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Abstract
This paper describes our participation in the CLEF2023 CheckThat! Lab [1], specifically focusing on
Task 1, which addresses Checkworthiness in Multimodal and Unimodal Contents [2]. The task involves
determining the worthiness of fact-checking a claim in a tweet. Traditionally, this decision relies on
professional fact-checkers or human annotators who consider auxiliary questions like verifiability and
harmfulness. Task 1 comprises two subtasks: Subtask 1A focuses on assessing the Checkworthiness
of tweets containing both text and images, offered in Arabic and English, while Subtask 1B involves
assessing the Checkworthiness of text snippets from tweets or debate/speech transcriptions available
in Arabic, English, and Spanish. For subtask 1B, we proposed different methods based on pre-trained
transformer models and sampling techniques that helped us achieve the first position in Arabic, the
second position in Spanish, and the fifth position in English. For subtask 1A, we presented various
multimodal fusion strategies utilizing pre-trained language and vision models. Although we obtained a
commendable third-place result in the English Multimodal dataset, unfortunately, we did not secure a
position on the leaderboard.
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1. Introduction

Selecting claims for verification is a complicated task. Fact-checking is a time-intensive process,
and it can be challenging to determine if a claim is genuine or misleading. Fact-checkers must
weigh the potential harm caused by misleading claims, such as risks to health, democracy, and
emergencies, against the effort needed to verify them. Additionally, fact-checkers strive to
maintain impartiality, so their tools mustn’t introduce unfair biases.

In some countries, reliable official statistics are not published by governments, making sure
claims related to statistics are nearly impossible to validate. While simple algorithms can often
identify viral content, assessing the “Checkworthiness” of a claim is more complicated. For
instance, breaking news stories can be both popular and accurate. Due to the limited resources
of fact-checking organizations, many check-worthy claims go unchecked. Historical lists of
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checked or unchecked claims are unreliable indicators for determining which similar claims
should be fact-checked.

Claims can be found across various sources, such as news websites, social media platforms
(text, audio, or video), and broadcast media. Fact-checkers use diverse technologies to monitor
these sources, including news alerts, automatic speech recognition, and translation tools, which
rely on underlying AI technologies.

2. Related Work

Fact-checkers face a deluge of claims and must determine which are worth investigating, leading
to the development of AI solutions such as those in the CLEF CheckThat! lab 2018-2022 [3][4]
[5][6][7] and within dedicated fact-checking organizations like Full Fact [8]. The problem is
often approached as a ranking task, where systems assign Checkworthiness scores to increase
transparency and help fact-checkers prioritize or filter claims. Fact-checkers can then provide
feedback on the scores’ accuracy, which can be used to refine the system.

ClaimBuster [9] is the first Checkworthiness detection system employed by fact-checkers in
the Duke Reporters’ Lab project [10]. The system was trained on a manually annotated dataset
to differentiate between non-factual sentences, unimportant factual claims, and check-worthy
factual claims using features such as sentiment, named entities, part-of-speech tags, words, and
claim length. The dataset used in this study included historical US election debate transcripts
from 1960 to 2012, covering 30 debates and 28,029 transcribed sentences. Each sentence was
labeled with the speaker (candidate or moderator) [9]. The ClaimBuster system utilized an SVM
classifier and a variety of features, such as sentiment, TF-IDF word representations, part-of-
speech (POS) tags, and named entities. It provided a Checkworthiness ranking based on the
SVM prediction scores but did not attempt to replicate the Checkworthiness decisions of any
specific fact-checking organization. CNN and PolitiFact later evaluated the system.

Pepa Gencheva et al. [11] focused on US 2016 Presidential Campaign debates and used existing
annotations from nine respected fact-checking organizations (PolitiFact, FactCheck, ABC, CNN,
NPR, NYT, Chicago Tribune, The Guardian, and Washington Post). Their model considered the
context of each sentence, including its position within a more extended intervention by one of
the actors, and predicted (i) whether any fact-checking organizations would select the target
sentence and (ii) whether a specific organization would select it.

Konstantinovskiy et al. [12] developed a more detailed schema and dataset for Checkwor-
thiness annotation of TV shows. Gencheva et al. [13] created a dataset of political debates by
observing which sentences were fact-checked and modeled the sentence structure and claim
context. This dataset was used in the ClaimRank system [14] and extended for multitask learn-
ing from nine fact-checking organizations [15]. Further extensions were used in the CLEF
CheckThat! lab, with participants developing models based on pre-trained transformers like
BERT and RoBERTa [16, 17, 18]. The task was also modeled using positive unlabeled learning
[19].

Social media companies are also working to combat misinformation and disinformation on
their platforms. Facebook developed a proprietary tool to identify claims for fact-checking [20].
They use user flags indicating potentially false posts and features from reply content to predict



Table 1
Multimodal dataset description for subtask 1A

Language Class Train Dev Dev-Test Total
English No 1,635 182 345 2,162

Yes 664 74 180 918
Total 2,299 256 525 3,080

Arabic No 1,421 207 402 2,030
Yes 776 113 220 1,109
Total 2,197 320 622 3,139

Table 2
Multigenre dataset description for subtask 1B

Language Class Train Dev Dev-Test Total
Arabic No 4,301 789 682 5,772

Yes 1,758 485 411 2,654
Total 6,059 1,274 1,093 8,426

English No 12,818 4,270 794 17,882
Yes 4,058 1,355 238 5,651
Total 16,876 5,625 1,032 23,533

Spanish No 5,280 2,161 4,296 11,737
Yes 2,208 299 704 3,211
Total 7,488 2,460 5,000 14,948

if a post contains false information, updating the model based on fact-checker feedback.

3. Data Overview

In this section, we discuss the different datasets related to the subtasks (subtask 1A: Multimodal,
and subtask 1B: Multigenre) provided as part of the Checkthat 2023 competition [21, 2].

3.1. Datasets Description

Checkworthiness consists of determining whether a given tweet is worth fact-checking. This
task is multimodal (text+image) provided in English and Arabic (see table 1), and multigenre
(text only) provided in Arabic, English, and Spanish (see table 2).

3.2. Class imbalance

Observation of Table 1 and Table 2 reveals the presence of class imbalance. In order to address
this particular concern, we employ a set of techniques [22] as described subsequently.

3.2.1. Class weight

Class weighting is a technique in machine learning that assigns different weights to address
imbalanced data. It emphasizes underrepresented classes during training, improving perfor-



mance in terms of precision, recall, and F1-Score, making it valuable for real-world scenarios
with important minority classes or higher costs for misclassification.

3.2.2. Upsampling

Upsampling is a method used to tackle imbalanced data by increasing the number of samples in
the minority class. It can improve performance for underrepresented classes but has drawbacks
like overfitting due to duplicated or similar instances, leading to limited generalization on
unseen data.

3.2.3. Downsampling

Downsampling is a method used to handle imbalanced data by decreasing the number of
instances in the majority class. It aims to achieve balance by randomly removing samples from
the majority class. However, downsampling has limitations, including the loss of valuable
information and smaller dataset size, which may not be ideal for training complex models.

4. Subtask 1A: Checkworthiness-multimodal

4.1. Method

This subtask consists of checking the worthiness of a given tweet by considering both text
and associated image + its OCR text. Our methodology involves the integration of text and
image features through the utilization of diverse techniques, encompassing pre-trained models,
classifiers, and fusion strategies. This amalgamation allows for the effective combination
and synthesis of textual and visual information, leading to a comprehensive and enriched
representation of the data.

4.1.1. Pre-trained Models

We used several pre-trained models to extract features from both text and images:

• BERT: Bidirectional Encoder Representations from Transformers is a popular pre-trained
language model that effectively captures contextual information in a text [23].

• DistilBERT: A distilled version of BERT that retains most of its performance while being
smaller and faster [24].

• CLIP-ViT16 and CLIP-RN50: These models are part of the Contrastive Language Image
Pretraining (CLIP) framework [25], which learns joint image and text representations.
ViT16 is based on the Vision Transformer architecture [26], and RN50 is based on a
ResNet-50 architecture [27].

• ViT: short for Vision Transformer [26]. It adapts the Transformer architecture, originally
designed for natural language processing, to process images by dividing them into non-
overlapping patches and treating them as tokens.

• ResNet: short for Residual Network, is a family of deep convolutional neural networks
introduced by He et al. in 2015 [27]. It employs residual learning to address the vanishing
gradient problem that arises in deep architectures.



Table 3
Classifier Parameters

Model Name Parameters / Late Fusion Strategy
RF1 Random Forest (1000 estimators)+class-weight
RF2 Random Forest (100 estimators)+class-weight
RF3 Random Forest (10 estimators)+class-weight
GB1 Gradient Boosting (100 estimators)
GB2 Gradient Boosting (1000 estimators)
MLP1 MLP(hidden_layer_sizes=(100, 50))
MLP2 MLP(hidden_layer_sizes=(1000, 50))
MLP3 MLP(hidden_layer_sizes=(1000, 500))
XGB1 XGBoost (100 estimators)
DNN1 DNN(4 hidden layers, 20 epochs)
DNN2 DNN(6 hidden layers, 20 epochs)
DNN3 DNN(10 hidden layers, 20 epochs)
SVM1 SVM(linear kernel)
SVM2 SVM(rbf kernel, C=5, gamma=’scale’)
SVM3 SVM(rbf kernel, C=8, gamma=’scale’)

4.1.2. Classifiers

After extracting features from the text and images, we combined these features using various
classifiers. Table 3 shows the used classifiers with their parameters:

• Random Forest (RF): An ensemble method that builds multiple decision trees and
combines their outputs [28].

• Gradient Boosting (GB): A boosting technique that builds a series of weak learners,
iteratively improving on their performance by focusing on misclassified examples [29].

• Multi-Layer Perceptron (MLP): A feedforward artificial neural network with one or
more hidden layers [30].

• XGBoost: An optimized distributed gradient boosting library designed to be highly
efficient, flexible, and portable [31].

• Deep Neural Network (DNN): A neural network with multiple hidden layers, allowing
for more complex feature representations [32].

• Support Vector Machine (SVM): A classifier that finds the optimal hyperplane to
separate different classes in a high-dimensional feature space [33].

4.1.3. Fusion Techniques

We used two main fusion techniques [34] to combine the features extracted from text and
images:

• Early Fusion: In this approach, features from both modalities are combined before being
fed into the classifier. This allows the model to learn joint representations of the input
data and capture the interactions between the modalities more effectively.



Table 4
Late fusion models and strategies

Model Name combined models Late Fusion Strategy
LF1 DistilBERT+VIT averaging
LF2 DistilBERT+VIT weighted averaging
LF3 DistilBERT+VIT trainable fusion layer
LF4 DistilBERT+VIT maximum probability

• Late Fusion: In this approach, the modalities are processed separately, and their outputs
are combined afterward. This allows each modality to be modeled independently, focusing
on the most discriminative features of each modality without being affected by noise
from the other modality.

Late fusion methods employed in the experiments are summarized in Table 4. They in-
clude averaging, weighted averaging, trainable fusion layer, majority voting, and maximum
probability.

4.2. Results and discussion

We evaluated the performance of different models and fusion techniques on the Dev-Test English
dataset of subtask 1A using the metrics of accuracy, F1-Score, precision, and recall. By analyzing
these results, we aimed to identify the most effective strategies for combining text and image
features in this specific case. From table 5, we have the following observations:

• The top-performing model, BERT+ResNet50 with early fusion, achieves a balanced F1-
Score of 0.7160, precision of 0.8056, and recall of 0.6444. Late fusion models, like Dis-
tilBERT+ViT transformer (LF3), show promise with an F1-Score of 0.7029, precision of
0.8271, and recall of 0.6111. The early fusion model with CLIP-RN50 and 10 hidden layers
DNN achieves the highest recall of 0.7944 but has lower precision (0.6059). Early fusion
captures modality interactions for higher F1-Scores and recall, while late fusion focuses on
discriminative features for higher precision. These observations highlight the trade-offs
and strengths of early and late fusion approaches in integrating multimodal information.

• During the evaluation cycle, we employed BERT+ResNet50 with a classification layer
and early fusion, which yielded an impressive F1-score of 0.704. It is important to
highlight that processing multimodal data demands significant resources. Unfortunately,
due to this limitation, we were unable to produce the required results within the evaluation
cycle deadline. Consequently, despite achieving a commendable third-place result, we did
not secure a position on the leaderboard.

5. Subtask 1B: Checkworthiness-multigenre

5.1. Method

This subtask consists of checking the worthiness of a given tweet by considering text only in
three languages: Arabic, English, and Spanish. The designated objective was accomplished



Table 5
English Multimodal models performance comparison

Model Method Accuracy F1-Score Precision Recall
clip-vit16+RF1 Early Fusion 0.7752 0.5597 0.8523 0.4167
clip-vit16+RF2 Early Fusion 0.7733 0.5576 0.8427 0.4167
clip-vit16+RF3 Early Fusion 0.7390 0.4669 0.7792 0.3333
clip-vit16+GB1 Early Fusion 0.7943 0.6276 0.8273 0.5056
clip-vit16+GB1+PCA Early Fusion 0.7714 0.6026 0.7459 0.5056
clip-vit16+GB2 Early Fusion 0.8038 0.6555 0.8235 0.5444
clip-vit16+MLP1 Early Fusion 0.7962 0.6646 0.7626 0.5889
clip-vit16+MLP2 Early Fusion 0.8114 0.6877 0.7956 0.6056
clip-vit16+MLP3) Early Fusion 0.8133 0.6957 0.7887 0.6222
clip-vit16+XGB1 Early Fusion 0.7810 0.6048 0.7928 0.4889
clip-rn50+RF1 Early Fusion 0.7714 0.5652 0.8125 0.4333
clip-rn50+MLP2 Early Fusion 0.8038 0.6709 0.7895 0.5833
clip-rn50+MLP3 Early Fusion 0.8000 0.6645 0.7820 0.5778
clip-rn50+MLP4 Early Fusion 0.8038 0.6791 0.7730 0.6056
clip-rn50+GB1 Early Fusion 0.7981 0.6443 0.8136 0.5333
clip-rn50+DNN1 Early Fusion 0.8133 0.7135 0.7531 0.6778
clip-rn50+DNN2 Early Fusion 0.8133 0.7118 0.7562 0.6722
clip-rn50+DNN3 Early Fusion 0.7524 0.6875 0.6059 0.7944
clip-rn50+1 Early Fusion 0.8095 0.6689 0.8279 0.5611
clip-rn50+SVM2 Early Fusion 0.8133 0.6859 0.8106 0.5944
clip-rn50+SVM3 Early Fusion 0.8152 0.6901 0.8120 0.6000
BERT+ResNet50 Early Fusion 0.8248 0.7160 0.8056 0.6444
DistilBERT+VIT Early Fusion 0.7848 0.6271 0.7724 0.5278
LF1 Late Fusion 0.8019 0.6232 0.8958 0.4778
LF2 Late Fusion 0.8171 0.6800 0.8500 0.5667
LF3 Late Fusion 0.8229 0.7029 0.8271 0.6111
LF4 Late Fusion 0.8019 0.6232 0.8958 0.4778

through the process of fine-tuning pre-trained language models in combination with sampling
techniques to address class imbalance.

5.2. Language models

5.2.1. English models

• RoBERTa [35] is an enhanced version of BERT, trained on a larger dataset without the
next sentence prediction task, resulting in improved performance.

• XLNet [36] is an advanced NLP model that combines masked language modeling and
autoregression techniques, introducing variations to the transformer structure.

• ALBERT [37] is a memory-efficient variant of BERT that reduces parameters and im-
proves speed while incorporating a Sentence Order Prediction (SOP) loss during training.

• BigBird [38] is a transformer model optimized for long sequences, using sparse attention
and a novel sentence-level training objective.



• GPT-2 [39] is a powerful language model trained on massive text data, capable of per-
forming various NLP tasks and applied in real-world applications.

5.2.2. Arabic models

• Arabert [40], a BERT-based language model, is optimized for Arabic NLP tasks, demon-
strating effectiveness in sentiment analysis, and text classification.

• ARBERT [41] is a large-scale pre-trained masked language model for Modern Standard
Arabic, based on BERT-base architecture, with 163 million parameters.

• MARBERT [41] is an Arabic language model pre-trained on a diverse Twitter dataset
specifically designed to handle Arabic dialect variations.

• ARAELECTRA [42] is an Arabic language representation model based on ELECTRA,
optimized for Arabic reading comprehension tasks.

5.2.3. Spanish models

• BETO [43] is a BERT model trained on a large Spanish language dataset using Whole
Word Masking, similar in size to BERT-Base.

• BERTIN [44] is a series of BERT-based models for Spanish, trained from scratch on the
Spanish portion of mC4 using Flax.

5.2.4. Multilanguall models

• BERT-base-multilingual [23] is a pretrained language model for cross-lingual transfer
learning, trained on a diverse corpus of 104 languages.

• XLM-RoBERTa [45] is a cross-lingual language model based on RoBERTa, pre-trained
on multilingual datasets and outperforming previous models.

• GPT-3 [46] is an advanced language model by OpenAI, known for its impressive text
generation and few-shot learning capabilities.

5.3. Results and discussion

We evaluated the performance of different models and sampling techniques on the Dev-Test
Arabic, English, and Spanish dataset of subtask 1B using the metrics of accuracy, F1-Score,
precision, and recall.

5.3.1. Arabic

Upon analyzing table 6, the following observations has been made:

• AraBERT achieves the highest accuracy of 0.6917, but considering class imbalance, ac-
curacy might not be the most suitable metric. The MarBERT + Downsampling model
performs best according to the F1-Score (0.6053), showcasing a good balance between
precision and recall. MarBERT + Downsampling exhibits a high recall of 0.8887, effec-
tively identifying a significant portion of Check-worthy tweets, albeit with a precision of



Table 6
Check-worthiness multigenre Arabic models evaluation

Model Accuracy F1-Score Precision Recall
MarBERT+Upsampling 0.6279 0.5730 0.5088 0.6557
MarBERT+Downsampling 0.5589 0.6053 0.4590 0.8887
MarBERT 0.6397 0.3634 0.5551 0.2701
ArBERT+Upsampling 0.5974 0.4500 0.4627 0.4380
ArBERT+Downsampling 0.5706 0.6039 0.4654 0.8598
ArBERT 0.6805 0.5666 0.5859 0.5485
AraBERT 0.6917 0.5415 0.6149 0.4845
AraBERT+Downsampling 0.6734 0.5873 0.5595 0.6181
AraBERT+Oversampling 0.6587 0.5224 0.5512 0.4962
XLM-RoBERTa 0.6487 0.3356 0.5807 0.2365
XLM-RoBERTa+Downsampling 0.5837 0.5427 0.4622 0.6575
XLM-RoBERTa+Oversampling 0.6285 0.4116 0.5093 0.3455
BERT-multilingual 0.6313 0.3958 0.5156 0.3217
AraElectra 0.5873 0.5472 0.5156 0.3271

0.4590, indicating potential false positives. In contrast, AraBERT demonstrates relatively
balanced precision (0.6149) and recall (0.4845), offering a better compromise between
identifying Check-worthy tweets and reducing false positives.

• In the evaluation cycle, we utilized MarBERT + Downsampling after the Test dataset
release. We achieved first place with a remarkable F1-score of 0.809, surpassing the
second-place team by a substantial margin with their F1-score of 0.733, indicating a
significant lead on our part.

5.3.2. English

After examining the data presented in Table 7, the following observations have been identified:

• The BERT, XLNet, BERTweet, BERT Multilingual, RoBERTa, DistilBERT, and BigBird
models are fine-tuned on the dataset without modifications. Although these models
exhibit high accuracy and F1-Scores, the imbalanced nature of the dataset limits their
performance. Implementing Downsampling leads to a decrease in accuracy and F1-Score
for most models, suggesting information loss. Oversampling has minimal impact on
performance. Class-weight slightly decreases the F1-Score for BERTweet and DistilBERT.
GPT-2 demonstrates high accuracy but relatively lower F1-Score, potentially due to its
text generation focus. GPT-3 Curie excels with the highest accuracy (0.9815) and F1-Score
(0.9603) among all models. GPT-3 Ada achieves comparable performance with XLNet and
BERTweet, displaying high accuracy (0.9757) and F1-Score (0.9478). Overall, GPT-3 Curie
achieves the highest F1-Score (0.9603), followed by BERTweet (0.9540) and GPT-3 Ada
(0.9478), performing well on the imbalanced dataset.

• During the evaluation cycle, we utilized BERTweet despite it being the second-best
performer in the Dev-Test dataset. Unfortunately, we couldn’t use GPT-3 due to limited
access and time constraints imposed by the competition. We secured fifth place by
employing BERTweet, achieving an F1-score of 0.843.



Table 7
Check-worthiness multigenre English models evaluation

Model Accuracy F1-Score Precision Recall
BERT 0.9748 0.9454 0.9452 0.9452
BERT + Downsampling 0.9651 0.9277 0.8885 0.9705
BERT + Oversampling 0.9651 0.9277 0.8885 0.9705
XLNet 0.9758 0.9478 0.9419 0.9538
XLNet + Downsampling 0.9554 0.9105 0.8478 0.9831
XLNet + Oversampling 0.9719 0.9409 0.9130 0.9705
BERTweet 0.9787 0.9540 0.9500 0.9580
BERTweet 0.9767 0.9504 0.9351 0.9663
BERTweet + Oversampling 0.9680 0.9339 0.8929 0.9790
BERTweet + Downsampling 0.9545 0.9084 0.8473 0.9790
BERT Multilingual 0.9729 0.9414 0.9375 0.9452
BERT Multilingual + Downsampling 0.9438 0.8885 0.8190 0.9705
RoBERTa 0.9765 0.9461 0.9344 0.9580
RoBERTa + Downsampling 0.9535 0.9073 0.8393 0.9874
XLM-RoBERTa + Downsampling 0.9535 0.9066 0.8441 0.9790
DistilBERT 0.9705 0.9342 0.9441 0.9244
DistilBERT + Class-weight 0.9680 0.9328 0.9051 0.9621
DistilBERT + Oversampling 0.9564 0.9116 0.8561 0.9748
DistilBERT + Downsampling 0.9273 0.8609 0.7708 0.9748
BigBird 0.9748 0.9458 0.9381 0.9538
BigBird + Downsampling 0.9428 0.8876 0.8120 0.9790
BigBird + Oversampling 0.9767 0.9508 0.9280 0.9748
GPT-2 0.9800 0.9200 0.9300 0.9100
GPT-3 Ada 0.9757 0.9478 0.9419 0.9537
GPT-3 Curie 0.9815 0.9603 0.9543 0.9663

5.3.3. Spanish

Upon analyzing the information provided in Table 8, the following observations have been
made:

• The BERT-based models, specifically BERT-Spanish, BERTin-RoBERTa-Spanish, and
XLM-RoBERTa, demonstrate strong performance on the imbalanced dataset. Notably,
XLM-RoBERTa achieves the highest F1-Score and accuracy without using sampling
techniques, indicating its suitability for handling the imbalanced dataset. The impact of
Downsampling and Oversampling varies across different models, with slight decreases
in F1-Scores observed for BERT-Spanish and XLM-RoBERTa, while BERT-multilingual
benefits from both Downsampling and Oversampling. This highlights the dependence of
sampling technique effectiveness on the specific model and dataset.

• In the evaluation cycle, we opted for XLM-RoBERTa, resulting in us securing second
place with an F1-score of 0.627. Notably, the first-place position was attained with a
slightly higher F1-score of 0.641.



Table 8
Check-worthiness multigenre Spanish models evaluation

Model Accuracy F1-Score Precision Recall
BERT-Spanish 0.9138 0.6897 0.6991 0.6804
BERT-Spanish + Downsampling 0.8890 0.6630 0.5790 0.7756
BERT-Spanish + Oversampling 0.9074 0.6623 0.6806 0.6449
BERTin-RoBERTa-Spanish 0.9200 0.6700 0.7400 0.6200
BERTin-RoBERTa-Spanish + Downsampling 0.8800 0.6500 0.5500 0.8000
BERTin-RoBERTa-Spanish + Oversampling 0.9200 0.6700 0.7400 0.6100
XLM-RoBERTa 0.9130 0.6943 0.6871 0.7017
XLM-RoBERTa + Downsampling 0.8736 0.6445 0.5335 0.8139
XLM-RoBERTa + Oversampling 0.8940 0.6803 0.5912 0.8011
BERT-multilingual 0.6313 0.3958 0.5155 0.3212
BERT-multilingual + Downsampling 0.8600 0.6187 0.5018 0.8068
BERT-multilingual + Oversampling 0.8906 0.6500 0.5914 0.7216

6. Conclusion

When considering both multimodal and multigenre data, several important findings emerged.
For multimodal data, the best-performing model was BERT+ResNet50 with early fusion, achiev-
ing an F1-Score of 0.7160 and demonstrating a balanced precision and recall. Late fusion models,
like DistilBERT+ViT transformer with trainable fusion layer, achieved a slightly lower F1-Score
of 0.7029. The model with the highest recall was CLIP-RN50 with ten hidden layers DNN (early
fusion) at 0.7944 but with a lower precision of 0.6059. Early fusion models excelled at capturing
modality interactions, resulting in higher F1-Scores and recall, while late fusion models pri-
oritized discriminative features for improved precision. Our employed BERT+ResNet50 with
early fusion model achieved an impressive F1-Score of 0.704. Still, due to resource limitations, it
couldn’t meet the evaluation cycle deadline, resulting in a third-place result without securing a
position on the leaderboard.

When examining performance in multigenre data, English dataset models consistently out-
performed Spanish and Arabic counterparts. English achieved the highest F1-Score of 0.9603
(GPT-3 Curie), while Spanish and Arabic reached 0.6943 (XLM-RoBERTa) and 0.6053 (Mar-
BERT+Downsampling), respectively. Resampling techniques notably impacted Spanish and
Arabic models, particularly enhancing the Arabic F1-Score from 0.3634 to 0.6053 using Down-
sampling with MarBERT. Arabic exhibited more significant performance variation, potentially
due to its complexity and variations in model quality. Selecting appropriate pre-trained models
and resampling techniques, such as BERT-Spanish for Spanish and MarBERT for Arabic, proved
crucial. A thorough experimentation with models and processes is necessary to achieve optimal
language-specific performance, emphasizing the need to adapt strategies based on language
characteristics for maximum effectiveness across diverse languages and tasks.

Finally, we must point out that the field of fake news detection and information authenticity
verification is continuously progressing, encompassing various aspects beyond checkworthiness
estimation, particularly in the context of social media platforms. In light of this, the present study
establishes a foundational framework for such a verification pipeline, incorporating Language



Models, Sampling techniques, and Fusion strategies to enhance the efficacy of checkworthiness
assessment in scenarios involving multimodal and multilingual content, which commonly arise
in social media environments. Furthermore, the pipeline can incorporate additional mechanisms
for information authentication, such as considering the Stance of credible information sources
and employing Subjectivity detection to differentiate objective facts from subjective opinions.
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