Functional genomics data, and in particular GEP datasets,
represent a valuable source of information in medicine:
they are indeed used for diagnosis, prevention, and pre-
cision medicine. However, their analysis results are chal-
lenging for three main reasons. The first one is the course
of dimensionality: a genomics dataset typically consists
of a very large number of genes (features) for a small

number of patients (samples); the second problem con-
cerns imbalanced classes: in most of the cases, there is a
significant difference between the number of instances
in each group of interest. Finally, sequencing data are
typically collected from multiple sources, different lab-
oratories, and sequencing tools. This results in noisy
datasets which are difficult to analyze [15].
We proposed a new algorithm for genomic-scale analysis,
based on DL and XAI, whose aim is threefold: first, select
the most meaningful genes for a regression/classifica-
tion problem; second, provide a more accurate prediction
model; third, quantify and evaluate the feature’s contribu-
tion to the predictions through XAI [16]. The proposed
algorithm is based on two main ideas: (1) recognize simi-
larly correlated features using clustered correlation ma-
trix and then filter the redundant information for each
group by using Autoencoders (AEs). In contrast with
previous works, where AEs are used for dimensional-
ity reduction [17], we implemented a mechanism to still
work at the level of the original features. We hence pro-
vide a more treatable dataset in terms of dimensionality,
without affecting interpretability; (2) we train NNs and
we iteratively select the most meaningful features using a
new ad-hoc defined XAI score. We eventually use the set
of selected features (from all the iterations) to train and
explain a final model. The proposed algorithm workflow
is shown in 4.
We used our algorithm for the GEP analysis of Chronic
Lymphocytic Leukemia (CLL) patients. The dataset was
composed of the GEP of 97 patients for 19367 genes. For
each patient a real-valued number was provided, indi-
cating, as a factor of prognosis, the time interval after
which the condition of the patient deteriorates. We dis-
tinguished two classes: a first one for patients whose
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Figure 4: As a preliminary step, the algorithm performs clustering of the correlation matrix to identify q clusters of similarly
correlated genes. For each cluster, an AE is trained by using genes as samples and patients as features. The q best-reconstructed
genes are then selected as the most representative of each cluster. A NN is trained for prediction using such genes. The ad-hoc
defined XAI-score is then used to select the most meaningful genes on the NN predictions. Such genes are removed from the
analysis and the algorithm iterate until the number of genes selected by the XAI-score is less than a certain threshold N. A
final model is trained and explained by using all the XAI-selected genes over the iterations.

Figure 5: On the left: beeswarm plot of SHAP values computed on the final model resulting from the algorithm. On the right:
the final set of genes selected according to the ad-hoc defined XAI-based score (Intensity) and Correlation

condition deteriorates in a period shorter than 24 months,
and a second class for the patients whose condition de-
teriorates in a period equal to or longer than 24 months.
We used the proposed algorithm for training a NN to
solve such a classification problem as well as to identify
a set of meaningful genes over the whole set of 19367.
Such selected genes, together with their ad-hoc defined
XAI-score are reported in Figure 5.
In a more general context, the proposed algorithm can be
suitably used as a tool in genomics to identify protective
(or not) sets of genes for a disease, suggesting potential
pathways for further medical investigation. Our prelimi-

nary study will evolve into a large-scale testing campaign
to assess the algorithm’s performance on a wide set of
state-of-the-art genomics datasets.

4. Conclusion
AI has been playing an increasingly important role in
the medicine and healthcare domain over the past few
years, particularly in the areas of medical imaging and
omics data analysis. Nevertheless, new techniques and
methods are needed for properly facing complex issues,
such as scarce or low-quality data, yet improving diagnos-



tic accuracy, disease prediction, and treatment planning,
leading to better patient outcomes and improved qual-
ity of life. However, the integration of AI into clinical
practice must be carefully managed to ensure that these
technologies are used ethically, responsibly, and safely.
Ongoing research and development in this field will be
critical to realizing the full potential of AI in medicine
and improving patient care.
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