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Abstract
In the last decade, deep learning models competed for performance at the price of tremendous computational costs. Such a
critical aspect recently attracted more attention for both the training and inference phases. The latter is obviously orders of
magnitude lower than the training complexity, but on the other hand, it contributes many times, which impacts efficiency on
edge or embedded devices. Inference can be made efficient through neural network pruning, which consists of parameters
and neurons’ removal from the model’s topology while maintaining the model’s accuracy. This results in reduced resource
and energy requirements for the models. This paper describes two pruning procedures for lowering the operations required
during the inference phase and a method to exploit the resulting sparsity. The same cannot be applied at training time: we
show it is possible to borrow similar ideas to reduce the cost of gradient backpropagation by disabling the computation for
selected neurons.
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1. Introduction
To achieve state-of-the-art performance, deep neural net-
works are widely used in various tasks, such as speech
recognition and computer vision. However, modern ar-
chitectures require many parameters to generalize well,
resulting in large model sizes, high computational and
memory resources, and significant energy consumption
during training and inference.

In this paper, we present our research on neural net-
work pruning, which involves removing the less essential
elements of the network to reduce the model resource
requirements. Specifically, we explore the design of prun-
ing procedures (Sec. 2 and Sec. 3), the effect of pruning on
network features (Sec. 4), and the practical application of
pruned networks to reduce energy consumption (Sec. 5).

We present two pruning techniques capable of squeez-
ing the model size incrementally during training: LOB-
STER [1], an unstructured approach that uses parameter
sensitivity as a regularizer, and SeReNe [2], a structured
procedure that evaluates the contribution of neurons to
the network’s output. Pruned networks obtained with
these techniques were used to assess the benefits of prun-
ing at inference time.
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To reduce the computational resources required to
train neural networks, we introduce NEq [3], a technique
to disable the computation of gradients of neurons that
have reached equilibrium: this amounts to pruning the
backpropagation graph and decreasing the number of
operations during training. This technique can reduce
the cost of training modern neural networks.

Our results demonstrate that neural network pruning
can significantly reduce the model size, computational
and memory resources, and energy consumption, while
maintaining or even improving performance. Our ap-
proach can be used to develop energy-efficient neural
networks, making them more sustainable and applicable
in real-world scenarios where energy consumption is a
critical factor.

2. LOBSTER
In this section, we present LOBSTER [1] (LOss-Based
SensiTivity rEgulaRization), an unstructured and gradual
pruning procedure.

LOBSTER uses a sensitivity-based regularization to
promote sparsity in the network topology. Specifically,
we define the sensitivity of a network parameter as the
derivative of the loss function with respect to that pa-
rameter. Parameters with low sensitivity have little im-
pact on the loss function when perturbed and can be
pruned without compromising performance. LOBSTER
achieves sparsity by gradually shrinking parameters with
low sensitivity using a regularize-and-prune approach.
The sensitivity is defined as
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Figure 1: Performance (Top-1 error) vs. ratio of pruned parameters for LOBSTER and other state-of-the-art methods over
different architectures and datasets. Source: [1].

𝑆(ℒ, 𝑤𝑛,𝑖,𝑗) = | 𝜕ℒ
𝜕𝑤𝑛,𝑖,𝑗

| , (1)

with ℒ representing the loss function and 𝑤𝑛,𝑖,𝑗 a param-
eter of the network.

LOBSTER allows training a network from scratch,
thanks to its loss-based sensitivity formulation. More-
over, it avoids additional derivative computations or
second-order derivatives, unlike other sensitivity-based
approaches.

Experiments on multiple architectures and datasets
demonstrate that LOBSTER outperforms several com-
petitors in multiple tasks. It achieves competitive com-
pression ratios with minimal computational overhead
and without compromising performance. The results of
the pruning procedure for LeNet-5 trained on the MNIST
dataset and ResNet-18 trained on ImageNet are shown
in Figure 1. LOBSTER achieves state-of-the-art sparsi-
fication and classification errors for both architectures.
Sparse VD [4] slightly outperforms all other methods in
the LeNet5-MNIST experiment at higher compression
rates.

3. SeReNe
Although LOBSTER can achieve high sparsity rates, the
sparsity is unstructured, meaning that the architecture
may not remove entire neurons, and the resulting model
can only be accelerated using specialized hardware and
software.

SeReNe [2] solves this issue by producing sparse net-
work topologies with a structure, hence consisting of
fewer neurons and, therefore, fewer operations during
inference. Our approach involves driving all the parame-
ters of a neuron toward zero, allowing us to prune entire
neurons from the network. To achieve this, we leverage
the concept of neuron’s sensitivity, defined as the varia-
tion of the network output with respect to the neuron’s
activity:

𝑆𝑛,𝑖(𝑦𝑁, 𝑝𝑛,𝑖) =
1
𝐶

𝐶
∑
𝑘=1

|
𝜕𝑦𝑁 ,𝑘

𝜕𝑝𝑛,𝑖
| , (2)

where 𝑦𝑁 represents the network’s output and 𝑝𝑛,𝑖 the
𝑛-th neuron of the 𝑖-th layer activity.

During training, all the parameters of low-sensitivity
neurons are shrunk, making it possible to remove them
from the network. When the ℓ2 norm of a neuron’s pa-
rameters approach zero, the neuron no longer emits sig-
nals (except for the bias), and can be pruned. We propose
an iterative two-step procedure to prune parameters be-
longing to low-sensitivity neurons. We ensure controlled
performance loss for the original architecture using a
cross-validation strategy.

Our approach allows us to learn network topologies
that are not only sparse, i.e., with few non-zero param-
eters, but also with fewer neurons. This can speed-up
the network execution by better using cache locality and
memory access patterns. We demonstrate the effective-
ness of SeReNe on multiple learning tasks and network
architectures, outperforming state-of-the-art references.
Finally, we show that structured sparsity provides ben-



Table 1
LeNet-5 trained on MNIST. Source: [2].

Approach
Remaining parameters (%) Compr.

Neurons
Network size [kB] Top-1

Conv1 Conv2 FC1 FC2 ratio .onnx .7z (%)

Baseline 100 100 100 100 1x [20]-[50]-[500]-[10] 1686 → 1510 0.68
Sparse VD [4] 33 2 0.2 5 280x - - 0.75

Han et al. [5] 66 12 8 19 11.9x - - 0.77

SWS [6] - - - - 162x - - 0.97

Tartaglione et al. [7] 67.6 11.8 0.9 31.0 51.1x [20]-[48]-[344]-[10] - 0.78

DNS [8] 14 3 0.7 4 111x - - 0.91

ℓ2+pruning 60.20 7.37 0.61 22.14 72.3 [19]-[37]-[214]-[10] 577 → 46 0.8

SeReNe 33.75 3.25 0.27 10.22 177.05x [11]-[26]-[113]-[10] 208 → 19 0.8

Table 2
ResNet-101 trained on ImageNet. Source: [2].

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1 Top-5

Conv1 Block1 Block2 Block3 Block4 FC1 ratio .onnx .7z (%) (%)

Baseline 100 100 100 100 100 100 1x 174.49 → 156.67 22.63 6.44
[64] [1408] [3584] [36352] [11264] [1000]

Sparse VD [4] - - - - - - 2.48x - 35.76 13.45

ℓ2+pruning 53.12 25.42 25.57 13.71 17.74 51.94 5.75x 172.94 → 32.93 28.33 9.18

[49] [1241] [3280] [33278] [11250] [1000]

SeReNe 55.36 24.27 23.79 11.24 14.81 40.82 6.94x 172.15 → 27.84 28.41 9.45

[49] [1197] [3142] [31948] [11249] [1000]

efits when storing the neural network topology and pa-
rameters. Table 1 shows the results obtained applying
SeReNe on the LeNet-5 architecture trained on MNIST.
SeReNe achieves a high compression ratio and pruned
neurons, outperforming the considered references. The
structured sparsity results in a significant decrease in
the uncompressed network storage footprint, with only
a slight 0.12% performance drop after compression. We
also tested our method on more challenging architectures
and datasets: Table 2 shows the results for ResNet-101
trained on ImageNet. The pruning procedure results in
around 86% of the parameters being pruned, and the re-
sulting network size is reduced from 156.67 MB to only
27.84 MB.

4. Structured pruning for
low-power devices

In this section, we present some empirical results that
demonstrate how pruning (especially structured prun-
ing) can produce a network model that requires fewer
resources to perform inference. To achieve this, we built
the simplify library [9], a PyTorch-compatible tool that
automates the process of optimizing the inference code
for pruned neural networks by removing the zeroed neu-

rons from the architecture. The resulting models do not
require any particular software or hardware to speed up
their inference.

We were able to perform benchmarks for both mobile
devices [10] and FPGA platforms [11], which demon-
strates the effectiveness of our approach. Specifically,
we evaluated the performance of the pruned neural net-
works on a range of devices, varying in terms of process-
ing power and memory capacity. Our results show that
the combination of pruning and Simplify optimization
outperforms the other techniques in terms of both infer-
ence speed and memory footprint. Table 3 and Table 4
shows the results for pruned and simplified network on
mobile devices and FPGAs respectively.

Overall, these results demonstrate the feasibility of
deploying pruned neural networks on various resource-
constrained devices, opening up new opportunities for
bringing deep learning to the edge.

5. Neurons at Equilibrium (NEq)
All the works presented up to this point focused on reduc-
ing the neural network’s inference time. However, in this
section, we present NEq [3], an approach that enables us
to shrink the cost of training by reducing the number of



Table 3
Experimental results for different network architectures and pruning strategies. Left: percentage of pruned parameters, size of
the simplified network topology, and size of the compressed bitstream. Right: inference time on different embedded devices:
Raspberry Pi 3B (RPi 3B), Huawei P20 (P20), Xiaomi MI 9 (MI9), and Samsung Galaxy S6 lite (S6L). Source: [10].

Dataset Architecture Pruning
Pruning Simplified Compressed Inference time [ms]
ratio [%] topology [MB] bitstream [MB] RPi 3B P20 MI9 S6L

CIFAR-10

VGG-16
No pruning - 60.0 3.6 647 204 153 251
LOBSTER 92.44 58.61 1.61 610 191 146 242
SeReNe 47.16 31.02 0.34 594 99 85 106

No pruning - 2.0 0.30 580 32 30 31
ResNet-32 LOBSTER 81.19 1.96 0.12 545 32 26 30

SeReNe 52.80 1.0 0.09 536 25 17 25

CIFAR-100 AlexNet
No pruning - 94.6 10.1 246 131 84 168
LOBSTER 98.90 48.84 0.40 224 95 67 120
SeReNe 59.87 37.07 0.20 186 75 53 96

ImageNet ResNet-101
No pruning - 178.4 26.24 11919 958 416 1008
LOBSTER 87.39 173.87 9.24 11879 956 403 985
SeReNe 1.09 172.53 7.51 11699 929 371 974

Table 4
Inference time, FPS, and speedup for ISIC classification and segmentation models for CPU and FPGA. Source: [11].

Task Model Device Inference time [ms] FPS Speedup

Classification

VGG16 CPU 1430.29 0.70 -
VGG16 FPGA 552.28 1.81 2.59×

VGG16-Quantized FPGA 229.93 4.35 6.22×
VGG16-HA FPGA 99.33 10.07 14.40×
VGG16-HCR FPGA 15.09 66.25 94.76×

Segmentation
SegNet CPU 3165.97 0.32 -
SegNet FPGA 757.22 1.32 4.18×

SegNet-Pruned FPGA 282.23 3.54 11.22×

operations of the backpropagation algorithm and the op-
timizer: if a neuron has achieved equilibrium, it does not
require weights update. Unlike pruning techniques, NEq
does not remove neurons from the model’s architecture:
it only prevents unnecessary weight updates, reducing
the number of operations performed by the optimizer and
by back-propagation. Our approach targets the reduction
of computational complexity during training.

To determine if a neuron reaches its equilibrium, we
evaluate its velocity term as

𝑣 𝑡Δ𝜙𝑖 = { 𝜙𝑡𝑖 +
𝑡
∑
𝛼=1

(−1)𝛼 [(𝜇𝑒𝑞)𝛼−1 + (𝜇𝑒𝑞)𝛼] 𝜙𝑡−𝛼𝑖 𝜇𝑒𝑞 ≠ 0

𝜙𝑡𝑖 − 𝜙𝑡−1𝑖 𝜇𝑒𝑞 = 0,
(3)

where 𝜙𝑡𝑖 = ∑𝜉∈Ξ𝑣𝑎𝑙
∑𝑀𝑖

𝑚=1 ̂𝑦 𝑡𝑛,𝑖,𝑚,𝜉 ⋅ ̂𝑦 𝑡−1𝑛,𝑖,𝑚,𝜉 is the cosine sim-
ilarity between all the outputs of the 𝑖-th neuron at time
𝑡 and at time 𝑡 − 1 for the whole validation set Ξ𝑣𝑎𝑙. We
can say that the 𝑖-th neuron is at equilibrium when it can
satisfy |𝑣 𝑡Δ𝜙| < 𝜀 for some 𝜀 ≥ 0.

Table 5 presents the results of some of our experiments,
where we compare NEq with a “stochastic” approach that
randomly halts the update of a neuron at every epoch
with some probability 𝑝. We test three different probabil-
ities: 0.2, 0.5, and a probability that is as close as possible
to the average achieved by NEq, denoted with an asterisk
(*). We evaluate the effectiveness of our approach by
analyzing the average computational complexity of the
backpropagation for a single update iteration, expressed
in FLOPs, and the network’s generalization capability at
the end of training. Our results show that NEq consis-
tently reduces the number of FLOPs with minimal or no
performance drop. While the amount of saved compu-
tation is similar for the stochastic approach with fixed
probabilities in all the considered scenarios, the loss in
performance varies depending on the architecture and
dataset. In contrast, NEq adapts to the particular setup
and saves the largest FLOPs for a given performance,
with a lower performance loss even when the stochastic
approach is tested with the same FLOPs saving.



Table 5
Results of the application of NEq, compared to the stochastic approach. We report the average FLOPs per iteration at
backpropagation, and the final performance of the model evaluated on the test set (values annotated with † report the
classification accuracy, values annotated with ‡ report the mean IoU). Source: [3].

Dataset Model Approach Bprop. FLOPs per iteration Performance

ImageNet-1K ResNet-18

Baseline 3.64G ± 0.0G 69.90% ± 0.04%†

Stochastic (𝑝 = 0.2) 2.94G ± 0.00G (-19.26%) 69.42% ± 0.16% (-0.48%)†

Stochastic (𝑝 = 0.5) 1.85G ± 0.00G (-49.11%) 69.18% ± 0.03% (-0.72%)†

Stochastic∗ 2.82G ± 0.00G (-22.58%) 69.45% ± 0.06% (-0.45%)†

Neq 2.80G ± 0.03G (-23.08%) 69.62% ± 0.06% (-0.28%)†

COCO DeepLabv3

Baseline 305.06G ± 0.0G 67.71% ± 0.02%‡

Stochastic (𝑝 = 0.2) 248.69G ± 0.00G (-18.48%) 67.11% ± 0.02% (-0.60%)‡

Stochastic (𝑝 = 0.5) 163.42G ± 0.00G (-46.43%) 66.91% ± 0.04% (-0.80%)‡

Stochastic∗ 229.00G ± 0.00G (-24.93%) 67.02% ± 0.03% (-0.69%)‡

Neq 217.29G ± 0.04G (-28.77%) 67.22% ± 0.04% (-0.49%)‡

6. Conclusion
In this paper, we shared the research experiences we
developed in the context of compressing large neural
models. Our story has begun with classical unstructured
pruning of model parameters, e.g. connections between
neurons, where the target is the highest sparsification
with the lowest performance impairment. This approach,
while very sound from a theoretical point of view, does
not guarantee significant efficiencing of the inference
phase, when the model is deployed on actual devices.
Therefore, we described the structured pruning alter-
natives that aim at removing whole neurons, thus un-
covering the real pruning potential in saving memory
and reducing the latency. Finally, we show that pruning
can also be exploited at training time to cut the cost of
backward propagation. In particular, we introduced NEq,
a technique to disable the computation of gradients of
neurons that have reached equilibrium: this amounts to
pruning the backpropagation graph, and decreasing the
number of operations during training. This technique
can reduce the cost of training modern neural networks.
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