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Abstract
Isometric k-ary words have been defined referring to the Hamming and the Lee distances. A word is
non-isometric if and only if it has a prefix at distance 2 from the suffix of same length; such a prefix is
called 2-error overlap. The limit density of isometric binary words based on the Hamming distance has
been evaluated by Klavžar and Shpectorov, obtaining that about 8% of all binary words are isometric. In
this paper, the issue is addressed for k-ary words and referring to the Hamming and the Lee distances.
Actually, the only meaningful case of Lee-isometric k-ary words is when k = 4. It is proved that, when the
length of words increases, the limit density of quaternary Ham-isometric words is around 17%, while the
limit density of quaternary Lee-isometric words is even bigger, it is about 30%. The results are obtained
using combinatorial methods and algorithms for counting the number of k-ary isometric words.
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1. Introduction

The notion of isometric word has been introduced in the framework of the research on hypercubes
and, more in general, on k-ary n-cubes. The k-ary n-cube is one of the most attractive interconnec-
tion networks for parallel computer systems. The goal was to provide a class of subgraphs of the
hypercube Qn having a considerably smaller size, still maintaining some metric properties. With
this aim, Hsu introduced the Fibonacci cubes [1], as the subgraphs of the hypercube restricted
to vertices associated with binary words that do not contain 11 as a factor. Fibonacci cubes are
isometric subgraphs of Qn. They received a lot of attention afterwards (see [2] for a survey) and
they have been then extended to define the generalized Fibonacci cube Qn( f ) [3], as the subgraph
of the hypercube Qn restricted to the vertices associated with binary words avoiding the word f
as a factor, i.e. f -free binary words. In this framework, a binary word f is said isometric when,
for any n ≥ 1, Qn( f ) can be isometrically embedded into Qn, and non-isometric, otherwise [4].
For example, the word 11 is isometric, because Fibonacci cubes Qn(11) are isometric subgraphs
of Qn. Other examples are given in Examples 1, 2 and 3.

Observe that, in the binary case, the distance between two vertices in the hypercube coincides
with their Hamming distance. Hence, isometric binary words can be characterized ignoring
hypercubes and adopting a point of view closer to combinatorics on words. A binary word f is
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isometric if and only if for any integer d ≥ | f | and any pair of words u and v of length d which
do not contain the factor f , u can be transformed in v by exchanging one by one the bits on
which they differ and generating only words which do not contain f . Differently saying, this
transformation is composed by single steps transforming a word in another at Hamming distance
1. We will call it an f -free Ham-transformation and the resulting isometric words, Ham-isometric
words. When moving from binary to k-ary alphabets, with k ≥ 2, the hypercubes are replaced
by the k-ary n-cubes where the vertices are k-ary words of length n. In this case, the distance
between two vertices is no more captured by the Hamming distance, but by the Lee distance.
Hence, in an analogous way, f -free Lee-transformations and Lee-isometric k-ary words have
been introduced; see [5], and [6] on quaternary words. Remarkably, note that Lee-isometric
words exist only for k-ary alphabets with k = 2,3,4, whereas there are Ham-isometric words for
any cardinality of the alphabet. Further note that when k = 2,3 the two notions coincide, so that
the unique meaningful case to investigate Lee-isometric words is when the alphabet is quaternary.

The notion of isometric word combines the distance notion with the property that a word does
not appear as factor in other words. Note that this property is important in combinatorics as well
as in the investigation on similarities, or distances, on DNA sequences, where the avoided factor
is referred to as an absent or forbidden word [7, 8, 9, 10]. Recently, isometric words have been
introduced and investigated in [11, 12] referring to an edit distance based on swap and mismatch
errors. Also, binary non-isometric words have been considered in the two-dimensional setting,
and non-isometric/bad pictures have been investigated [13].

Deciding whether a word is Ham-isometric (Lee-isometric, resp.) can be efficiently done
using the characterization of Ham-non-isometric (Lee-non-isometric, resp.) words as the ones
showing a particular overlap with errors, called 2-Ham-error overlap (2-Lee-error overlap, resp.).
A 2-Ham-error overlap (2-Lee-error overlap, resp.) of a word f is a prefix of f whose Hamming
(Lee, resp.) distance from the suffix of same length is exactly 2. This is a similar concept as the
overlap, or border, of a word, i.e. a prefix which is equal to the suffix of same length. Words
having no overlap are known in the literature as the non bifix-free words or unbordered words.
Such notions play a crucial role both in combinatorics of words and in pattern matching (with or
without errors).

In [4], the authors demonstrate that there is a considerable number of both Ham-isometric
and Ham-non-isometric binary words. In fact, they show that, as the length goes to infinity, the
proportion of Ham-isometric words has a limit strictly between 0 and 1. The density of the set of
all binary words of given length having a 2-error overlap converges to a limit value which lies
between 0.919975 and 0.924156, that is there are about the 8% of Ham-isometric binary words.
Thus, the generalized Fibonacci cubes Qn( f ) for Ham-isometric binary words f constitute a large
explicit family of partial cubes. Actually, the evaluation of the density of Ham-isometric binary
words has been achieved using their characterization as those words without 2-error overlaps.

In this paper we extend such results by proving that Ham- and Lee- isometric words over
a k-ary alphabet, with k > 2, can be even more than in the binary case. The density of Ham-
isometric k-ary words is investigated for any k; upper and lower bounds are given depending
on k and on the length n of words for which the density can be explicitely computed. Here, the
computation has been carried on for k = 4 and n = 3, ...,16, and the values are collected in a table.
In an analogous way, the density of Lee-isometric words has been lower and upper bounded.
Recall that there are no Lee-isometric words for k > 5, and that Lee-isometric words are exactly



the Ham-isometric words, when k = 2,3. So the results concern the unique meaningful case
of k = 4. In the quaternary case, the density of Ham-isometric and Lee-isometric words has
been explicitely evaluated and compared. There are about the 17% of Ham-isometric quaternary
words, whereas about 30% of Lee-isometric quaternary words. Remarkably, there are strictly
more Lee-isometric quaternary words than the Ham- ones. The motivation of this claim has been
explored.

The computation of explicit values of the density of Ham- and Lee- isometric quaternary words
for small lenghts has been carried on using an algorithm to efficiently check whether a word
is isometric. A first cubic time algorithm for deciding isometricity and providing evidence and
further information about it was given in [14] for binary words and referring to the Hamming
distance. Recently, an algorithm has been presented to check isometricity of k-ary words with
Hamming and Lee distances [15]. This algorithm is based on the characterization in [5] and
applies some methods of the pattern matching with mismatches to achieve a linear time complexity.
Note that, from then on, other algorithms have been designed that, not only check whether a k-ary
word is Ham- or Lee- isometric, but they also provide further information and evidence while
keeping the same linear complexity [16].

2. Isometric Words and 2-error overlaps

Let us recall some definitions and notation given in [6].
Let Σ be an alphabet and |Σ| = k. Throughout the paper, Σ will be identified with Zk =

{0,1, . . . ,k− 1}, the ring of integers modulo k. A word (or string) f ∈ Σ∗ of length n is f =
x1x2 · · ·xn, where x1,x2, . . . ,xn are symbols in Σ. The set of words over Σ of length n is denoted
Σn. Let f [i] denote the symbol of f in position i, i.e. f [i] = xi. Then, f [i.. j] = xi · · ·x j, for
1 ≤ i ≤ j ≤ n, is a factor of f . A word s ∈ Σ∗ is said f -free if it does not contain f as a
factor. The prefix of f of length l is prel( f ) = f [1..l]; while the suffix of f of length l is
su fl( f ) = f [n− l +1..n]. When prel( f ) = su fl( f ) then prel( f ) is referred to as an overlap, or
border, of f of length l.

Let u,v ∈ Σ∗ be two words of the same length. The Hamming distance distH(u,v) between u
and v is the number of positions at which u and v differ.

The Lee distance between two words u,v ∈ Zn
k , u = x1 · · ·xn and v = y1 · · ·yn is distL(u,v) =

n
∑

i=1
min(|xi − yi|,k−|xi − yi|).

In the sequel, Σ will denote a generic alphabet of cardinality k, while ∆ denote the quaternary
alphabet ∆ = {A,C,T,G}, referred to as the genetic alphabet. Symbols A and T (C and G, resp.)
will be called complementary symbols, in analogy to the Watson-Crick complementary bases they
represent. The alphabet ∆ will be identified with Z4, in such a way that A, C, T , and G will be
identified with 0, 1, 2, and 3, respectively. Therefore, pairs of complementary symbols have Lee
distance 2, whereas pairs of distinct non-complementary symbols have Lee distance 1.

Let us now recall the definitions of Ham and Lee-isometric words [6]. The definitions are
based on the process of transforming a word into another one of equal length, changing one
symbol at a time. Let Σ be a k-ary alphabet, f ∈ Σn, and u,v ∈ Σd .
A Ham-transformation (Lee-transformation, resp.) of length h from u to v is a sequence of
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Figure 1: The word f and its 2-error overlap of length l

words w0,w1, . . . ,wh such that w0 = u, wh = v, and for any i = 0,1, . . . ,h−1, distH(wi,wi+1) = 1
(distL(wi,wi+1) = 1, resp.). If for any i = 0,1, . . . ,h, the word wi is f -free, then the Ham-
transformation (Lee-transformation, resp.) is said f -free.

A word f ∈ Σn is Ham-isometric (Lee-isometric, resp.) if for all d ≥ n, and f -free words u,
v ∈ Σd , there is an f -free Ham-transformation (Lee-transformation, resp.) from u to v of length
equal to distH(u,v) (distL(u,v), resp.). A word is Ham-non-isometric (Lee-non-isometric, resp.)
if it is not Ham-isometric (Lee-isometric, resp.).

Example 1. Let ∆ be the quaternary genetic alphabet, f = ACT , u = ACCCT , and v = ACGCT .
Observe that distL(u,v) = 2, since they differ in their third position only and distL(C,G) = 2.
The sequences ACCCT , ACACT , ACGCT and ACCCT , ACTCT , ACGCT are the only two Lee-
transformations from u to v of length equal to distL(u,v) = 2; they are not f -free. Hence, no
f -free Lee-transformation exists from u to v. This shows that ACT is Lee-non-isometric.

Let us recall the following definitions (see Figure 1) of Ham- and Lee-error overlap.

Definition 1. Let Σ be a k-ary alphabet, f ∈ Σn, and q be an integer, 1 ≤ q ≤ n−1.
The word f has a q-Ham-error overlap (q-Lee-error overlap, resp.) of length l, 1 ≤ l ≤ n−1, if
distH(prel( f ),su fl( f )) = q (distL(prel( f ),su fl( f )) = q, resp.). Its error positions are the q (m,
1 ≤ m ≤ q, resp.) positions in prel( f ) where it differs from su fl( f ).

Remark 1. Using the notations in the previous definition, if f has a q-Lee-error overlap of length
l, then 1 ≤ m ≤ l,q.
In particular, when k = 4 and q = 2, then m = 1 or m = 2. The case m = 1 holds if prel( f ) and
su fl( f ) differ in exactly one position and the error is given by a pair of complementary symbols.
For example, f = AGAC ∈ ∆4 has a 2-Lee-error overlap of length l = 2. Indeed, m = 1 and
distL(AG,AC) = 2. If m = 2 then prel( f ) and su fl( f ) differ in two different positions i and j and
the errors are given by pairs of non-complementary symbols.

Theorem 1, proved in [5, 6], provides a characterization of Ham- and Lee- isometric words,
which is fundamental to test whether a word is Ham- or Lee- isometric.

Theorem 1 ([5, 6]). Let Σ be a k-ary alphabet and f ∈ Σ∗. Then,

• f is Ham-isometric if and only if it has no 2-Ham-error overlap.
• f is Lee-isometric if and only if it has no 2-Lee-error overlap, when k = 2,3,4



• f is never Lee-isometric, when k > 4.

Example 2. Let f = 0201 ∈ Σ∗ with Σ = Z3 = {0,1,2}. The word f has no 2-Ham-error overlap
and thus it is Ham-isometric, by Theorem 1. Consider now f = ATC ∈ ∆∗. The word f has no
2-Lee-error overlap and thus it is Lee-isometric, by Theorem 1. On the other hand, by the same
theorem, f = ATC is Ham-non-isometric, since it has a 2-Ham-error overlap.

Next result allows us to restrict the domain of strings to be considered when looking for
Lee-isometric words. For example, when the alphabet is ∆, it is sufficient to take into account
words starting with A.

Let Σ = {0,1, . . . ,k − 1}, f = f1 f2 · · · fn be a word over Σ, u,v ∈ Σd be f -free words, and
h, j ∈ Σ. The reverse of f is f R = fn · · · f2 f1. The h-shift of j is jS(h) = ( j+h) mod k, while the
h-shift of f is f S(h) = f S(h)

1 f S(h)
2 · · · f S(h)

n . When k = 2, the 1-shift of f is its complement.

Lemma 1. Let Σ be a k-ary alphabet and f ∈ Σ∗. Then

• f is Lee-isometric if and only if f R is Lee- isometric
• for any h ∈ Σ, f is Lee-isometric if and only if f S(h) is Lee-isometric.

3. Evaluating the Density of Ham- and Lee- isometric Words

The density of Ham-isometric binary words has been studied in [4], where the authors show that,
for large values of the length, about 8% of all binary words are Ham-isometric. In this section, the
case of an alphabet with k symbols, k ≥ 2, is investigated. Results concern both Ham- and Lee-
isometric words and will be obtained using their characterizations in terms of 2-error overlaps
(see Theorem 1).

3.1. Density of Ham-isometric words

Let us evaluate the density of Ham-non-isometric words, i.e., words with a 2-Ham-error overlap,
as the length increases. Table 1 collects the values of the density of quaternary Ham-non-isometric
words of length n, with 3 ≤ n ≤ 16.

The values in the table show that the density is not a monotone sequence. That is why we
will separately consider the density of words with a “long" 2-error overlap, and of words with a
“short" 2-error overlap.

Let H k,n be the set of all k-ary words of length n having a 2-Ham-error overlap. Let H short
k,n be

the set of all words in H k,n which have a 2-Ham-error overlap of length l ≤ n/2, H long
k,n be the set

of all words in H k,n which have a 2-Ham-error overlap of length l > n/2. A word in H short
k,n is

called split (as in [4], for k = 2).
Clearly, H k,n = H short

k,n ∪H long
k,n , but H short

k,n ∩H long
k,n is not necessarily empty. In particular,

|H k,n| ≤ |H short
k,n |+ |H long

k,n |. Also note that Hk,n \H short
k,n ⊆ H long

k,n .



n hn ˆ︁hn αn ˆ︁αn

3 36 24 0,5625 0,375

4 168 152 0,65625 0,59375

5 804 624 0,78515625 0,609375

6 3228 2704 0,788085938 0,66015625

7 13404 11176 0,818115234 0,682128906

8 54516 45360 0,831848145 0,692138672

9 216756 183656 0,826858521 0,700592041

10 875052 737008 0,834514618 0,702865601

11 3490236 2956520 0,832137108 0,704889297

12 13994460 11828800 0,834134817 0,705051422

13 55909620 47356176 0,83311826 0,705662012

14 223809540 189392808 0,833755508 0,70554319

15 894723276 757694840 0,833275985 0,705658309

16 3579796572 3030588552 0,83348634 0,705613883

Table 1
Some values of hn, ˆ︁hn, αn, ˆ︁αn for n = 3, . . . ,16

Example 3. Let ∆ = {A,C,T,G} be the genetic alphabet and f = AAGATAA in ∆7. The word f
is Ham-non-isometric. It has a 2-Ham-error overlap of length l = 3 that involves error positions
i = 1 and j = 3 with distH(AAG,TAA) = 2. Since l ≤ n/2, then f ∈ H short

4,7 . Furthermore, f
has also a 2-Ham-error overlap of length l = 4 that involves error positions i = 2 and j = 3
with distH(AAGA,ATAA) = 2. Since l > n/2, then f ∈ H long

4,7 . Therefore, f belongs to both sets

H short
4,7 and H long

4,7 .

Let us denote hk,n = |Hk,n|, sk,n = |H short
k,n | and lk,n = |H long

k,n |. From |H k,n| ≤ |H short
k,n |+ |H long

k,n |,
it follows hk,n ≤ sk,n + lk,n. Further denote by αk,n, σk,n, and λk,n the density of words in H k,n,

H short
k,n , and H long

k,n , respectively, among all words of length n, i.e., αk,n =
hk,n

kn , σk,n =
sk,n

kn , and

λk,n =
lk,n
kn .

Let us start by counting the number of words with a 2-Ham-error-overlap of fixed length.
Denote by hk,n(d) the number of words in H k,n that have a 2-Ham-error overlap of length d, for
some 2 ≤ d ≤ n−1; by sk,n(d) the number of words in H short

k,n that have a 2-Ham-error overlap

of length d, for some 2 ≤ d ≤ ⌊n/2⌋; and by lk,n(d) the number of words in H long
k,n that have a

2-Ham-error overlap of length d, for some ⌊n/2⌋< d ≤ n−1.

Lemma 2. Let Σ be a k-ary alphabet. Then, hk,n(d) =
d(d−1)

2 (k−1)2kn−d .

Proof. Let f be a k-ary word of length n that has a 2-error overlap of length d, for some
2 ≤ d ≤ n− 1. The word f is fully specified by three informations: the bits in the last n− d



positions of f , the 2 locations of the “errors” within pre fd( f ) and by the symbols in these error
positions, which can be chosen in k−1 ways each. The number of choices of 2 positions within
the d positions in pre fd( f ) is

(︁d
2

)︁
. Hence, hk,n(d) = kn−d

(︁d
2

)︁
(k−1)2 = d(d−1)

2 (k−1)2kn−d .

Remark 2. Note that a k-ary word f of length n may have 2-Ham-error overlaps of different

lengths. This implies that |H k,n|= hk,n ≤
n−1

∑
d=2

hk,n(d). Similar reasonings show that |H short
k,n |=

sk,n ≤
⌊n/2⌋

∑
d=2

sk,n(d) and that |H long
k,n |= lk,n ≤

n−1

∑
d=⌊n/2⌋+1

lk,n(d).

Proposition 1. Let Σ be a k-ary alphabet. The density of words in H long
k,n converges to 0 as n goes

to infinity. That is
lim
n→∞

λk,n = 0.

Proof. Consider lk,n(d), the number of k-ary words that have a 2-error overlap of length exactly
d, for some ⌊n/2⌋< d ≤ n−1. From Lemma 2 and Remark 2, we have

lk,n ≤
n−1

∑
d=⌊n/2⌋+1

kn−d
(︃

d
2

)︃
(k−1)2 = (k−1)2

n−1

∑
d=⌊n/2⌋+1

kn−dd(d −1)/2.

Then

lk,n ≤ (k−1)2 kn/2

2

n−1

∑
d=⌊n/2⌋+1

d2 ≤ (k−1)2 kn/2

2
n(n−1)2. Therefore,

λk,n ≤
(k−1)2kn/2n(n−1)2

2kn =
(k−1)2n(n−1)2

2kn/2 and limn→∞ λk,n = 0.

Contrarily to the case of the sequence αk,n, the following result holds for σk,n.

Proposition 2. Let Σ be a k-ary alphabet. The sequence σk,n is monotonically increasing and
bounded from above by 1. In particular, it has a limit σk ≤ 1.

Proof. Let us show that for any n ≥ 1, sk,n+1 ≥ ksk,n so that σk,n+1 =
sk,n+1

kn+1 ≥
sk,n

kn = σk,n.

Consider the mapping ϕ : Σn+1 → Σn defined by erasing the bit in position
⌊︂

n
2

⌋︂
+ 1. Now, if

f ∈ Σn+1 and ϕ( f ) has a 2-error overlap of some length d ≤
⌊︂

n
2

⌋︂
, then f has also a 2-error overlap

of the same length d. Therefore, ϕ−1(H short
k,n )⊆H short

k,n+1 and the claim follows noting that every
f ∈H short

k,n is the image of k different elements in H short
k,n+1.

Proposition 3. Let Σ be a k-ary alphabet. The sequence αk,n converges to the same limit value
σk, as σk,n.

Proof. According to Proposition 1, the sequence λk,n tends to zero. Hence both σk,n and σk,n+λk,n
converge to the same limit, σk. On the other hand, clearly, σk,n ≤ αk,n ≤ σk,n + λk,n, since
H short

k,n ⊆ Hk,n ⊆ H short
k,n ∪H long

k,n . So the claim follows.

Let us estimate σk, the limit value of both density sequences σk,n and αk,n.



Theorem 2. Let Σ be a k-ary alphabet. The limit value σk of the density of Ham-non-isometric
k-ary words is

σk,2m ≤ σk ≤ σk,2m + f (k,m)

where, for any integer m ≥ 1,

f (k,m) =
∞

∑
i=m

i(i+1)
2ki−1 =

m2k2 − (2m2 −3m−1)k+(m2 −3m+2)
2(k−1)3km−2 .

Proof. Using Proposition 2, the sequence σk,n is monotonically increasing, hence, for any n ≥ 2,
σk,n ≤ σk. Furthermore, sk,2m+1 = ksk,2m and then σk,2m+1 = σk,2m, so that we only need to
consider even n = 2m.

Let tk,n be the number of non-split words of length n, i.e., tk,n = |Σn\H short
k,n |. If w is such a word

then inserting two new symbols in the middle produces a word of length n+2 which is either again
non-split or it has a 2-error overlap of length exactly m+1. The number of words of the latter sort
is km+1

(︁m+1
2

)︁
(k−1)2, because we can choose m+1 symbols arbitrarily and then the second half

must be the same as the first half but with two positions changed in k−1 ways each. Therefore,

k2tk,n ≤ tk,n+2 + km+1
(︁m+1

2

)︁
(k−1)2 and, dividing by kn+2,

tk,n
kn ≤

tk,n+2

kn+2 +
(k−1)2m(m+1)

2km+1 .

Referring to the densities µk,n =
tk,n
kn of non-split k-ary words of length n, one has µk,n+2 ≥

µk,n −
(k−1)2m(m+1)

2km+1 .

Since σk,n = 1−µk,n, we get σk,n+2 ≤ σk,n +
(k−1)2m(m+1)

2km+1 ≤ σk,n +
m(m+1)

2km−1 .
Combining these relations from n to n+ p, we obtain

σk,n+2p ≤ σk,n +
m+p−1

∑
i=m

i(i+1)
2ki−1 .

Therefore, the following upper bound for σk follows: σk ≤ σk,n +
∞

∑
i=m

i(i+1)
2ki−1 . Hence, for any

n ≥ 2, n = 2m, σk,n ≤ σk ≤ σk,n +
∞

∑
i=m

i(i+1)
2ki−1 .

Let us now evaluate
∞

∑
i=m

i(i+1)
2ki−1 . Note that

∞

∑
i=m

i(i+1)
2ki−1 =

k
2

∞

∑
i=m

(︁ i2

ki +
i
ki

)︁
.

Setting x = 1/k in classical formulas for
∞

∑
i=1

i2xi,
m−1

∑
i=1

i2xi,
∞

∑
i=1

ixi, and
m−1

∑
i=1

ixi, the following

evaluation can be obtained

∞

∑
i=m

i(i+1)
2ki−1 =

(m2 +m)k2 − (2m2 −2)k+(m2 −m)

2(k−1)3km−2 .



3.2. Density of Lee-isometric words

In order to evaluate the density of Lee-isometric quaternary words some of the results regarding
Ham-isometric words must be properly modified.

Remember that the only significant case is now the case of a quaternary alphabet. Let ∆ =
{A,C,T,G} be the alphabet with k = |∆| = 4. The main difference is that a word f ∈ ∆∗ has
a 2-Lee-error-overlap when, for some d ≤ n− 1, pre fd( f ) differs from su fd( f ) in either 2
positions which contain different non-complementary symbols or 1 position which contains two
complementary symbols.

In analogy to the case of the Hamming distance, let us state the following notations. Note that
the value k = 4 is understood.

Let Ln be the set of all words in ∆∗ of length n having a 2-Lee-error overlap.
Let Lshort

n be the set of all words in Ln which have a 2-Lee-error overlap of length l ≤ n/2,
while L long

n be the set of all words in Ln which have a 2-Lee-error overlap of length l > n/2. A
word in Lshort

k,n is called L-split. Let us denote ˆ︁hn = |Ln|, ˆ︁sn = |Lshort
n |, ˆ︁ln = |L long

n |, and by ˆ︁αn, ˆ︁σn,

and ˆ︁λn the density of words in Ln, Lshort
n , and L long

n , respectively, among all words of length n,

i.e., ˆ︁αn =
ˆ︁hn

kn , ˆ︁σn =
ˆ︁sn

kn , and ˆ︁λn =
ˆ︁ln
kn .

Finally, let ˆ︁hn(d) be the number of words in Ln that have a 2-Lee-error overlap of length d,
for some 2 ≤ d ≤ n−1; ˆ︁sn(d) be the number of words in Lshort

n that have a 2-Lee-error overlap
of length d, for some 2 ≤ d ≤ ⌊n/2⌋; and ˆ︁ln(d) be the number of words in L long

n that have a
2-Lee-error overlap of length d, for some ⌊n/2⌋< d ≤ n−1.

Lemma 3. The number of words in ∆∗ of length n that have a 2-Lee-error overlap of length d, isˆ︁hn(d) =
(︁
2d2 −d

)︁
4n−d .

Proof. Let f be a word in ∆n that has a 2-Lee-error overlap of length d, for some 1 ≤ d ≤ n−1.
Then pre fd( f ) and su fd( f ) differ either in two positions, and the errors are given by a pair of
non-complementary symbols, or in one position, and the error is given by a pair of complementary
symbols. Therefore, in the first case, f is fully specified by three informations: the bits in the last
n−d positions of f , the 2 locations of the errors within pre fd( f ) and by the pairs of symbols in
these error positions, which can be chosen in 4 different ways. In the second case, the word f is
fully specified by two informations: the bits in the last n−d positions of f and the location of the
error within pre fd( f ). Hence, ˆ︁hn(d) = 4n−d

[︁
4
(︁d

2

)︁
+d

]︁
=
(︁
2d2 −d

)︁
4n−d .

Proposition 4. The density of words in L long
n converges to 0 as n goes to infinity, i.e.

lim
n→∞

ˆ︁λn = 0.

Proof. Let ˆ︁ln(d) be the number of words ∈ ∆n that have a 2-Lee-error overlap of length exactly
d, for some ⌊n/2⌋< d ≤ n−1. From Lemma 3, we haveˆ︁ln ≤ n−1

∑
d=⌊n/2⌋+1

4n−d(︁2d2 −d
)︁
. Then,



ˆ︁ln ≤ 2 ·4n/2
n−1

∑
d=⌊n/2⌋+1

d2 ≤ 2 ·4n/2
n−1

∑
d=⌊n/2⌋+1

(n−1)2 ≤ 4n/2n(n−1)2.

Therefore, ˆ︁λn =
ˆ︁ln
4n ≤ n(n−1)2

4n/2 and limn→∞
ˆ︁λn = 0.

The following propositions can be proved similarly to Propositions 2 and 3.

Proposition 5. The sequence ˆ︁σn is monotonically increasing and bounded from above by 1. In
particular, it has a limit ˆ︁σ ≤ 1.

Proposition 6. The sequence ˆ︁αn converges to the same limit value ˆ︁σ, as ˆ︁σn.

Let us estimate the limit density ˆ︁σ of both sequences ˆ︁σn and ˆ︁αn.

Theorem 3. The limit value ˆ︁σ of the density of Lee-non-isometric words in ∆∗ is

ˆ︁σ2m ≤ ˆ︁σ ≤ ˆ︁σ2m + f (m)

where, for any integer m ≥ 1,

f (m) =
∞

∑
i=m

2i2 +3i+1
4i+1 =

18m2 +39m+28
27 ·4m .

Proof. Using Proposition 5, the sequence ˆ︁σn is monotonically increasing, hence, for any n ≥ 2,ˆ︁σn ≤ ˆ︁σ. Furthermore, ˆ︁s2m+1 = 4ˆ︁s2m and then ˆ︁σ2m+1 = ˆ︁σ2m, so that we only need to consider even
n = 2m.

Let ˆ︁tn be the number of non-L-split words of length n. If w is such a word then inserting two
new symbols in the middle produces a word of length n+2 which is either again non-L-split or
it has a 2-Lee-error overlap of length exactly m+1. The number of words of the latter sort is
4m+1

[︁
4
(︁m+1

2

)︁
+m+1

]︁
, because we can choose m+1 symbols arbitrarily and, then, the second

half must be the same as the first half but either with two positions changed in 2 ways each (if
the errors are given by a pair of non-complementary symbols) or with one position changed in
exactly one way (if the error is given by a pair of complementary symbols).

Therefore 42 ˆ︁tn ≤ ˆ︁tn+2 + 4m+1
[︁
4
(︁m+1

2

)︁
+m+ 1

]︁
and, dividing by 4n+2, one obtains

ˆ︁tn
4n ≤ˆ︁tn+2

4n+2 +
4m+1

4n+2

[︁
2m(m+1)+m+1

]︁
.

Referring to the densities ˆ︁µn, one has ˆ︁µn+2 ≥ ˆ︁µn − 1
4m+1

(︁
2m2 +3m+1

)︁
. Since ˆ︁σn = 1−ˆ︁µn, we

get ˆ︁σn+2 ≤ ˆ︁σn +
1

4m+1

(︁
2m2 +3m+1

)︁
. Combining these relations from n to n+ p, one has

ˆ︁σn+2p ≤ ˆ︁σn +
m+p−1

∑
i=m

2i2 +3i+1
4i+1 .

Therefore, the following upper bound for ˆ︁σ follows: ˆ︁σ ≤ ˆ︁σn +
∞

∑
i=m

2i2 +3i+1
4i+1 . Hence, for any

n ≥ 2, n = 2m, ˆ︁σn ≤ ˆ︁σ ≤ ˆ︁σn +
∞

∑
i=m

2i2 +3i+1
4i+1 . The sum can be evaluated by using classical



formulas as in the proof of Theorem 2

∞

∑
i=m

2i2 +3i+1
4i+1 =

18m2 +39m+28
27 ·4m .

4. Comparing Ham- and Lee- isometric quaternary words
densities

Let us now compare the density of Ham- and Lee- isometric words in the unique significant
case, that is when the alphabet has cardinality k = 4. Hence, in this section the value of k
will be understood. It turns out that there are more Lee- isometric words than Ham-isometric
words. Observe that the result is not obvious. In fact, the set of all Ham-isometric words is not
inclusion-wise comparable with the set of Lee-isometric words. Examples are given in [5, 6].
The relation between such sets is described in the next proposition.

Denote H n the set of quaternary words of length n having a 2-Ham-error overlap and Ln the
corresponding set for the Lee distance case.

Proposition 7. Let f ∈ ∆n. Then

• f ∈ H n ∩Ln iff f has both a 2-Ham-error overlap and a 2-Lee-error overlap
• f ∈ H n \Ln iff f has a 2-Ham-error overlap and every 2-Ham-error overlap involves

pairs of non-complementary symbols, only
• f ∈ Ln \H n iff f has a 2-Lee-error overlap and every 2-Lee-error overlap has only one

error position that involves a pair of complementary symbols.

Proposition 8. Let n ≥ 2 be an integer. Then

• if d = 1 then ˆ︁hn(d) = 4n−1 and hn(d) = 0
• If d ≥ 2 then ˆ︁hn(d) = hn(d)− (5d −7)/2

Proof. No 2-Ham-error overlap may have length 1; hence hn(1) = 0. On the other hand, a
2-Lee-error overlap may have length 1. In this case the first and the last symbol in the word
are complementary ones. Hence, a word of length n with a 2-Lee-error overlap of length 1 is
specified by the first symbol, in 4 ways, and the next n−2 symbols. Then, ˆ︁hn(d) = 4n−1. Finally,
if d ≥ 2, the claim follows from Lemmas 2 and 3.

Unfortunately, as already observed, the previous result cannot be extended to ˆ︁hn or hn. The
first values of ˆ︁hn and hn have been calculated and collected in Table 1. In particular, note thatˆ︁hn ≤ hn, for any 3 ≤ n ≤ 16.

Similar calculations show that the density sequences ˆ︁αn and αn are not monotonically increas-
ing, already for n ≤ 16, see Table 1. Let us compare the limit values ˆ︁σ and σ. The two following
results are consequences of Theorems 2 and 3.



Corollary 1. The limit value σ of the density of Ham-non-isometric quaternary words is

0.833013 ≤ σ ≤ 0.836195

Proof. Theorem 2 states that σ2m ≤ σ ≤ σ2m +
9m2 +15m+8

18 ·4m−2 , when k = 4. Then, with m = 8,
it holds that σ16 ≤ σ ≤ σ16 + 0.003182. Calculations give that σ16 = 0.833013 and finally
0.833013 ≤ σ ≤ 0.833013+0.003182 = 0.836195.

Corollary 2. The limit value ˆ︁σ of the density of Lee-non-isometric quaternary words is

0.705357 ≤ ˆ︁σ ≤ 0.706200

Proof. Taking m = 8, n = 16, the formula of previous theorem becomes ˆ︁σ16 ≤ ˆ︁σ ≤ ˆ︁σ16 +
0.000843. Adapting efficient algorithms as in [12, 16], it can be obtained that ˆ︁σ16 = 0.705357
and then 0.705357 ≤ ˆ︁σ ≤ 0.705357+0.000843 = 0.706200.

The two previous results together allow to compare the limit values σ and ˆ︁σ of the densities of
Ham- and Lee-non-isometric quaternary words.

Proposition 9. 0.705357 ≤ ˆ︁σ ≤ σ ≤ 0.836195.

Let us conclude that the Lee-isometric quaternary words are considerably more than the Ham-
isometric ones. In fact, for large n, the number of Ham-isometric words is approximately 17%
of all words of that length, whereas the corresponding number for Lee-isometric words is about
30%.

5. Conclusions

Isometric words are at the crossroads of several areas of computer science. They were introduced
in the framework of hypercubes and then characterized in terms of overlaps with errors in a
word. They can also be defined referring to transformations on words that avoid factors. In
this paper, we investigated the density of isometric words defined with respect to Hamming and
Lee distances, considering alphabets of any cardinality. Clearly, the results can be restated in
terms of the other equivalent characterizations. As a future work, it would be worthwhile to carry
out a similar study on the density of isometric words also referring to other distances, as the
aforementioned distance based on swap and mismatch operations.
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