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Abstract
The modeling of video memorability is still an open challenge for researchers in machine learning. This
paper presents our methodology for the MediaEval 2022: Predicting Media Memorability Challenge.
The proposed approach investigated ensemble learning methods using the pre-extracted image features:
Alexnet, Resnet, and Densenet. In addition to that Transformers and TF-IDF modeling were done on text
features. Further, image and text features were ensembled using late fusion that helped in predicting the
video memorability on the Memento10k dataset with an accuracy of 0.661.

1. Introduction

The expansion in social media demands for tools in social platforms that provide users’ attention
towards content creation. The content creators require their digital content to get remembered
by the user interacting with a stream of other content. The modeling of human behavior
towards predicting human-centric behavior involves mathematical and logical formulation of
several approaches [1]. Human information perseverance toward media memorability is mostly
dependent on an individual’s experience and acceptance of degree patterns. This degree of
pattern leads to the problem of video media memorability.

Video media memorability is the proportion of people that were able to remember watching
a video on a second viewing while their memory is tested. This objective was provided by
MediaEval 2022 in its consecutive 5th episode under the ‘Predicting Media Memorability’
challenge. The participants were provided with a Memento10k dataset and requested to provide
an approach for modeling and predicting the degree of memorability for each individual video.
The details of the challenge and the provided dataset are available at [2].

The paper further discusses the related advancements in Section 2 that provides the media
memorability predictive methods. Section 3 explains the applied approach and methodology
to predict media memorability and Section 4 discusses the results obtained, followed by the
conclusion in Section 5.

2. Related Work

The study [3] investigated the effect and dependency of video image color, brightness, and hue
on predicting media memorability, in comparison to complex data-driven representations such
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as image classification, composition, and recognition. It is observed that high-level represen-
tations (image composition, recognition, and classification) are best suited to predict media
memorability.

The studies [4, 5] provide knowledge of the most commonly remembered media are war-like
scenes, nature, and open spaces [6]. The brain’s capability to remember any piece of media is
highly dependent on the abstraction of the same level of scene and object representations. This
helps in understanding the remembered media would include the cinematic and high-level object
attributes. The best-suited models are the Transformers models providing better results [7, 8, 9]
due in-depth representation of input features. These models are proposed as an alternative to
the other neural architectures.

3. Approach

The models were applied to the textual features provided as the video description in the
Memento10k dataset. Several machine learning techniques are applied based on text inputs
as well as visual information. The video frames were modeled and only the best-performed
models were used to predict the media memorability. The multi-modal approach is applied to
encode textual and visual features. These embeddings are provided to linear regression models
to predict the best media memorability.

The pre-extracted features are provided as image features from video frames of the beginning,
middle and last of each video dataset. The machine learning model is applied where the top-
scoring pre-extracted features are selected. The top resulting features include ALEX-NET,
RES-NET, DENSE-NET, EFFICIENT-NET, and VGG. Further analysis is carried out by applying
XG Boost, ADA Boost, Random Forest, KNN, and MLP (Multi-layer Perceptron) where ADA
Boost outperformed and provide the best results. Figure 1 shows the complete understanding
of the approach taken to accurately predict the media memorability.

3.1. Textual Features

The video caption or information helps in understanding the context of the video frame using
semantic techniques. These features help in providing a baseline understanding of the video/im-
age frame. TF-IDF[10] is a statistical formulation to understand the similarity of words in a
document. This depends on the number of words and frequency of each word appearing in the
same document. The TF-IDF is used to predict memorability as it provides the best among other
techniques using textual information.

3.2. Text Transformers

Text Transformers provides another approach that helps in understanding the semantics of a
video. There are different text transformers that are applied over the provided Memento10k
dataset. The applied transformers help in getting the similarities and dissimilarities among
the sentences which helped in identifying topics in text data. We got the best result using
DistilBERT[11], so for further analysis and ensemble, we consider results from only DistilBERT
Transformer. Since the text transformers are able to generate synthetic texts, therefore, this
helped in automatic text generation. The extracted textual features are used to build language
representation. The text transformers help in the classification of images when the image
features and textual features are combined whereas the text encoders help to encode sentences
to understand the context of the video.



Figure 1: Architectural diagram of the proposed method.

3.3. Image Features

Videos are nothing but a continuous transition of images. For image-related features, 3 frames
of every video were considered i.e. first, last and middle. Our approach consisted of learning the
best pre-extracted feature that is already provided in the Memento10k dataset. After training
on several machine learning models, only the top 3 image features were selected which were
giving best accuracies on validation data. Namely, Alexnet[12], Resnet[13], and Densenet [14]
outperformed the remaining image features. We ran multiple machine-learning models on
these 3 image features, and Adaboost outperform all of them. Therefore for further analysis, we
consider only the result of Adaboost.

3.4. Ensemble Learning

The ensemble combines more than one machine learning model that outperforms in predicting
more accurately. This technique also provides a concept of a multi-classification model where the
resulting factor to predict is based on combining multiple models. After running the base model
on different features, late fusion was applied. Linear regression and average-out techniques
were used in the ensemble step.

3.4.1. Runs Details

Run 1: Only image features were considered and then an average was taken of all 3 of them wto
visualize the effect of only image features in predicting media memorability. Run 2: Average
of Transformers and TF-IDF was taken to see if there was any effect of the image features
as captions were the depiction of the same video. Run 3: Image features and TF-IDF scoring
were considered and averag was taken. Run 4: All the best models were considered, from the
image/video baseline Ada Boost was picked for all the features, and for text, Transformers and
TF-IDF both were considerd. And then late fusion was done by taking the average of them, this
gave us an improvement on the baseline methods. Run 5: Results from image features together
with TF-IDF were passed to a Linear Regression Model.



4. Results and Analysis

The results elaborate on Spearman’s correlation coefficient, Pearson’s correlation coefficient,
and Mean Square Error (MSE) values over the validation and testing set of data. The results in
Table 1 show the obtained correlation against the validation and the results in Table 2 shows
the obtained correlation on testing of the dataset of Memento10k for each submitted execution.

It is observed that Spearman’s correlation coefficient started predicting with 0.421 accuracies
and suddenly improved in the prediction accuracy in its second execution and till the fifth
execution. The maximum accuracy gained from Spearmen’s correlation coefficient is 0.661.
On the other side, Pearson’s correlation coefficient provides a little improved accuracy when
compared with Spearman’s correlation coefficient. Pearson’s correlation coefficient obtained
an accuracy of 0.439 on the test dataset improved quickly in next following executions. The
maximum obtained accuracy from Pearson’s correlation coefficient is 0.667. Furthermore, the
MSE also reduced from 0.021 to 0.006 during several executions on the testing dataset.

Table 1
Media Memorability results on Validation dataset

Correlations Run 1 Run 2 Run 3 Run 4 Run 5

Spearman 0.583 0.623 0.592 0.701 0.654
Pearson 0.599 0.624 0.601 0.718 0.663
MSE 0.018 0.006 0.005 0.005 0.004

Table 2
Media Memorability results on Test dataset

Correlations Run 1 Run 2 Run 3 Run 4 Run 5

Spearman 0.421 0.611 0.547 0.661 0.619
Pearson 0.439 0.618 0.559 0.667 0.618
MSE 0.021 0.006 0.008 0.006 0.006

5. Conclusion

The approach of multi-classification through ensemble provides a better approach to predicting
media memorability. The textual features and visual features predict well when modeled through
ensemble learning. The textual features provide the semantic context while the visual features
provide the understanding of each image through pre-extracted features from the Memento10k
dataset. The accuracy to predict the media memorability increased during the testing dataset in
its second execution by changing the hyperparameters of the machine learning models. TF-IDF
is already a better approach to predict media memorability but our approach showed that TF-IDF
performed way better while modeling through Linear Regression.
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