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Abstract
The increased digitization of the labour market has given researchers, educators, and companies the means to analyze
and better understand the labour market. However, labour market resources, although available in high volumes, tend
to be unstructured, and as such, research towards methodologies for the identification, linking, and extraction of entities
becomes more and more important. Against the backdrop of this quest for better labour market representations, resource
constraints and the unavailability of large-scale annotated data cause a reliance on human domain experts. We demonstrate
the effectiveness of prompt-based tuning of pre-trained language models (PLM) in labour market specific applications. Our
results indicate that cost-efficient methods such as PTR and instruction tuning without exemplars can significantly increase
the performance of PLMs on downstream labour market applications without introducing additional model layers, manual
annotations, and data augmentation.
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1. Introduction
The increasing availability of raw labour market infor-
mation allows businesses, educational facilities and job
seekers to gain a clear and more complete understanding
of the labour market [1]. While the increasing volumes
of available data provide opportunities, there are several
challenges towards fully utilizing the data.

On the one hand, the majority of available data is of an
unstructured nature, with a lack of large-scale annotated
datasets that could be used in training, and/or fine tun-
ing of models for downstream applications. On the other
hand, there is much effort in creating structured repre-
sentations of labour market data, through taxonomies
and ontologies such as ESCO,1 ISCO,2 or O*NET.3

Leveraging structured ontologies to enrich and inter-
pret unstructured labour market data has considerable
research attention, through skill and occupation recog-
nition, classification, and linking [2, 3, 4, 5, 6]. These
different downstream tasks can prove invaluable in en-
abling better workforce and labour market insights, iden-
tification of trends and temporal patterns, and providing
structured data or enrichments that can be applied as
feature representation for job or career path recommen-

RecSys in HR’23: The 3rd Workshop on Recommender Systems for
Human Resources, in conjunction with the 17th ACM Conference on
Recommender Systems, September 18–22, 2023, Singapore, Singapore.
$ j.vrolijk@uva.nl (J. Vrolijk); david.graus@randstadgroep.nl
(D. Graus)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://esco.ec.europa.eu/en
2https://www.ilo.org/public/english/bureau/stat/isco/isco88/
3https://www.onetcenter.org/overview.html

dations [7, 8, 9].
Many of these approaches rely on supervised learning,

where a commonly identified limitation in literature is
the availability of multilingual, labour market and task-
specific datasets. In addition, due to the dynamic nature
of the labour market makes it very difficult to keep more
structured representations of the labour market up-to-
date and relevant (i.e. labour market ontologies and tax-
onomies); updating and maintaining these knowledge
structures is typically done by human domain experts,
making them time- and resource-intensive, and meaning
that whenever such a structure is updated, datasets for
supervised learning may become obsolete.

In this paper, we propose a novel method that relies
on pretrained language models (PLMs), prompt tuning
with rules (PTR) [10], and the structured multilingual
ESCO taxonomy, to efficiently and cheaply generate large
amounts of labeled data for learning a variety of down-
stream tasks for extracting structured information from
unstructured labour market data, specifically: (i) rela-
tion classifiers, that aim to predict the type of relation
between skills and occupations, (ii) entity classifiers, that
aim to classify labour market entities as skill or occu-
pation, (iii) entity linkers, which aims to link various
surface forms of labour market entities to their canonical
underlying skill or occupation entity, and (iv) question
answering approaches, that aim to answer the correspon-
dence between a descriptive text and the associated skill
or occupation.

In this paper, we aim to address the following research
questions:

1. Are "out-of-the-box" PLMs capable of generaliz-
ing learned behavior to labour market specific
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applications?
2. Does instruction, and sub-prompt finetuning a

PLM on a mixture of task-specific (i.e. general and
labour market specific) datasets increase the per-
formance on labour market specific benchmarks?

3. Is the tuned PLM able to transfer the learned be-
havior across labour market specific tasks?

In this paper, we demonstrate domain-specific prompt-
based tuning and its effect on the performance of skill
extraction, occupation classification, link prediction, and
entity linking tasks. We propose leveraging instruction
tuning without exemplars (i.e. no examples at infer-
ence time) and sub-prompts for a more cost-efficient
solution for downstream labour market applications
[11, 12, 13, 10]. We provide manually constructed tem-
plates that encode the knowledge embedded in the ESCO
occupation and skill taxonomies. We benchmark differ-
ent configurations of finetuning the PLMs, to demon-
strate the effectiveness of e.g., adding instructions or
sub-prompts.

2. Related Work
Recent successes of PLMs such as GPT [14], BERT [15],
RoBERTA [16] and T5 [17] have demonstrated the use-
fullness and adaptability of the transformer architecture.
Although these PLMs can capture rich knowledge from
massive corpora, a fine-tuning process with extra task-
specific data is still required to transfer their knowledge
for downstream tasks. Besides fine-tuning language mod-
els for specific tasks, recent studies have explored better
optimization and regularization techniques to improve
fine-tuning.

Several works try to integrate ontological and/ or taxo-
nomical knowledge into task-specific models, to improve
the performance of downstream applications. Take the
work by [18], who introduced KnowBert, a methodology
that explicitly models entity spans in the input text. They
further use an entity linker to retrieve relevant embed-
dings of the entity from a knowledge base to enhance
their representations. Another approach would be the
work by [19], the so-called TransE model, that focused pri-
marily on representing hierarchical relationships. Similar
to our work, TransE models multi-relational data from
knowledge bases (i.e. triplestores) to improve perfor-
mance for link prediction [19].

[20] took a different approach, proposing ERNIE, a
method that consists of two stacked modules, namely the
T-Encoder responsible for capturing lexical and syntac-
tic information, and the K-Encoder responsible for aug-
menting this lexical and syntactical information with ex-
tra token-oriented knowledge from the underlying layer
[20]. Lastly, we have ESCOXLM-R that employ further
pre-training on the ESCO taxonomy [6]. In addition to

the masked language modelling (MLM) pre-training ob-
jective, the authors also introduce the so-called ESCO
Relation Prediction (ERP) task to internalize knowledge
of non-hierarchical relations within ESCO [6].

Another pre-training-based approach that leverages
a self-supervised method to pre-train a deeply joint
language-knowledge foundation model from text and
knowledge graphs at scale is the Deep Bidirectional
Language-Knowledge Graph Pretraining (DRAGON) pro-
posed by Yasunaga et al. [21]. Results from the paper
indicate that DRAGON outperforms existing LM and
LM+KG models on diverse downstream tasks in particu-
lar on complex reasoning about language and knowledge.

Despite the success of fine-tuning PLMs, there is a big
gap between the MLM objective and fine-tuning objec-
tives for downstream applications. Prompt-based learn-
ing has been a widely explored method that uses tem-
plates to transform the input into classification prob-
lems, and as such, closes the gap between task-specific
and MLM objectives [22]. [23] propose KnowPrompt, a
method for task-oriented prompt template construction
where they use special markers to highlight entity men-
tions in the template. [24] also proposed a template-based
NER model using BART. The model enumerates all pos-
sible text spans and considers the generation probability
of each type within manually crafted templates [22, 24].

Since the manual creation of templates is labour-
intensive, methods for the automated generation of
prompts and labels are well-researched. In principle, a
prompt consists of a template and label words. As such,
Schick and Schütze [13] first searches the label word
space for the manually created templates. Next, gradient-
guided search automatically generates both templates
and label words. Compared to human-picked prompts,
most auto-generated prompts cannot achieve comparable
performance [10].

Prior literature has shown that increasing the num-
ber of tasks in finetuning improves the generalization to
unseen tasks [11]. Experiments from Chung et al. [11]
show that "instruction finetuning" scales well with the
number of tasks and the size of the model. Wei et al.
[25] further suggests that instruction-tuned models re-
spond better to continuous outputs from prompt tuning.
Prompt tuning on FLAN even achieves more than 10%
improvement over a non-instruction-tuned equivalent
model [25].

3. Methodology

3.1. Preliminaries
3.1.1. ESCO

ESCO (European Skills, Competences, Qualifications and
Occupations) is the European multilingual classification



[MASK]the electron beam welder
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Figure 1: Visual representation of proposed method: PTR (shown on top) with three sub-prompts (yellow, green, and red)
with MLM heads predicting [MASK] tokens, given their respective verbalizers (inspired by Han et al. [10]). An outtake of the
ESCO taxonomy represented in the bottom, with hierarchical (red) relations and non-hierarchical (rest), and how the entities
and relations populate the template (dotted lines).

of skills, competences and occupations. In total, ESCO
describes 3,008 occupations and 13,980 knowledge, skill,
and competences in 28 different languages.

ESCO has both hierarchical and non-hierarchical re-
lationships: hierarchical relationships, or hypernymies,
are relations of the form x is-a y [26, 4]. Non-hierarchical
relationship are essentially those relationship that are not
hierarchical. For example: “Java Programming is an es-
sential skill for a Software Developer” is a non-hierarchical
relationship, whereas, “a Software Developer is a Infor-
mation and Communications Technology Professional” is
hierarchical.

3.1.2. PLMs: T5 & FLAN-T5

In this paper we rely on the T5 PLM, since the text-to-text
framework allows us to directly apply the same model,
objective, training procedure, and decoding process to

every task we consider [17]. In addition, we turn to
an instruction-tuned variant of the T5 model: FLAN-
T5. Instruction-based finetuning has shown to improve
zeroshot performance on unseen tasks [25, 11]. In this
paper we aim to study whether this property also applies
to the domain-specific unseen tasks that we propose.

3.2. Prompt-Tuning with Rules
In this paper, we utilize the ESCO taxonomy as back-
ground knowledge for the Prompt-Tuning with Rules
(PTR) approach proposed by Han et al. [10].

PTR builds on prompt tuning methods that rely on
cloze tests, where the PLM is applied to replace or fill in a
missing word in a sentence. A so-called verbalizer maps
a fixed set of class labels (e.g., positive, negative) to
underlying label words (e.g., “great”, “terrible”), so that



by predicting a label word, the PLM effectively classifies
a sentence.

PTR extends this prompt tuning approach with prior
knowledge encoding, i.e., leveraging logic rules to encode
prior knowledge about tasks and classes into prompt
tuning, and efficient prompt design, through composing
multiple sub-prompts and combining into prompts [10].

Illustrative example We illustrate how we leverage
the ESCO taxonomy to construct and populate sub-
prompts, as proposed by Han et al. [10].

Consider a (sub-)prompt template for entity type classi-
fication, as; "[CLS] the [MASK] [ENTITY]." Which
can be instantiated for the skill "ensure correct metal tem-
perature," as: "[CLS] the [MASK] ensure correct
metal temperature," and for the occupation "elec-
tron beam welder," as: "[CLS] the [MASK] electron
beam welder."

Finally, we can combine the above instantiations
of the same sub-prompt into a final prompt, that
spans entity type and relation classification, as such:
"[CLS] the [MASK]1 ensure correct metal
temperature [MASK]2 the [MASK]3 electron
beam welder".

PTR relies on so-called "verbalizers" that map class
labels to label words. In our example, the class labels
{"skill", "occupation"} for entity classification are mapped
to (the same) label words {"skill", "occupation"} in place of
[MASK]1 and [MASK]3, and the class label {"isEssential-
Skill", "isOptionalSkill"} in place of [MASK]2 are mapped
to the corresponding label words {"is an essential skill
for", "is an optional skill for"} in the case of relation clas-
sification.

i.e., 𝜙[𝑀𝐴𝑆𝐾]1 and 𝜙[𝑀𝐴𝑆𝐾]3 aim to assign an en-
tity class through predicting a label word from X, and
𝜙[𝑀𝐴𝑆𝐾]2 aims to classify the type of relation between
the two through label words Y.

3.3. Instruction-based Finetuning
Instruction-based finetuning aims to teach a PLM to per-
form certain tasks, by responding to instructions in nat-
ural language [25]. For two of our three datasets (i.e.,
the QA and EL), we manually constructed templates that
result in natural language instructions that describe the
task for that dataset to the PLM.

While scaling language model sizes seems to be a reli-
able predictor for improved model performance, it comes
at the price of high compute. Therefore, development of
compute-efficient techniques that improve performance
at the cost of a relatively small amount of computational
resources is important. Instruction-based finetuning im-
proves performance of PLMs on evaluation benchmarks
by up to 9.4%, requiring only 0.2% of the pre-training

Q: Answer the following with yes/no

Does "Assign and manage staff tasks in areas such
as scoring, arranging, copying music and vocal
coaching." describe "manage musical staff"?

A: [MASK]

Figure 2: Visual representation of method: Instruction tuning
for the QA examples. The instruction is prepended to the
question, instructing the PLM how to proceed in answering
the given question.

compute [11]. Furthermore, Chung et al. [11] demon-
strate that smaller models that are instruction tuned can
outperform larger models without it.

Figure 2 demonstrates how we leverage the ESCO tax-
onomy to construct instruction tuning templates for the
QA examples.

4. Experimental Setup
The aim of this paper is to leverage prompt-based and
instruction-based finetuning, to cost-efficiently optimize
PLMs performance on four downstream labour market
tasks. As described in the previous section, we propose
four different tasks for evaluation, namely: entity classi-
fication (EC), relation classification (RC), entity linking
(EL), and question answering (QA).

4.1. Datasets
We evaluate PTR and instruction-based finetuning in
labour market-specific downstream tasks through bench-
mark datasets we generate through populating hand-
crafted templates, with instances from the ESCO taxon-
omy.

We generate three datasets of prompts, that address
four different tasks; i) entity classification (EC) and ii)
relation classification (RC) as illustrated above (combined
in a single set of prompts), in addition to iii) entity linking
(EL), and iv) question answering (QA).

Construction of a self-supervised dataset comprises
three different components; i) a subset of ESCO relations,
ii) a template to map the triples associated to the relations



EC + RC QA EL

# total 123,752 27,792 195,350
# skills 13,890 13,890 13,890
# occupations 3,008 3,008 3,008
# essential 64,877 - -
# optional 58,875 - -
# altlabels - - 96,117
# pos 123,752 13,896 97,675
# neg 0 13,896 97,675

Table 1
Statistics of the different datasets. Since, the train and evalua-
tion sets differ due to random sampling or the choice for K,
we can only report the total counts.

to (sub-)prompts, and iii) verbalizers that map class labels
to label words.

4.1.1. Entity Classification + Relation
Classification

To build the entity classification and relation classifica-
tion (EC + RC) dataset, we leverage the isEssentialFor and
the isOptionalFor relations as found in ESCO. For both
entity classification and relation classification, we largely
follow the work by Han et al. [10], i.e., we extract all
triples that have as subject a skill entity, the isEssential-
For or the isOptionalFor as predicate, and finally as object
an occupation entity.

Formally, our triples look as follows:

< 𝑆𝑘𝑖𝑙𝑙, 𝑟, 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 >, (1)

where 𝑟 ∈ {𝑖𝑠𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐹𝑜𝑟, 𝑖𝑠𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙𝐹𝑜𝑟}. The
entity and relation classification template 𝑇 (𝑥) is formal-
ized as:

𝑠1 = 𝑇ℎ𝑒 [𝑀𝐴𝑆𝐾] 𝑒𝑛𝑡𝑖𝑡𝑦 [𝑆𝑘𝑖𝑙𝑙]

𝑠2 = 𝑇ℎ𝑒 [𝑀𝐴𝑆𝐾] 𝑒𝑛𝑡𝑖𝑡𝑦 [𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛]

𝑠1 [𝑀𝐴𝑆𝐾] 𝑠2

Lastly, we formulate two different verbalizers 𝜙1 and 𝜙2

such that:

𝜙1 = 𝐶1 → 𝜈1, (2)

𝜙2 = 𝐶2 → 𝜈2, (3)

where 𝐶1={’Occupation’, ’Skill’} and the accompanying
label words 𝜈1 = {’occupation’, ’skill’}. Similarly, 𝐶2 =
{’isOptionalFor’, ’isEssentialFor’}, and the label words 𝜈2
= {’is optional for’, ’is essential for’}.

Note that in our case, the verbalizers are one-to-one
mappings, whereas in the PTR methodology, many-to-
one mappings are also supported. For the entity and

relation classifications we have not included the possi-
bility of "no relation" and/ or "no entity", for the simple
reason of self-supervision. While we fully believe these
negative examples to be useful for better learning how
to recognize entities and the relation connecting entities,
they would require manual annotation, and as such fall
beyond the scope of this research.

4.1.2. Entity Linking

To model entity linking, we rely on the alternativeLabel
relation in ESCO, i.e., our task is to map an entity surface
form or entity mention (alternative label), to the canonical
entity name (i.e., label).

We can formalize the entity linking task as the follow-
ing triplestore:

< 𝑒 , 𝑟 ,𝑚 >, (4)

where 𝑒 ∈ 𝐸 the set of skill and occupation entities,
and 𝑚 ∈ 𝑀 the set of skill and occupation mentions
(i.e., alternative labels for the ESCO skill and occupation
labels). Lastly, 𝑟 ∈ 𝐶 , meaning that the predicate can be
either signalling that the mention is an alternative label
or not an alternative for the given ESCO entity.

Given an entity, 𝑒 and a mention 𝑚, we are inter-
ested in finding out what type of relation there exists
between 𝑒 and 𝑚. As such, we formalize the entity
linking as a masked language problem via 𝑥𝑝𝑟𝑜𝑚𝑝𝑡 =
𝑒 [𝑀𝐴𝑆𝐾] 𝑚.

In Figure 1, the blue boxes represent two examples of
alternative labels for the occupation electron beam welder.

We formalize the template for our second set of
prompts as:

e [MASK] m

We formulate the verbalizer 𝜙 such that:

𝜙 = 𝐶 → 𝜈, (5)

where

𝐶 = {alternativeLabel, noAlternativeLabel}
𝜈 = {is an synonym for, it not a synonym for}

For each generated example from the ESCO triple-
stores, we also randomly sample negative examples by
randomly shuffling the objects and subject of the positive
triplestores and changing the predicate label to noAlter-
nativeLabel.

4.1.3. Question Answering

For the QA task, we use so-called instructional templates
as defined by Chung et al. [11] and Wei et al. [25]. Instruc-
tional templates prepend an instruction to the prompt.



In our case, we prepend the example and question with
"Answer the following with yes/no", instructing the PLM
how to answer the question that follows.

The question and answering dataset is constructed
with the descriptions of the entities in ESCO. As such,
we can construct a dataset as:

< 𝑒, {description} > (6)

Next, we define the template 𝑇 (𝑥) as depicted in the
example in Figure 2. Where we first prepend the instruc-
tion "Q: Answer the following with yes/no" to the body
"Does [description] describe [entity label]", to finish it off
with "A: [MASK]".

The verbalizer 𝜙 then maps the {′𝑦𝑒𝑠′,′ 𝑛𝑜′} to the
label words {′𝑦𝑒𝑠′,′ 𝑛𝑜′}.

We randomly sample correct examples, in addition to
generating negative examples by randomly sampling a
skill or occupation entity, and pairing this with a ran-
domly sampled description from the set of available de-
scriptions, and tagging the label for the answer to be "no".
This results in a balanced dataset, with a fifty-fifty split
of positive and negative examples.

4.2. Experiments
In order to answer our research questions, we propose
the following experiments.

4.2.1. Experiment 1: Zero-shot Learning

First, to better understand the labour market-specific
tasks that we propose, we first test off-the-shelve PLMs
in a zero-shot setting, using our own generated prompt
datasets for inference.

In addition, to test the hypothesis that FLAN-T5’s mul-
titask learning enables a better ability of learning addi-
tional (domain-specific) tasks, in our first experiment we
directly compare off-the-shelve T5 and FLAN-T5 models,
on each of our three datasets.

4.2.2. Experiment 2: K-shot Learning

Next, having established the performance differences
between the off-the-shelve PLMs, we study the impact of
few-shot learning to steer the best performing PLM from
experiment 1 towards the domain-specific data and tasks,
where we perform an ablation study on the number of
examples (𝐾) we use for few-shot learning.

This is motivated by a.o., Han et al. [10], who report
comparable or even better results in the few-shot scenario
than e.g., methods that inject special symbols to index the
positions of entities and methods that inject both type
information and special symbols. The authors sample 𝐾
training instances and 𝐾 validation instances per class

from the original training set and development set, and
evaluate the models on the original test set.

We propose using 𝐾 = {64, 128, 256} sets.

4.2.3. Experiment 3: Multitask Learning

After having studied the effect of few-shot learning, we
perform an ablation study to measure the effect of learn-
ing multiple tasks in parallel, i.e., transfer learning from
one task to the other.

We do so by fine-tuning the FLAN-T5 on all combina-
tions of tasks from a single to the full set, i.e., we train
FLAN-T5 on the RC+EC and consecutively on the EL and
QA tasks. We then test the performance of the result-
ing model on all three data sets to identify whether, e.g.,
prompt tuning on EL can help performance on the QA
dataset.

4.3. Implementation Details
Our model implementation relies on the HuggingFace,
PyTorch and OpenPrompt frameworks (albeit with some
customizations), proposed by Wolf et al. [27], Paszke et al.
[28] and Ding et al. [29] respectively.

For the zero-shot approach of the first experiment,
we turn to T5 and FLAN-T5, for which we use the im-
plementation by the original authors [17, 25, 11]. More
specifically, we use the 3 billion parameter checkpoints
as found on huggingface under the names; ’t5-3b’, and
’google/flan-t5-xl’.

To answer our second research question we adjust
the number of examples used for training the models by
comparing different values for parameter 𝐾 (i.e., number
of samples). We optimize our PTR and Instruction-based
finetuning models using AdamW, with a learning rate of
respectively 3𝑒 − 5 and 2𝑒 − 5. Furthermore, we reset
the weight decay on the normalization layers and bias.
We fine-tune all models using batch size 32, and train
the PTR models for 10 epochs, whereas, we train the
instruction based finetuning models for only 5. The best
model checkpoint is selected.

4.4. Evaluation metrics
In order to systematically evaluate few-shot performance,
we randomly pick K samples from the total dataset, and
use the remaining data to sample evaluation sets. This
sampling is done 9 times, each iteration we sample 512
random examples from the remaining data after the train/
test split. We report F1 scores averaged over 9 runs in
addition to standard deviations (±𝑠𝑡𝑑). We argue that
sampling multiple splits gives a more robust measure of
the actual performance.

Since the single EC+RC dataset contains two separate
tasks, it is important to avoid contamination between the



Model EC+RC QA EL

T5 48.07±.19 33.75±.2 33.89±.37

FLAN-T5 44.54±.66 83.44±.44 57.38±.60

Table 2
F1 scores of experiment 1, where we compare 0-shot perfor-
mance between T5 and FLAN-T5.

train and test sets. Therefore, after the initial division,
we check all individual skill and occupation entities from
the train set, and remove all relations in the test set that
contain any of those entities. For the QA and EL training
data the risk of contamination is mitigated through the
train/test split (i.e., after the normal split unique entries
belong either to the train or test set).

5. Results
In this section we present and summarize the results of
our experiments described in Section 4.2.

5.1. Experiment 1: Zero-shot learning
See Table 2 for the comparison of T5 and FLAN-T5 in
0-shot learning, i.e., applied off the shelve for inference
on our generated prompts.

First, we see that FLAN-T5 substantially outperforms
the non instruction-based finetuned counterpart T5 on
the QA (83.44 vs. 33.75 respectively) and EL tasks (57.38
vs. 33.89 respectively), but slightly underperforms on the
EC+RC tasks, at 44.54 for FLAN-T5 and 48.07 for the T5
model.

A potential explanation for this might be the fact that
FLAN-T5 is trained on a variety of entity classification
tasks that do not involve skill and occupation entities (i.e.,
the primary focus is on person and organisation entities).
As such, the learned patterns may interfere with the
PLMs ability to recognize skills and occupations.

5.2. Experiment 2: K-shot learning
In Table 3 we show the performance differences at differ-
ent levels of 𝑘 in the fewshot learning scenario.

First, we note how the performance of FLAN-T5 +
PTR substantially outperforms both T5 and FLAN-T5
from Table 2 with F1 scores between 50.42 and 51.60
across different values of 𝐾 , compared to 48.07 and 44.54
respectively for the zero-shot T5 and FLAN-T5.

Next, we see that different values of 𝐾 are optimal
for different tasks; with maximum scores at 𝐾 = 128
for EC+RC and QA at 51.60 and 94.23 respectively, and a
maximum score of 98.06 for 𝐾 = 256 for EL.

The scaling of the model potentially gives us insights
into how sample efficient the model is in learning the
behavior. Larger models are in-general more sample
efficient and as such require less examples to learn a
particular behavior [30].

5.3. Experiment 3: Multitask learning
Finally, we show the impact of learning single or mul-
tiple tasks at once. Results of our ablation experiments
are shown in Table 4, where we vary with models that
are trained on all combinations of different train sets of
prompts, which we evaluate on each of the three test set
of prompts.

Here, we note that first, in some cases adding prompts
for additional tasks increases performance for the origi-
nal tasks, consider, e.g., the case for (testing on) EL, where
adding QA prompts yields an F1-score of 97.61 (row 4, Ta-
ble 4), and adding EC+RC prompts even gets performance
up to 98.48 (row 5, Table 4), whereas the model tuned
with EL prompts only, scores 95.17 F1 (row 3, Table 4).

However, this does not apply for QA nor EC+RC,
where only tuning with respectively QA and EC+RC
prompts yields the highest score, nor for the case of train-
ing on all additional prompts—these runs (bottom row in
Table 4) do not outperform the best performing models
tuned on one or two sets of prompts.

Overall, this indicates that multitask learning can con-
tribute in some cases to increased performance.

5.3.1. Unseen task performance

Supporting these observations is the pattern around per-
formance on unseen tasks, i.e., models tuned on (a) task(s)
that do not include the test task used for evaluation. Con-
sider, e.g., EL; models that have not seen any EL prompts
in their tuning stage, perform substantially worse with
58.96 for EC+RC and QA, 57.40 for EC+RC, and 60.31 for
QA, versus between 95.17 and 98.48 for models that have
seen EL prompts.

Similar patterns are seen with the other tasks, where
for EC+RC models that have not seen any EC+RC
prompts perform between 45.05–47.68, and around 50.55
and 51.60 for models that have. For QA, we see that
models without QA prompts in tuning score between
68.22–87.98, and models that have range from 93.24 to
94.23.

However, increasing the number of tasks in tuning
does increase performance for unseen tasks in two out of
three cases: when testing on the EC+RC prompts, a model
that combines QA and EL prompts in tuning scores 47.68,
and outperforms QA-only (45.93) and EL-only (45.04)
models. Similarly, for QA, combining EC+RC and EL
prompts yields an F1-score of 87.98, whereas EC+RC-
only yields 78.36, and EL-only a mere 68.22 F1.



EC+RC QA EL
Model ↓/𝐾 → 64 128 256 64 128 256 64 128 256

FLAN-T5 + PTR 50.42 51.60 50.87 - - - - - -
FLAN-T5 + Instruction tuning - - - 92.09 94.23 93.71 89.26 95.17 98.06

Table 3
F1 scores for experiment 2, comparing the impact of number of instructions (e.g., 𝐾) across the three benchmark datasets (top
row).

Train ↓ / Test → EC+RC QA EL

EC+RC 51.60±.47 78.36±.86 57.40±.16

QA 45.93±.26 94.23±.24 60.31±.12

EL 45.04±.26 68.22±.70 95.17±.39

EC+RC, QA 51.34±.23 93.24±.21 58.96±.52

EC+RC, EL 51.21±.45 87.98±.31 98.48±.29

QA, EL 47.68±.23 93.69±.24 97.61±.14

all 50.55±.70 94.10±.27 98.19±.32

Table 4
F1 scores of our previously best performing model: FLAN-T5
with 128-shot learning, on the different combinations of tasks
we propose.

Finally, models that are tuned on all tasks do not out-
perform models tuned on two tasks in two out of three
sets (only for QA does the full model perform better than
models trained on two tasks).

6. Discussion
Our paper explored three different questions. First, are
"out-of-the-box" PLMs capable of generalizing learned be-
havior to labour market specific applications? In order to
answer this question, we created three self-supervised
benchmarks from the ESCO taxonomy.

To answer this question, we performed zero-shot com-
paring between T5 and the instruction-tuned FLAN-T5,
that has seen 1,836 additional tasks in prompts. Results
showed that FLAN-T5 substantially outperforms T5 on
two labour market-specific tasks, with a 49.7% increase in
F1 score for QA, and 23.5% for EL. However in the EC+RC
task where T5 outperforms FLAN-T5 by 3.53%. These
findings confirm that overall, the instruction-tuned FLAN
PLM benefits from having seen multiple tasks. The result
for the EC+RC task can be explained by "misleading"
patterns learned from the more general finetuning on
named entity recognition (i.e., recognition of "Persons"
and "Organizations", etc.). However, further investiga-
tions and ablation studies on general task tuning and its
exact influence on the performance is needed for a more
definite answer.

On the second question, whether instruction and/or

sub-prompt finetuning a PLM on a mixture of task-specific
datasets could increase the performance on labour market
specific benchmarks?, we performed experiment 2, where
we varied our 𝐾 instruction samples for training our
best-performing PLM: FLAN-T5. Results demonstrated
that PTR-based finetuning with 128 examples leveraged
the best performance. Overall, this yielded an 7.06% per-
formance increase over the zero-shot performance of
FLAN-T5. Additionally, further scaling of the number of
examples, to 256, yielded only a 6.24% increase, suggest-
ing no further performance increases for further scaling
of the number of examples. Our results seem to indicate
that using PTR with labour market specific examples
yields improvements above and beyond the 1836 tasks
FLAN-T5 was tuned on.

Lastly, we investigated the effects of transfer learning
across labour market specific tasks.

Here, our results suggest that first, learning more tasks
does yield increased performance on new, unseen tasks.
At the same time, the best-performing models often were
those that were trained on the evaluation task exclusively
(for EC+RC and QA). Overall, unsurprisingly, directly
learning the task at hand yields the best performing mod-
els, but the fact that multiple tasks improve performance
for unseen tasks does suggest that the domain-specific
knowledge that the PLMs receive in the tuning stage,
do help solving the unseen task at hand. Prompt tun-
ing on the QA and EL (i.e., instruction based finetuning)
examples lead to a 3.14% improvement on the EC + RC
task. Similarly, prompt tuning on the EC + RC and QA
examples yielded a 1.58% increase in performance on the
EL task, with an overall 4.54% increase over the zero-shot
scenario. A possible explanation, "the ability to recog-
nize whether an entity is an occupation or skill help
discriminate whether two entities are not synonymous".
However, training on all tasks did not seem to increase
the overall performance on any of the tasks. We believe
this is potentially caused by overlaps in learned behavior
from these different labour market specific tasks and the
1836 tasks FLAN-T5 is already pre-trained on.

6.1. Implications
Finetuning PLMs is often an effective transfer mechanism
in NLP. However, an entire new model is often required



for every task. Our results indicate that cost-efficient
methods such as PTR and instruction-based finetuning
can significantly increase the performance of PLMs on
downstream labour market applications without intro-
ducing any additional model layers, manual annotations,
and data augmentation.

Furthermore, our results suggest that while training
on general tasks can increase the overall performance on
labour market specific applications, providing the general
models with labour market specific examples increases
performance above and beyond the general finetuning.

6.2. Limitations
There are several limitations to the current study that
should be considered. First, we only used one-to-one
verbalizers between our classes and label words. Meaning
that every class label is mapped to one respective label
word. This would be a fruitful area for future research,
e.g., occupation can also be rewritten as job, or work.
Adding these alternatives to the label words will probably
yield improved performance over the current one-to-one
verbalizers.

Second, for the purpose of this initial exploration we
focused primarily on binary classification tasks. As such,
we did not incorporate the possibility for a non-existing
relation in the PTR finetuning.

Third, while the underlying methods support multi-
ple languages, we chose to conduct our experiments on
English. In part because the descriptions used in the QA
dataset are not complete for all 28 languages for which
ESCO is available. A future study could assess the perfor-
mance of PTR and instruction based finetuning without
examples in other languages.

Lastly, this study primarily focused on the actual
isEssentialFor and isOptionalFor relations as they were
present in the ESCO taxonomy. As such, we did not imple-
ment the reversed and or negative relations, even though
this was suggested to further increase performance.

7. Conclusion
In this study, we demonstrated that FLAN-T5 substan-
tially outperforms T5 on the QA and EL tasks with re-
spectively 49.7% and 23.5% F1 scores. However, on the
remaining EC+RC task, T5 outperformed FLAN-T5 by
3.53%. Overall it seems that PLMs benefit from instruc-
tion based finetuning even on labour market specific
benchmarks. However, if the task at hand is very differ-
ent from the task at hand, it can potentially hurt perfor-
mance, as demonstrated with the EC+RC tasks.

Furthermore, our results seem to indicate that using
PTR with labour market specific examples yields improve-
ments above and beyond the 1,836 tasks FLAN-T5 was

tuned on. Unsurprisingly, directly learning the task at
hand leads to the best performing models. But, results
also show prompt tuning on other labour market specific
tasks can improve performance on unseen tasks. For
example, prompt tuning on EC+RC and QA improved
the performance on the EL task with 1.58%, and prompt
tuning on QA and EL improved the performance on the
EC+RC task by 3.14%.

There are several limitations to the current study; i)
we solely used one-to-one verbalizer, ii) we focused pri-
marily on binary classification tasks, iii) we only focused
on English, and lastly we only used relations actually
present in the ESCO taxonomy, meaning that we did not
implement the reversed relations. Future studies could
address the limitations of this study by using increment-
ing the amount of used label words, adding negative and
reversed relations, and using ESCO to construct parallel
datasets for all available languages.
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