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Abstract
The application of mobile biometrics as a user-friendly authentication method has increased in the
last years. Recent studies have proposed novel behavioral biometric recognition systems based on
Transformers, which currently outperform the state of the art in several application scenarios. On-line
handwritten signature verification aims to verify the identity of subjects, based on their biometric
signatures acquired using electronic devices such as tablets or smartphones. This paper investigates the
suitability of architectures based on recent Transformers for on-line signature verification. In particular,
four different configurations are studied, two of them rely on the Vanilla Transformer encoder, and the
two others have been successfully applied to the tasks of gait and activity recognition. We evaluate
the four proposed configurations according to the experimental protocol proposed in the SVC-onGoing
competition. The results obtained in our experiments are promising, and promote the use of Transformers
for on-line signature verification.
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1. Introduction

On-line handwritten signature verification is a biometric modality that aims to verify the
authenticity of subjects based on their personal signatures. Handwritten signatures have
been traditionally used for biometric personal recognition, as they contain unique behavioral
patterns that can serve as reliable identifiers [1, 2]. Early approaches focused on extracting
dynamic or local features [3, 4], such as pen pressure, stroke sequences, speed, and acceleration,
and leveraging machine learning and pattern recognition techniques, such as Dynamic Time
Warping (DTW) [4, 5] and Hidden Markov Models (HMM) [6, 7]. With the integration of Deep
Learning (DL) [8, 9, 10, 11], on-line signature verification systems have achieved remarkable
performance, exhibiting robustness against various forms of forgeries [12] and improving user
experience [13]. This technology has wide-ranging applications in areas such as e-commerce,
digital banking, and document verification, contributing to the prevention of identity fraud and
improving the overall security of on-line transactions [2, 14].
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Despite the success of DL approches based on Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) [13], recent studies have explored the application of
Transformer architectures for other behavioral biometric traits such as gait and keystroke,
outperforming the state of the art [15, 16, 17]. Among the multiple advantages of Transformers,
we highlight the ability to capture long-term dependencies and interactions, which is especially
attractive for time series modeling [18].

In this paper we explore the use of Transformers for on-line signature verification, in which
signatures are acquired with pen tablet devices able to capture X and Y spatial coordinates,
pen pressure, and timestamps. We investigate four different Transformer configurations: i) a
Vanilla Transformer encoder [19], ii) the THAT Transformer successfully applied to activity
recognition [20], iii) a Transformer successfully applied to gait recognition [15, 17], and iv)
a novel configuration based on the Temporal and Channel modules proposed in THAT [20],
but with the Transformer encoder proposed in Vanilla [19]. To obtain a fair comparison with
the literature, we evaluate the proposed configurations according to the experimental protocol
proposed in the SVC-onGoing competition [13]. In particular, we compare the results with our
recent Time-Aligned Recurrent Neural Network (TA-RNN) [8]. TA-RNN combines the potential
of DTW and RNNs to train more robust systems against forgeries.

2. Methods

We explore a Siamese architecture with four different Transformer configurations for on-line
signature verification. From the original time signals acquired by the device (X and Y spatial
coordinates and pen pressure), we extract the set of 23 local features proposed in [6], obtaining
additional time signals related to velocity, acceleration, geometric aspects of the signature, etc.
These time signals are used as input to our Siamese architecture.

2.1. Transformer Configurations

Differently from other behavioral biometrics (e.g., gait and keystroke), on-line signatures usually
consist in longer sequences. Hence, the processing of time signals with Transformer-based
architectures is computationally expensive. Similarly to some approaches proposed for voice
analysis [21, 22], we add convolutional layers prior to Transformers, to aggregate temporal
features of the input signals and reduce their dimensionality. A general representation of the
proposed architecture is provided in Figure 1.

The CNN layers consist of a combination of 1D convolutional and MaxPooling layers. Con-
volutional layers extract temporal features by combining consecutive timesteps and augment
the feature size, thanks to the 64 channels in the output. MaxPooling layers reduce timesteps,
making the signals more suitable for Transformers.

Using the Siamese architecture proposed in Figure 1, we consider four different configura-
tions depending on the Transformer module selected. First, we consider the original Vanilla
Transformer encoder [19], with Gaussian Range Encoding instead of Positional Encoding, given
its suitability with the time series of interest [15]. The Vanilla encoder processes inputs with
size 250× 64 and generates a vector of size 64 at each timestep. These vectors are processed by
a RNN, whose final state of size 92 is concatenated in the Siamese architecture (see Figure 1).
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Figure 1: Representation of proposed Siamese architecture based on the combination of CNNs and
Transformers.

The second and third approaches are based respectively on the THAT Transformer proposed
for activity recognition [20] and the Transformer proposed for gait recognition [15].

Finally, we explore a novel configuration based on the Temporal and Channel modules
proposed in THAT [20], but with the Transformer encoder proposed in Vanilla [19]. The
Temporal branch is analogous to the one considered in the first configuration. The Channel
branch processes inputs with size 64× 250 and generates a vector of size 250 for each channel.
We average these vectors and apply a Fully-Connected layer to reduce the size of the output
to 92 (the same of Temporal branch). The outputs of Temporal and Channel branches are
concatenated, being the final vector of size 184 (Figure 2).

3. Experimental Setup

We evaluate our configurations with the experimental protocol proposed in the SVC-onGoing
competition [13]. Two publicly available datasets are considered in the competition: DeepSignDB
[8], used for development and validation, and SVC2021_EvalDB [13], used for the final evaluation.
Different subjects are considered in each dataset. In particular, we focus on the office-like
scenario where subjects had to perform signatures using a pen tablet device.

To train our four configurations, we generate random pairs of matching and non-matching
signatures from the Development DeepSignDB dataset provided by the SVC-onGoing competi-
tion. We consider both random and skilled non-matching pairs for training. Finally, following
our previous TA-RNN approach [8], for each signature comparison (i.e., genuine-genuine or
genuine-impostor) we align the 23 time signals of each signature pair with DTW, zero-padding
them to obtain a fixed length of 2,000 time samples for each signature.
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Figure 2: Representation of the proposed configuration based on the original Vanilla encoder, with
Temporal and Channel branches. For Vanilla Encoder (with Temporal branch only) refer to the small
box.

Table 1
EER results obtained in the SVC-onGoing competition for the proposed configurations. R = Random, S
= Skilled, O = Overall.

Configuration DeepSignDB SVC2021_EvalDB
R S O R S O

TA-RNN [13, 23] 1.87% 5.77% 4.31% 1.91% 5.83% 4.08%

Vanilla encoder [19] 3.25% 5.92% 4.64% 3.52% 4.06% 3.80%
THAT Transf. [20] 4.57% 8.02% 6.35% 5.13% 6.75% 6.03%

Gait Transformer [15] 3.84% 6.42% 5.13% 3.60% 4.44% 4.10%
Vanilla encoder

(Temporal + Channel)
4.13% 6.60% 5.36% 4.58% 4.42% 4.49%

4. Results

The results obtained by evaluating our four Transformer configurations according to the protocol
of the SVC-onGoing competition are reported in Table 1. We consider non-match comparisons
made of random signatures (R), skilled signatures (S), and an overall combination of the two (O).
Random signatures is the type of impostors that always provide the lowest EER, except in the
case of the Vanilla encoder with Temporal and Channel branches, evaluated on SVC2021_EvalDB
that provides 4.42% EER for skilled non-match comparisons and 4.58% EER for random ones.



The Transformer configurations achieve similar performance compared to the TA-RNN
previously presented. From the four Transformer configurations explored, we observe that the
Vanilla encoder achieves the best overall results, 4.64% EER and 3.80% EER for the DeepSignDB
and SVC2021_EvalDB, respectively. Focusing on the SVC2021_EvalDB dataset considered for
the final evaluation of the competition, we can observe how the Vanilla encoder achieves a
relative improvement of 7% in comparison to the TA-RNN approach (4.08% EER), showing a
better generalisation ability to the new scenarios not considered in training.

The results of Table 1 show how more complex configurations do not improve the results
obtained in evaluation. Overall EERs raise from 4.64% to 5.36% for DeepSignDB and from 3.80%
to 4.49% for SVC2021_EvalDB when we add the channel branch to the configuration based
on Vanilla encoder. Similar results apply to the other two configurations considered, with the
Transformer proposed for gait recognition that only get closer to the best performances, with
overall EERs of 5.13% and 4.10% in DeepSignDB and SVC2021_EvalDB evaluations.
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