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Abstract
We present a large deviation property for the pattern statistics representing the number of occurrences
of a symbol in words of given length generated at random according to a rational stochastic model. The
result is obtained assuming that in the model the overall weighted transition matrix is primitive. In
particular we obtain a rate function depending on the main eigenvalue and eigenvectors of that matrix.
Under rather mild conditions, we show that the range of validity of our large deviation estimate can
be extended to the interval (0,1), which represents in our context the largest possible open interval of
validity of the property.
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1. Introduction

Large deviation properties represent a classical subject in probability theory. They yield bounds
of exponential decay on the probability that a sequence of random variables differs from the
mean values for an amount of the order of growth of the mean itself [10, 11]. Such deviations
from the average value are considered “large” with respect to other evaluations, as those deriving
for instance from the Central Limit Theorem, that concern asymptotically smaller differences.

In analytic combinatorics large deviation estimates are considered in the study of various
relevant structures [15]. In particular they occur in pattern statistics [22] and in the analysis of
depth and height of certain classes of trees [7, 14]. In pattern statistics they have been studied
with the goal of evaluating the probability of rare events, where a given pattern is over- or
under-represented in a random text generated according to a suitable stochastic model [12, 5].

In the present work we prove some properties of this type for sequences of pattern statistics
representing the number of occurrences of a symbol in a word of length 𝑛, belonging to a
regular language, generated at random according to a rational stochastic model. This model was
introduced in [2] and can be formally defined by a nondeterministic finite state automaton with
real positive weights on transitions. In this setting, the probability of generating a word 𝑤 of
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given length is proportional to the total weight of the accepting transitions labelled by 𝑤. This
model is quite general, it includes as special cases the traditional Bernoullian and Markovian
sources, widely used in the literature to study the number of occurrences of patterns in a random
text [24, 25, 16, 5]. We recall that the research concerning pattern statistics has a broad range
of motivations and applications [22]. Moreover, it is known that the rational stochastic model
allows to generate random words of length 𝑛 in an arbitrary regular language under uniform
distribution: this occurs when the finite automaton defining the model is unambiguous and all
transitions have the same weight.

In order to fix our notation, consider a (nondeterministic) weighted finite state automaton 𝒜
over the binary alphabet {𝑎, 𝑏} and, for every 𝑛 ∈ N, let 𝑌𝑛 be the number of occurrences of the
symbol 𝑎 in a word of length 𝑛 generated at random according to the rational model defined by
𝒜. The analysis of these sequences of random variables is of interest in several contexts. First
of all they can represent the number of occurrences of patterns in a random word of length
𝑛, generated by a Markovian source, when the set of patterns is given by a regular language
[2, 24, 25]. Moreover, they are related to the evaluation of the coefficients of rational formal
series (a traditional problem well-studied in the literature [28, 26, 23]) and to the analysis of
several problems and properties of regular language. This fact clearly holds for the natural
problem of estimating the number of words of given length in a regular language having 𝑘
occurrences of a given symbol [4, 13]. It also holds for the analysis of additive functions defined
on regular languages [20] and for the descriptional complexity of languages and computational
models [6]. Further, using the local limit properties of the sequences {𝑌𝑛}, for a wide class of
rational series it can be proved that the maximum coefficient of the monomials of degree 𝑛 has
an asymptotic growth of the order Θ(𝑛𝑘/2𝜆𝑛) for some 𝜆 > 0 and some integer 𝑘 ≥ −1 [8, 3].

The asymptotic behaviour of {𝑌𝑛}, i.e. mean value, variance, limit distribution both in the
global and in the local sense [17, 15], has been studied in the literature under several hypotheses
on the corresponding automaton 𝒜. It is known that if 𝒜 has a primitive transition matrix
then 𝑌𝑛 has a Gaussian limit distribution [2, 24] and, under a suitable aperiodicity condition, it
also satisfies a local limit theorem [2], which can be extended to all primitive cases by using a
suitable notion of periodicity [3]. The limit distribution of 𝑌𝑛 in the global sense is known also
when the transition matrix of 𝒜 consists of two primitive components [9], while the local limit
properties in this case are recently studied in [18]. When the automaton 𝒜 has several strongly
connected components a general analysis of the (global) limit distribution of 𝑌𝑛 can be found in
[19].

Here we continue this line of research proving in Section 5 that if the transition matrix of
𝒜 is primitive, then 𝑌𝑛 satisfies a large deviation property with a rate function depending
on the main eigenvalue and the associated eigenvectors. The corresponding proof is rather
standard, it relies on traditional tools of analytic combinatorics and the result is implicitly
included in the previous literature [21, 11, 15]. However, here our result is significant since
it puts in evidence the role played by the main eigenvalue and eigenvectors of the matrix of
weights in the definition of both the rate function and the interval of validity of the property.
Moreover, in Section 6, we assume a mild condition on the transition matrix of the automaton
and, under such hypothesis, we show that the range of validity of the large deviation property
can be extended to the entire interval (0, 1), which represents in our context the largest possible
open interval where the property may hold.



2. A quick overview on large deviations

Large deviation estimates usually refer to a sequence of random variables (r.v.’s), say {𝑋𝑛},
having increasing mean values; it consist of a bound, exponentially decreasing to 0, over the
probability that 𝑋𝑛 deviates from 𝐸(𝑋𝑛) by an amount greater or equal to 𝑐𝐸(𝑋𝑛), 𝑐 > 0.
Typical situations occur when 𝐸(𝑋𝑛) ∼ 𝛽𝑛 for a constant 𝛽 > 0, and since this occurs in all
our cases, here we start with the following fomal definition [11, 15].

Definition 1. Let {𝑋𝑛} be a sequence of random variables such that 𝐸(𝑋𝑛) ∼ 𝛽𝑛 for a
constant 𝛽 > 0, and let (𝑥0, 𝑥1) be an interval including 𝛽. Assume 𝐹 (𝑥) is a function defined
over (𝑥0, 𝑥1) taking values in R, such that 𝐹 (𝑥) > 0 for 𝑥 ̸= 𝛽. We say that {𝑋𝑛} satisfies a
large deviation property relative to the interval (𝑥0, 𝑥1) with rate function 𝐹 (𝑥) if the following
limits hold:

lim
𝑛→∞

1

𝑛
log Pr(𝑋𝑛 ≤ 𝑥𝑛) = −𝐹 (𝑥) for 𝑥0 < 𝑥 ≤ 𝛽

lim
𝑛→∞

1

𝑛
log Pr(𝑋𝑛 ≥ 𝑥𝑛) = −𝐹 (𝑥) for 𝛽 ≤ 𝑥 < 𝑥1

This property is equivalent to require that Pr(𝑋𝑛 ≤ 𝑥𝑛) = 𝑒−𝐹 (𝑥)𝑛+𝑜(𝑛), for 𝑥0 < 𝑥 ≤ 𝛽,
and Pr(𝑋𝑛 ≥ 𝑥𝑛) = 𝑒−𝐹 (𝑥)𝑛+𝑜(𝑛), for 𝛽 ≤ 𝑥 < 𝑥1. The first relation concerns the left tail
Pr(𝑋𝑛 ≤ 𝑥𝑛), while the second one refers to the right tail Pr(𝑋𝑛 ≥ 𝑥𝑛) of the distribution of
𝑋𝑛. It is convenient to keep the two limits separated in the definition since the proofs of a large
deviation property often considers one tail at a time.

A classical example of large deviation property concerns the sequence of binomial random
variables {𝑋𝑛,𝑝}𝑛 of parameters 𝑛 and 𝑝, where 𝑝 ∈ (0, 1) is fixed. In this case, 𝐸(𝑋𝑛,𝑝) = 𝑝𝑛

and by the Central Limit Theorem, we know that 𝑋𝑛,𝑝−𝑛𝑝√
𝑛𝑝(1−𝑝)

converges in distribution to a

standard Gaussian random variable 𝒩 (0, 1). This yields a limit probability concerning “normal”
deviations (i.e. of the order

√
𝑛) from the mean, that is

lim
𝑛→∞

Pr
(︀
|𝑋𝑛,𝑝 − 𝑛𝑝| ≥ 𝜀

√
𝑛
)︀
= Pr

(︃
|𝒩 (0, 1)| ≥ 𝜀√︀

𝑝(1− 𝑝)

)︃
∀𝜀 > 0

Such a property implies the following result for a larger deviation

Pr (|𝑋𝑛,𝑝 − 𝑛𝑝| ≥ 𝜀𝑛) = 𝑜(1) ∀𝜀 > 0

which can also be obtained by applying the Law of Large Numbers. The following proposition
states a large deviation property for {𝑋𝑛,𝑝}𝑛 that improves the last relation, showing that the
convergence to 0 is exponential with respect to 𝑛 and the range of validity coincides with the
overall interval (0, 1). Its proof is a consequence of Cramer’s Theorem (see e.g. [11, 10]), a
classical result we discuss later. However, here we prefer to briefly outline a simpler proof to
give the flavour of this property and to compare it with our subsequent results.

Proposition 1. Any sequence of binomial random variables {𝑋𝑛,𝑝}𝑛 satisfies a large deviation
property in the interval (0, 1) with rate function 𝐵(𝑥) given by

𝐵(𝑥) = 𝑥 log
𝑥

𝑝
+ (1− 𝑥) log

1− 𝑥

1− 𝑝
, for every 𝑥 ∈ (0, 1).



Proof. We first prove the limit on the left tail. To this end, let 0 < 𝑥 ≤ 𝑝 and let 𝑀𝑛(𝑥) =
max{Pr(𝑋𝑛,𝑝 = 𝑖) : 𝑖 ∈ N, 0 ≤ 𝑖 ≤ 𝑥𝑛}. Then we have

𝑀𝑛(𝑥) ≤ Pr(𝑋𝑛,𝑝 ≤ 𝑥𝑛) ≤ (𝑥𝑛+ 1)𝑀𝑛(𝑥) (1)

Recall that the probability Pr(𝑋𝑛,𝑝 = 𝑖) is increasing for integers 𝑖 such that 0 ≤ 𝑖 ≤ 𝑝𝑛; hence
𝑀𝑛(𝑥) =

(︀
𝑛

⌊𝑥𝑛⌋
)︀
𝑝⌊𝑥𝑛⌋(1− 𝑝)𝑛−⌊𝑥𝑛⌋ for every 𝑥 ∈ (0, 𝑝]. Thus, a direct application of Stirling’s

formula leads to

𝑀𝑛(𝑥) = exp

{︂
𝑛

[︂
𝑥 log

𝑝

𝑥
+ (1− 𝑥) log

1− 𝑝

1− 𝑥

]︂
+𝑂(log 𝑛)

}︂
which replaced in (1) proves log Pr(𝑋𝑛,𝑝 ≤ 𝑥𝑛) = −𝐵(𝑥)𝑛+𝑂(log 𝑛).

A similar reasoning holds for the right tail. In this case we have

𝑁𝑛(𝑥) ≤ Pr(𝑋𝑛,𝑝 ≥ 𝑥𝑛) ≤ (𝑛− 𝑛𝑥+ 1)𝑁𝑛(𝑥) for every 𝑥 ∈ [𝑝, 1)

where 𝑁𝑛(𝑥) =
(︀

𝑛
⌊𝑥𝑛⌋

)︀
𝑝⌊𝑥𝑛⌋(1 − 𝑝)𝑛−⌊𝑥𝑛⌋. As above, replacing this value in the previous

inequalities yields log Pr(𝑋𝑛,𝑝 ≥ 𝑥𝑛) = −𝐵(𝑥)𝑛+𝑂(log 𝑛). □

The rate function 𝐵(𝑥) is strictly convex in the interval (0, 1), takes a unique minimal
value at 𝑥 = 𝑝, where 𝐵(𝑝) = 0, while lim𝑥→0+ 𝐵(𝑥) = 𝑙𝑜𝑔 1

1−𝑝 and lim𝑥→1− 𝐵(𝑥) = 𝑙𝑜𝑔 1
𝑝 .

Moreover, 𝐵(𝑥) grows vertically for 𝑥 approaching 0 or 1, since lim𝑥→0+ 𝐵
′(𝑥) = −∞ and

lim𝑥→1− 𝐵
′(𝑥) = +∞.

Example 1. Let 𝑝 = 5/8. Then, the shape of the rate function 𝐵(𝑥) of the large deviation
property for the sequence of binomial random viariables {𝑋𝑛,𝑝} is described in Figure 1.

𝑝 =
5

8
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Figure 1: Grafic of rate function 𝐵(𝑥) of the large deviation property for {𝑋𝑛,𝑝}, when 𝑝 = 5
8 .

We recall that often the interval of a large deviation property can be extended to the entire
set R once we allow the rate function 𝐹 (𝑥) to assume value +∞. A classical situation of
this type is established by Cramér’s Theorem [11, 10], stating that if {𝑋𝑛} is a sequence of
independent and identically distributed random variables, with bounded moment generating
function (i.e. 𝜓(𝑡) = 𝐸(𝑒𝑡𝑋1) < ∞ for any 𝑡 ∈ R), then the sequence of partial sums
{𝑆𝑛}, where 𝑆𝑛 =

∑︀𝑛
𝑖=1𝑋𝑖, satisfies a large deviation property all over R with rate function

𝑅(𝑥) = sup𝑡∈R[𝑥𝑡− log𝜓(𝑡)], for every 𝑥 ∈ R.



3. Symbol statistics for rational models

In order to define our stochastic model consider a formal series in the non-commutative variables
𝑎, 𝑏, that is a function 𝑟 : {𝑎, 𝑏}* → R+, where R+ = [0,+∞) and {𝑎, 𝑏}* is the free monoid
of all words on the alphabet {𝑎, 𝑏}. As usual, we denote by (𝑟, 𝑤) the value of 𝑟 at a word
𝑤 ∈ {𝑎, 𝑏}*. Such a series 𝑟 is said to be rational if for some integer 𝑚 > 0 there exists
a monoid morphism 𝜇 : {𝑎, 𝑏}* → R𝑚×𝑚

+ and two (column) arrays 𝜉, 𝜂 ∈ R𝑚
+ , such that

(𝑟, 𝑤) = 𝜉′𝜇(𝑤)𝜂, for every 𝑤 ∈ {𝑎, 𝑏}* [1, 27] (1). Note that in this case, if 𝑤 = 𝑤1𝑤2 · · ·𝑤𝑛

with 𝑤𝑖 ∈ {𝑎, 𝑏} for every 𝑖 = 1, 2, . . . , 𝑛, then 𝜇(𝑤) = 𝜇(𝑤1)𝜇(𝑤2) · · ·𝜇(𝑤𝑛). Thus, as the
morphism 𝜇 is generated by the matrices 𝐴 = 𝜇(𝑎) and 𝐵 = 𝜇(𝑏), we say that the 4-tuple
(𝜉, 𝐴,𝐵, 𝜂) is a linear representation of 𝑟. Clearly, such a 4-tuple can be considered as a finite
state automaton over the alphabet {𝑎, 𝑏}, with transitions weighted by positive real values.
Therefore 𝐴 (resp. 𝐵) represents the matrix of the weights of all transitions labelled by 𝑎 (resp.
𝑏), while 𝜉 (resp. 𝜂) is the array of the weights of the initial (resp. final) states.

Throughout this work, denoting by {𝑎, 𝑏}𝑛 the family of all words of length 𝑛 in {𝑎, 𝑏}*,
we assume that the set {𝑤 ∈ {𝑎, 𝑏}𝑛 : (𝑟, 𝑤) > 0} is non-empty for every 𝑛 ∈ N+ (so that
𝜉 ̸= 0 ̸= 𝜂), and that 𝐴 and 𝐵 are non-zero matrices (i.e., each of them has at least one positive
entry). Moreover, for every 𝑛 ∈ N, we can easily compute the sum of all values of 𝑟 associated
with words in {𝑎, 𝑏}𝑛:

∑︁
𝑤∈{𝑎,𝑏}𝑛

(𝑟, 𝑤) = 𝜉′
∑︁

𝑤∈{𝑎,𝑏}𝑛
𝜇(𝑤)𝜂 = 𝜉′

⎛⎝ 𝑛∏︁
𝑖=1

∑︁
𝑤𝑖∈{𝑎,𝑏}

𝜇(𝑤𝑖)

⎞⎠ 𝜂 = 𝜉′ (𝐴+𝐵)𝑛 𝜂 (2)

Thus, we can consider the probability measure Pr over the set {𝑎, 𝑏}𝑛 given by

Pr(𝑤) =
(𝑟, 𝑤)∑︀

𝑥∈{𝑎,𝑏}𝑛(𝑟, 𝑥)
=

𝜉′𝜇(𝑤)𝜂

𝜉′(𝐴+𝐵)𝑛𝜂
∀ 𝑤 ∈ {𝑎, 𝑏}𝑛

Note that, if 𝑟 is the characteristic series of a language 𝐿 ⊆ {𝑎, 𝑏}* then Pr is the uniform
probability function over the set 𝐿 ∩ {𝑎, 𝑏}𝑛. Also observe that the traditional Markovian
models (to generate a word at random in {𝑎, 𝑏}*) occur when 𝐴+𝐵 is a stochastic matrix, 𝜉 is
a stochastic array and 𝜂′ = (1, 1 . . . , 1).

Then, under the previous hypotheses, we can define the integer random variable (r.v.) 𝑌𝑛 =
|𝑤|𝑎, where 𝑤 is a word chosen at random in {𝑎, 𝑏}𝑛 with probability Pr(𝑤), and |𝑤|𝑎 is the
number of occurrences of 𝑎 in 𝑤. As 𝐴 ̸= [0] ̸= 𝐵, 𝑌𝑛 is a non-degenerate random variable,
taking value in {0, 1, . . . , 𝑛}. It is clear that the probability function of 𝑌𝑛 is defined by

𝑝𝑛(𝑘) := Pr(𝑌𝑛 = 𝑘) =

∑︀
𝑤∈{𝑎,𝑏}𝑛,|𝑤|𝑎=𝑘(𝑟, 𝑤)∑︀

𝑤∈{𝑎,𝑏}𝑛(𝑟, 𝑤)
, 𝑘 ∈ {0, 1, . . . , 𝑛}

Since 𝑟 is rational also the previous probability can be expressed by using its linear representation.
The denominator is clearly determined by (2). As far as the numerator is concerned, setting
𝛿𝑎(𝑎) = 1 and 𝛿𝑎(𝑏) = 0, for a variable 𝑥 and for every 𝑛 ∈ N one has

(𝐴𝑥+𝐵)𝑛 =
𝑛∏︁

𝑖=1

∑︁
𝑤𝑖∈{𝑎,𝑏}

𝜇(𝑤𝑖)𝑥
𝛿𝑎(𝑤𝑖) =

𝑛∑︁
𝑘=0

⎛⎝ ∑︁
𝑤∈{𝑎,𝑏}𝑛,|𝑤|𝑎=𝑘

𝜇(𝑤)

⎞⎠𝑥𝑘

1As is customary, we denote by 𝑣′ the transpose of an array 𝑣 ∈ R𝑚, i.e. a row array.



As a consequence, if [𝑥𝑘]𝑔(𝑥) denotes (according to tradition) the coefficient of the monomial
of degree 𝑘 in a polynomial 𝑔(𝑥), the probabilities 𝑝𝑛(𝑘)’s can be written as

𝑝𝑛(𝑘) =
[𝑥𝑘]𝜉′(𝐴𝑥+𝐵)𝑛𝜂

𝜉′(𝐴+𝐵)𝑛𝜂
, 𝑘 ∈ {0, 1, . . . , 𝑛} (3)

For the sake of brevity we say that 𝑌𝑛 is defined by the linear representation (𝜉, 𝐴,𝐵, 𝜂). The
moment generating function Ψ𝑛(𝑧) of 𝑌𝑛 can be defined by means of the map ℎ𝑛(𝑧) given by

ℎ𝑛(𝑧) = 𝜉′(𝐴𝑒𝑧 +𝐵)𝑛𝜂 , 𝑧 ∈ C

We have

Ψ𝑛(𝑧) =

𝑛∑︁
𝑘=0

𝑝𝑛(𝑘)𝑒
𝑧𝑘 =

𝜉′(𝐴𝑒𝑧 +𝐵)𝑛𝜂

𝜉′(𝐴+𝐵)𝑛𝜂
=
ℎ𝑛(𝑧)

ℎ𝑛(0)
, 𝑧 ∈ C (4)

and hence mean value and variance of 𝑌𝑛 can be computed by the relations

E(𝑌𝑛) =
ℎ′𝑛(0)

ℎ𝑛(0)
, Var(𝑌𝑛) =

ℎ′′𝑛(0)

ℎ𝑛(0)
−
(︂
ℎ′𝑛(0)

ℎ𝑛(0)

)︂2

Observe that, in principle, 𝑌𝑛 is the sum of 𝑛 Bernoullian r.v.’s, which however are neither
independent nor identically distributed (and hence traditional Cramer’s Theorem cannot be
applied in this case). More precisely, 𝑌𝑛 can be seen as a sum of the following form:

𝑌𝑛 =
𝑛∑︁

𝑖=1

𝑏𝑖(𝑤) , where 𝑏𝑖(𝑤) =
{︂

1 if 𝑤𝑖 = 𝑎
0 if 𝑤𝑖 = 𝑏

, 𝑤 = 𝑤1 · · ·𝑤𝑛 , 𝑤𝑖 ∈ {𝑎, 𝑏}

Clearly, the r.v.’s 𝑏𝑖(𝑤) (𝑖 = 1, 2, . . . , 𝑛) are not independent since each of them strictly depends
on the state reached at the 𝑖-th step and hence on all the previous transitions; also, they cannot
have the same distribution as the weights of the transitions from the various states may be quite
different. Therefore, in the general case, 𝑌𝑛 is a random variable very different from a Binomial
r.v. 𝑋𝑛,𝑝, for any 𝑝 ∈ (0, 1), even if they both have the same range of values {0, 1, . . . , 𝑛}.

4. Primitive models

In this section we summarize the main properties of 𝑌𝑛 when the matrix 𝐴+𝐵 is primitive.
Recall that a matrix 𝑀 ∈ R𝑚×𝑚

+ is primitive if there exists a positive integer 𝑛 such that
𝑀𝑛 > 0 (i.e. all entries of 𝑀𝑛 are strictly positive). The main properties of these matrices are
established by the following well-known theorem (see for instance [29, Sec 1.1]).

Theorem 1. (Perron-Frobenius) If a matrix 𝑇 = [𝑡𝑖𝑗 ] ∈ R𝑚×𝑚
+ is primitive then it admits a real

eigevalue 𝜆 > 0 such that:
(i) |𝜇| < 𝜆 for any eigenvalue 𝜇 of 𝑇 different from 𝜆;
(ii) 𝜆 can be associated with strictly positive left and right eigenvectors;
(iii) 𝜆 is a simple root of the characteristic equation of 𝑇 , and hence the associated eigenvectors

are unique up to constant multiples;
(iv) if a matrix 𝐴 = [𝑎𝑖𝑗 ] ∈ R𝑚×𝑚

+ satisfies 𝐴 ≤ 𝑇 (i.e. 𝑎𝑖𝑗 ≤ 𝑡𝑖𝑗 ∀𝑖, 𝑗) and 𝛼 is an eigenvalue
of 𝐴 then |𝛼| ≤ 𝜆. Moreover, |𝛼| = 𝜆 implies 𝐴 = 𝑇 .



Usually 𝜆 is called the Perron-Frobenius eigenvalue of 𝑇 .
Then, assume 𝐴+𝐵 is primitive and let 𝜆 be its Perron-Frobenius eigenvalue. In this case

it is known that the sequence {𝑌𝑛} has a Gaussian limit distribution [2]. Its properties (in
particular mean value and variance) can be studied through the function 𝑦 = 𝑦(𝑧) implicitly
defined by the equation

det(𝐼𝑦 −𝐴𝑒𝑧 −𝐵) = 0 (5)

with initial condition 𝑦(0) = 𝜆. Clearly 𝑦(𝑧) is eigenvalue of 𝐴𝑒𝑧 + 𝐵 for every 𝑧 ∈ C.
Moreover, 𝑦(𝑧) is analytic in a neighbourhood of 0 and 𝑦′(0) ̸= 0 since 𝜆 is a simple root of the
characteristic polynomial of 𝐴+𝐵.

In the analysis of the asymptotic properties of {𝑌𝑛}, the following results have been obtained
in the literature [2, 3] and are useful in our context:

1) E(𝑌𝑛) = 𝛽𝑛+𝑐+𝑂(𝜀𝑛), where |𝜀| < 1, 𝑐 ∈ R and 𝛽 is a constant satisfying 0 < 𝛽 < 1 given
by 𝛽 = 𝑦′(0)

𝜆 . Moreover 𝑦′(0) = 𝑣′𝐴𝑢, where 𝑣′ and 𝑢 are left and right eigenvectors of
𝐴+𝐵, with respect to 𝜆, such that 𝑣′𝑢 = 1.

2) Var(𝑌𝑛) = 𝛾𝑛+𝑂(1), where 𝛾 is a positive constant defined by

𝛾 = 𝑦′′(0)
𝜆 −

(︁
𝑦′(0)
𝜆

)︁2
;

3) In a neighbourhood of 0, the function Ψ𝑛(𝑧) satisfies a “quasi power” condition, that is an
equation of the form

Ψ𝑛(𝑧) = 𝑟(𝑧)

(︂
𝑦(𝑧)

𝜆

)︂𝑛

(1 +𝑂(𝜀𝑛)) (|𝜀| < 1) (6)

where 𝑟(𝑧) is analytic in 𝑧 = 0 and 𝑟(0) = 1. A consequence of this result is that 𝑌𝑛−𝛽𝑛√
𝛾𝑛

converges in distribution to a Gaussian random variable of mean 0 and variance 1.

Some further properties of the moment generating function Ψ𝑛(𝑧) can be obtained in the
case of real 𝑧. First observe that for every 𝑡 ∈ R also the matrix 𝐴𝑒𝑡 +𝐵 is primitive: therefore
𝑦(𝑡) is its Perron-Frobenius eigenvalue. By the properties of primitive matrices we know that
𝑦(𝑡) is a positive real function, analytic and strictly increasing for all 𝑡 ∈ R (statement (iv) in
Theorem 1). Moreover, all the powers of 𝐴𝑒𝑡 +𝐵 satisfy a relation of the form

(𝐴𝑒𝑡 +𝐵)𝑛 = 𝑦(𝑡)𝑛 · 𝑢𝑡𝑣′𝑡 (1 +𝑂(𝜀𝑛𝑡 )) (|𝜀𝑡| < 1, ∀ 𝑡 ∈ R)

where 𝑣′𝑡 and 𝑢𝑡 are left and right eigenvectors of 𝐴𝑒𝑡 + 𝐵 relative to 𝑦(𝑡), normed so that
𝑣′𝑡𝑢𝑡 = 1 [29, Th. 1.2]. A first consequence is that applying relation (6) to all real 𝑧, we obtain
(for every 𝑡 ∈ R)

Ψ𝑛(𝑡) = E(𝑒𝑡𝑌𝑛) =
𝜉′(𝐴𝑒𝑡 +𝐵)𝑛𝜂

𝜉′(𝐴+𝐵)𝑛𝜂
= 𝑟(𝑡)

(︂
𝑦(𝑡)

𝜆

)︂𝑛

(1 +𝑂(𝜀𝑛𝑡 )) (7)

where the function 𝑟(𝑡) = 𝜉′𝑢𝑡𝑣′𝑡𝜂
𝜉′𝑢0𝑣′0𝜂

is analytic in R, clearly 𝑟(0) = 1 and |𝜀𝑡| < 1.



5. Large deviations for primitive models

In this section we present a large deviation property for the sequence {𝑌𝑛} in the primitive case.
To this end, assume that 𝐴+ 𝐵 is primitive and consider the random variable 𝑌𝑛(𝑡) defined
by the linear representation (𝜉, 𝐴𝑒𝑡, 𝐵, 𝜂), for any 𝑡 ∈ R. Since also 𝐴𝑒𝑡 + 𝐵 is primitive,
for any 𝑡 ∈ R, we can apply the results of the previous section to all sequences of random
variables {𝑌𝑛(𝑡)}. Reasoning as for relation (5), for any 𝑡 ∈ R we can consider the function
𝑦𝑡(𝑧) implicitely defined by the equation

det(𝐼𝑦𝑡 −𝐴𝑒𝑡+𝑧 −𝐵) = 0 , 𝑧 ∈ C

with initial condition 𝑦𝑡(0) = 𝑦(𝑡). Clearly 𝑦𝑡(𝑧) = 𝑦(𝑡 + 𝑧) and hence 𝑦𝑡(𝑧) is analytic
in a neighbourhood of 0 (for any 𝑡 ∈ R), it admits derivatives of any order around 0 and
𝑦′𝑡(0) = 𝑦′(𝑡), 𝑦′′𝑡 (0) = 𝑦′′(𝑡).

Applying property 1) of the previous section to the linear representation (𝜉, 𝐴𝑒𝑡, 𝐵, 𝜂), for
every 𝑡 ∈ R we obtain E(𝑌𝑛(𝑡)) = 𝛽(𝑡)𝑛 + 𝑐𝑡 + 𝑂(𝜀𝑛𝑡 ), where 𝑐𝑡 ∈ R and 𝜀𝑡 ∈ (0, 1) are
constant and 𝛽(𝑡) is a real function given by 𝛽(𝑡) =

𝑦′𝑡(0)
𝑦𝑡(0)

= 𝑦′(𝑡)
𝑦(𝑡) , for all 𝑡 ∈ R. Clearly

𝛽(0) = 𝛽. Moreover, by the same property, we have 𝑦(𝑡) = 𝑣′𝑡(𝐴𝑒
𝑡 + 𝐵)𝑢𝑡, 𝑦′(𝑡) = 𝑣′𝑡𝐴𝑒

𝑡𝑢𝑡
and hence

𝛽(𝑡) =
𝑣′𝑡𝐴𝑒

𝑡𝑢𝑡
𝑣′𝑡(𝐴𝑒

𝑡 +𝐵)𝑢𝑡
(8)

which implies
0 < 𝛽(𝑡) < 1 ∀𝑡 ∈ R (9)

Analogously, applying property 2) of the previous section to 𝑌𝑛(𝑡) we get Var(𝑌𝑛(𝑡)) =
𝛾(𝑡)𝑛+𝑂(1), for all 𝑡 ∈ R, where 𝛾(𝑡) is a positive constant given by

𝛾(𝑡) =
𝑦′′𝑡 (0)

𝑦𝑡(0)
−
(︂
𝑦′𝑡(0)

𝑦𝑡(0)

)︂2

= 𝛽′(𝑡) > 0 ∀𝑡 ∈ R (10)

Therefore 𝛽(𝑡) is strictly increasing all over R and the following limits exist and are finite:

𝑈 = lim
𝑡→−∞

𝛽(𝑡), 𝑉 = lim
𝑡→+∞

𝛽(𝑡) (11)

By relation (9), we have 0 ≤ 𝑈 < 𝛽(0) < 𝑉 ≤ 1, which, together with relation (10), implies
the following statement.

Lemma 1. Let 𝑈 and 𝑉 be defined by (11). Then, for every 𝑥 ∈ (𝑈, 𝑉 ) there exists a unique
𝜏𝑥 ∈ R such that

𝛽(𝜏𝑥) = 𝑥 (12)

Moreover, 𝜏𝑥 < 0 whenever 𝑥 < 𝛽, 𝜏𝛽 = 0 and 𝜏𝑥 > 0 when 𝑥 > 𝛽.

Now we apply property 3) of the previous section to the random variable 𝑌𝑛(𝑡): we get
a “quasi power” property for the moment generating function of 𝑌𝑛(𝑡), that is Ψ𝑌𝑛(𝑡)(𝑧) =

𝑟𝑡(𝑧)
(︁
𝑦(𝑡+𝑧)
𝑦(𝑡)

)︁𝑛
(1 + 𝑂(𝜀𝑛𝑡 )), for some 𝜀𝑡 ∈ (0, 1), where 𝑟𝑡(𝑧) is also analytic in 𝑧 = 0 and



𝑟𝑡(0) = 1. As a consequence, for every 𝑡 ∈ R the sequence of random variables
{︂

𝑌𝑛(𝑡)−𝛽(𝑡)𝑛√
𝛾(𝑡)𝑛

}︂
𝑛

converges in distribution to a Gaussian random variable of mean 0 and variance 1, i.e. for every
constant 𝑥 ∈ R we have

lim
𝑛→∞

Pr

(︃
𝑌𝑛(𝑡)− 𝛽(𝑡)𝑛√︀

𝛾(𝑡)𝑛
≤ 𝑥

)︃
=

1√
2𝜋

∫︁ 𝑥

−∞
𝑒−𝑢2/2𝑑𝑢 , ∀𝑡 ∈ R (13)

The previous results allow us to prove a large deviation property for {𝑌𝑛}.

Theorem 2. Let {𝑌𝑛} be defined by a linear representation (𝜉, 𝐴,𝐵, 𝜂) where𝐴+𝐵 is primitive.
Then {𝑌𝑛} satisfies a large deviation property in the interval (𝑈, 𝑉 ) with rate function

𝐺(𝑥) = − log

(︂
𝑦(𝜏𝑥)

𝜆𝑒𝑥𝜏𝑥

)︂
, ∀𝑥 ∈ (𝑈, 𝑉 )

where 𝑈 and 𝑉 are defined in relation (11) and 𝜏𝑥 is given by equation (12).

Proof. We first study the right tail of {𝑌𝑛}. We have to prove that for every 𝑥 ∈ [𝛽, 𝑉 ) the
following relation holds:

lim
𝑛→+∞

1

𝑛
log Pr(𝑌𝑛 ≥ 𝑥𝑛) = log

(︂
𝑦(𝜏𝑥)

𝜆𝑒𝑥𝜏𝑥

)︂
(14)

By Markov inequality, for every 𝑡 > 0, we have
Pr(𝑌𝑛 ≥ 𝑥𝑛) = Pr(𝑒𝑡𝑌𝑛 ≥ 𝑒𝑡𝑥𝑛) ≤ E(𝑒𝑡𝑌𝑛 )

𝑒𝑡𝑥𝑛

and hence, by relation (7) we get

Pr(𝑌𝑛 ≥ 𝑥𝑛) ≤ 𝑟(𝑡)
(︁

𝑦(𝑡)
𝜆𝑒𝑡𝑥

)︁𝑛
(1 +𝑂(𝜀𝑛𝑡 )),

which implies 1
𝑛 log Pr(𝑌𝑛 ≥ 𝑥𝑛) ≤ log

(︁
𝑦(𝑡)
𝜆𝑒𝑥𝑡

)︁
+𝑂(1/𝑛).

This bound can be further refined by taking the minimum with respect to 𝑡 > 0 of the first
term in the right hand side. To this end let us define the function

𝜙𝑥(𝑡) = log

(︂
𝑦(𝑡)

𝜆𝑒𝑥𝑡

)︂
∀𝑡 ∈ R (15)

Note that 𝜙𝑥(0) = 0, 𝜙′
𝑥(𝑡) = 𝛽(𝑡) − 𝑥, and hence by Lemma 1 since 𝑥 ≥ 𝛽, 𝜙𝑥(𝑡) takes a

unique minimum value at 𝑡 = 𝜏𝑥 ≥ 0. This proves

lim
𝑛→+∞

1

𝑛
log Pr(𝑌𝑛 ≥ 𝑥𝑛) ≤ log

(︂
𝑦(𝜏𝑥)

𝜆𝑒𝑥𝜏𝑥

)︂
Also observe that 𝜙𝑥(𝑡) is convex since 𝜙′′

𝑥(𝑡) = 𝛽′(𝑡) > 0 by relation (10).
An analogous lower bound for Pr(𝑌𝑛 ≥ 𝑥𝑛) can be proved by considering the random

variable 𝑌𝑛(𝜏𝑥). Since [𝑧𝑘]𝜉′(𝐴𝑒𝜏𝑥𝑧 +𝐵)𝑛𝜂 = 𝑒𝜏𝑥𝑘[𝑧𝑘]𝜉′(𝐴𝑧 +𝐵)𝑛𝜂, by relations (3) and (4)
we have

Pr(𝑌𝑛 = 𝑘) =
Pr
(︀
𝑌𝑛(𝜏𝑥) = 𝑘

)︀
Ψ𝑛(𝜏𝑥)

𝑒𝜏𝑥𝑘
∀ 𝑘 = 0, 1, . . . , 𝑛 (16)



Also note that E(𝑌𝑛(𝜏𝑥)) = 𝛽(𝜏𝑥)𝑛+𝑂(1) = 𝑥𝑛+𝑂(1) and by (13) we know that {𝑌𝑛(𝜏𝑥)}𝑛
has a Gaussian limit distribution. This means that, for every 𝜀 > 0, Pr

(︀
𝑌𝑛(𝜏𝑥) > (𝑥+ 𝜀)𝑛

)︀
=

𝑜(1) and then

Pr
(︀
𝑥𝑛 ≤ 𝑌𝑛(𝜏𝑥) ≤ (𝑥+ 𝜀)𝑛

)︀
=

1

2
+ 𝑜(1)

Then, from this relation and the identities (16) and (7) we get

Pr(𝑌𝑛 ≥ 𝑥𝑛) ≥ Pr
(︀
𝑥𝑛 ≤ 𝑌𝑛 ≤ (𝑥+ 𝜀)𝑛

)︀
≥

Pr
(︀
𝑥𝑛 ≤ 𝑌𝑛(𝜏𝑥) ≤ (𝑥+ 𝜀)𝑛

)︀
Ψ𝑛(𝜏𝑥)

𝑒𝜏𝑥(𝑥+𝜀)𝑛
=

=

(︂
1

2
+ 𝑜(1)

)︂
𝑟(𝜏𝑥)

(︂
𝑦(𝜏𝑥)

𝜆𝑒𝜏𝑥(𝑥+𝜀)

)︂𝑛

(1 +𝑂(𝜀𝑛𝜏𝑥)) (17)

Thus, by the arbitrariness of 𝜀, we have

1

𝑛
log Pr(𝑌𝑛 ≥ 𝑥𝑛) ≥ log

(︂
𝑦(𝜏𝑥)

𝜆𝑒𝑥𝜏𝑥

)︂
+𝑂(1/𝑛)

which yields the required lower bound and concludes the proof of relation (14).
Consider now the left tail. We have to prove that, for every 𝑥 ∈ (𝑈, 𝛽],

lim
𝑛→+∞

1

𝑛
log Pr(𝑌𝑛 ≤ 𝑥𝑛) = log

(︂
𝑦(𝜏𝑥)

𝜆𝑒𝑥𝜏𝑥

)︂
(18)

where 𝜏𝑥 ≤ 0 is defined by equation (12).
The reasoning is similar to the previous case. The main difference is that here 𝑈 < 𝑥 ≤ 𝛽 and

one has to use negative values of 𝑡. Note that the function 𝜑𝑥(𝑡) given by (15) is well defined
also in this case. For every 𝑥 ∈ (𝑈, 𝛽] and every 𝑡 < 0, by Markov inequality and relation (7)
we get

Pr(𝑌𝑛 ≤ 𝑥𝑛) = Pr(𝑒𝑡𝑌𝑛 ≥ 𝑒𝑡𝑥𝑛) ≤ E(𝑒𝑡𝑌𝑛)

𝑒𝑡𝑥𝑛
= 𝑟(𝑡)

(︂
𝑦(𝑡)

𝜆𝑒𝑡𝑥

)︂𝑛

(1 +𝑂(𝜀𝑛𝑡 ))

By Lemma 1 the minimum of 𝜙𝑥(𝑡) = log
(︁

𝑦(𝑡)
𝜆𝑒𝑥𝑡

)︁
is taken at 𝑡 = 𝜏𝑥 ≤ 0 and this proves that

1

𝑛
log Pr(𝑌𝑛 ≤ 𝑥𝑛) ≤ log

(︂
𝑦(𝜏𝑥)

𝜆𝑒𝑥𝜏𝑥

)︂
+𝑂(1/𝑛)

which yields an upper bound to the limit in (18).
The corresponding lower bound is obtained as in the analysis of the right tail, leading to

relation (17), with obvious changes. □



6. Large deviations in the interval (0,1)

A natural question arising at this point is whether the interval (𝑈, 𝑉 ) can be extended to (0, 1)
as in the case of the sequences of binomial random variables considered in section 2.

Let us assume that 𝐴+𝐵 is a primitive matrix. Since 𝐴 and 𝐵 are non-null matrices with
entries in R+, they admit a real non-negative eigenvalue that is greater or equal to the modulus
of any other eigenvalue of the respective matrix. We denote such eigenvalues by 𝜆𝐴 and 𝜆𝐵 ,
respectively. Clearly, as 𝐴 is not primitive in general, it may occur 𝜆𝐴 = 0 or 𝜆𝐴 = |𝜇| for
some eigenvalue 𝜇 of 𝐴 such that 𝜇 ̸= 𝜆𝐴, and the same may happen for 𝜆𝐵 . However, by
statement (iv) of Theorem 1, it is clear that 𝜆𝐴 < 𝜆 and 𝜆𝐵 < 𝜆, where 𝜆 is the Perron-Frobenius
eigenvalue of 𝐴+𝐵.

Now, assume 𝜆𝐵 > 0 (which is equivalent to require that 𝐵 has a nonnull eigenvalue) and
let 𝑣𝐵 and 𝑢𝐵 be left and right eigenvectors of 𝐵 with respect to 𝜆𝐵 , normed so that 𝑣′𝐵𝑢𝐵 = 1.
Clearly 𝑣𝐵 and 𝑢𝐵 cannot be null. Moreover, for 𝑡 → −∞, the matrix 𝐴𝑒𝑡 + 𝐵 tends to 𝐵
and hence the eigenvalue 𝑦(𝑡) converges to 𝜆𝐵 , while the matrix 𝑢𝑡𝑣′𝑡 tends 𝑢𝐵𝑣′𝐵 , implying
𝑣′𝑡𝐵𝑢𝑡 → 𝑣′𝐵𝐵𝑢𝐵 = 𝜆𝐵 and similarly 𝑣′𝑡𝐴𝑢𝑡 → 𝑣′𝐵𝐴𝑢𝐵 . As a consequence, for 𝑡→ −∞, we
have

𝑦′(𝑡) = 𝑣′𝑡𝐴𝑒
𝑡𝑢𝑡 = 𝑂(𝑒𝑡) = 𝑜(1)

Therefore, by equality (8) the last relation implies (for 𝑡→ −∞)

𝛽(𝑡) =
𝑣′𝑡𝐴𝑒

𝑡𝑢𝑡
𝑣′𝑡(𝐴𝑒

𝑡 +𝐵)𝑢𝑡
=

𝑂(𝑒𝑡)

𝜆𝐵 + 𝑜(1)
= 𝑜(1) (19)

and hence 𝑈 = 0.
Analogously, if 𝜆𝐴 > 0 we get 𝑉 = 1. In fact, assume 𝑡 → +∞ and let 𝐿(𝑡) = 𝐴+ 𝐵𝑒−𝑡.

Exchanging 𝐴 and 𝐵 in the previous argument and recalling that 𝐿(𝑡) and 𝐴𝑒𝑡 + 𝐵 have
the same eigenvectors, we obtain 𝑣′𝑡𝐴𝑢𝑡 = 𝜆𝐴 + 𝑜(1) and 𝑣′𝑡𝐵𝑒

−𝑡𝑢𝑡 = 𝑂(𝑒−𝑡) = 𝑜(1). As a
consequence, for 𝑡→ +∞, we have

𝛽(𝑡) =
𝑣′𝑡𝐴𝑒

𝑡𝑢𝑡
𝑣′𝑡(𝐴𝑒

𝑡 +𝐵)𝑢𝑡
=

𝑣′𝑡𝐴𝑢𝑡
𝑣′𝑡(𝐴+𝐵𝑒−𝑡)𝑢𝑡

=
𝜆𝐴 + 𝑜(1)

𝜆𝐴 + 𝑜(1)
= 1 + 𝑜(1) (20)

which implies 𝑉 = 1.
The previous argument proves the following result.

Theorem 3. Let {𝑌𝑛} be defined by a linear representation (𝜉, 𝐴,𝐵, 𝜂) where𝐴+𝐵 is primitive
and both 𝐴 and 𝐵 have a nonnull eigenvalue. Then {𝑌𝑛} satisfies a large deviation property in
the interval (0, 1) with rate function 𝐺(𝑥) = − log

(︁
𝑦(𝜏𝑥)
𝜆𝑒𝑥𝜏𝑥

)︁
, for any 𝑥 ∈ (0, 1), where 𝜏𝑥 is the

unique real value such that 𝛽(𝜏𝑥) = 𝑥.

Under the same hypotheses of the previous theorem we can study the function 𝐺(𝑥). Note
that the function 𝜏 = 𝜏𝑥, implicitly defined by 𝛽(𝜏)− 𝑥 = 0, is well defined and analytic for
𝑥 ∈ (0, 1). Thus it is easy to see that

𝐺′(𝑥) = −𝛽(𝜏𝑥)𝜏 ′𝑥 + 𝜏𝑥 + 𝑥𝜏 ′𝑥 = 𝜏𝑥



and hence 𝐺(𝑥) is decreasing in (0, 𝛽) and increasing in (𝛽, 1), with a unique minimal value
𝐺(𝛽) = 0. This also proves that

lim
𝑥→0+

𝐺′(𝑥) = −∞ , and lim
𝑥→1−

𝐺′(𝑥) = +∞

and hence 𝐺(𝑥) grows vertically for 𝑥 → 1− and for 𝑥 → 0+. Moreover, 𝐺′′(𝑥) equals 𝜏 ′𝑥,
which is always positive since 𝜏𝑥 is strictly increasing in (0, 1), and hence 𝐺(𝑥) is a convex
function in (0, 1).

Finally, let us determine the behaviour 𝐺(𝑥) for 𝑥→ 0+ and for 𝑥→ 1−. Letting 𝑥→ 0+,
we have 𝜏𝑥 → −∞ and, arguing as for equation (19), we obtain 𝑦(𝜏𝑥) = 𝜆𝐵 + 𝑜(1). Moreover,
applying the same equation (19), we get

𝑥𝜏𝑥 = 𝛽(𝜏𝑥)𝜏𝑥 = 𝑂(𝑒𝜏𝑥)𝜏𝑥 = 𝑜(1)

As a consequence, we can derive the following limit

lim
𝑥→0+

𝐺(𝑥) = lim
𝑥→0+

− log(𝑦(𝜏𝑥)) + log(𝜆) + 𝑥𝜏𝑥 = log(𝜆/𝜆𝐵) (21)

Analogously, let 𝑥 → 1−. Then 𝜏𝑥 → +∞ and, reasoning as for equation (20), we get
𝑦(𝜏𝑥) = 𝑒𝜏𝑥(𝜆𝐴 + 𝑜(1)) and 𝑥𝜏𝑥 = 𝜏𝑥 + 𝑜(1), which implies

lim
𝑥→1−

𝐺(𝑥) = lim
𝑥→1−

− log(𝑦(𝜏𝑥)) + log(𝜆) + 𝑥𝜏𝑥 = log(𝜆/𝜆𝐴) (22)

Example 2. As an example, consider the linear representation defined by the weighted fi-
nite automaton of Figure 2 (left hand side). In this case we have 𝜆 = 6 and 𝑦(𝑡) =

2−1
(︁
1 + 3𝑒𝑡 +

√
1 + 54𝑒𝑡 + 9𝑒2𝑡

)︁
. By using Mathematica and plotting function 𝐺(𝑥) =

log 6 + 𝑥𝑡− log 𝑦(𝑡) in the interval (0, 1), with condition 𝑦′(𝑡) = 𝑥𝑦(𝑡), we obtain the graphic
at the right hand side of the same figure. The numerical computation also confirms that the
limit of 𝐺(𝑥) for 𝑥→ 0+ and 𝑥→ 1− are log 6 and log 2, respectively, as proved by relations
(21) and (22).

For a qualitative comparison with the rate function associated with the sequence of binomial
r.v.’s {𝑋𝑛.𝑝}, when 𝑝 = 5/8, such a graphic should be compared with that one of Figure 1.

7. Conclusion

In conclusion we can see that the qualitative behaviour of rate function𝐺(𝑥) is rather similar to
that one of 𝐵(𝑥) discussed in section 2, that is the rate function of the large deviation property
for the sequence {𝑋𝑛,𝑝} of binomial random variables. Note that the interval of validity of the
property is the same. The constant 𝛽 = 𝑣′𝐴𝑢

𝜆 , where𝐺(𝑥) takes its minimal value 0, corresponds
to success probability 𝑝 of 𝑋𝑛,𝑝. Moreover, the limits of 𝐺(𝑥) for 𝑥 → 0+ and 𝑥 → 1−, i.e.
log(𝜆/𝜆𝐵) and log(𝜆/𝜆𝐴) respectively, correspond to − log(1− 𝑝) and − log 𝑝.

Natural problems for further investigation concern the case when 𝜆𝐴 or 𝜆𝐵 are null; in this
case Theorem 3 does not apply immediately but one may guess that a similar property holds. In
particular a natural question is whether in this case the large deviation property still holds in the
interval (0, 1). Other subjects for further studies are the validity of large deviation properties for
non-primitive rational models, in particular for models consisting of two or more components,
like those studied in [9, 18] and in [19].
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Figure 2: Weighted finite automaton defining a sequence of r.v.’s {𝑌𝑛} with the corresponding key
values 𝜆, 𝜆𝐴, 𝜆𝐵 , 𝛽, 𝑦(𝑡), and the graphic of rate function 𝐺(𝑥) of the associated large deviation
property.
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