
Linear Realisability Over Nets and Second Order
Quantification (short paper)
Adrien Ragot

1,2,*,†
, Thomas Seiller

1,3,‡ 
and Lorenzo Tortora de Falco

2

1Université Sorbonne Paris Nord, France – LIPN UMR 7030
2Università Degli Studi Roma Tre, Italy – Dipartimento di Matematica e Fisica
3CNRS, France

Abstract
We present a new realisability model based on othogonality for Linear Logic in the context of nets –

untyped proof structures with generalized axiom. We show that it adequately models second order

multiplicative linear logic.

As usual, not all realizers are representations of a proof, but we identify specific types (sets of nets

closed under bi-othogonality) that capture exactly the proofs of a given sequent. Furthermore these

types are orthogonal’s of finite sets; this ensures the existence of a correctnesss criterion that runs in

finite time.

In particular, in the well known case of multiplicative linear logic, the types capturing the proofs are

generated by the tests of Danos-Regnier, we provide - to our knowledge - the first proof of the folklore

result which states "test of a formula are proofs of its negation".
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Context

Realisability is a technique that extracts the computational content of proofs [1]. It was first

introduced in 1945 by Kleene for Heyting Arithmetic – an Intuitionnistic axiomatization of

arithmetic – based on the codes of Gödel’s partial recursive functions [2]. Fixing an untyped

computational model, the methodology of Realisability is based on two aspects:

• Types are given a computational status: the interpretation of a type
1 𝐴 is a set of programs

J𝐴K, which behave similarly – its element are called realizers of 𝐴.

• A simple process transforming the proofs of the realized logic in programs is defined,

introducing a non trivial predicate on programs, namely, some programs represent a

proof, the correct programs, while others do not, the incorrect programs.
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Equivalently, having the Curry–Howard correspondence in mind, 𝐴 is a formula.
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For instance, whenever the computational model is a freely–generated language equipped

with a binary relation capturing program execution, correct programs correspond to

well–formed terms.

A theorem of adequacy or soundness usually follows, e.g. each proof of 𝐴 corresponds to a

realizer of 𝐴. However, not all realizers are correct programs thus not all realizers represent a

proof. In fact, it was revealed by realisability models based on orthogonality that the presence

of incorrect programs is crucial to give a computational status to correctness.

When introduced by Kleene, realisability was only considered for intuistionnistic logics

due to their ‘constructive’ nature, and it is only in 2005 that Jean-Louis Krivine introduced

classical realisability [3] aiming at extending realisability techniques to classical logic, proposing

a model based on orthogonality. Krivine’s construction is based on an extension of the untyped

lambda calculus, but, in order to capture a given context (stack) to potentially restore it later,

the syntax is not only extended with the call/cc operator but also with a countably infinite set

of stack constants. As a consequence, (as in Kleene’s realisability) only some of the programs

represent a classical proof, namely those not containing stack constants. This introduction

of "incorrect" terms is essential, as it introduces in the syntax semantic information [4] that

can be used to test correct (and incorrect) terms. This concept of testing is captured by the

definition of an orthogonality relation (here between terms and stacks), which is used to define

the interpretation of types (as the set of terms passing a given set of tests).

In parallel with the work of Krivine, similar realisability constructions have been introduced

by Jean-Yves Girard in order to interpret Linear Logic. While the orthogonality construction

was clearly put forth in Ludics, the ideas and first occurrences can be traced back to the first

model of geometry of interaction (GoI) [5], which is restricted to multiplicative linear logic,

and interprets proofs as permutations. Later GoI construction took several diverse forms,

generalising permutations by operators in a C*-algebra (goi1 [6], goi2 [7]), first-order prefix

rewriting (goi3) [8], or von Neumann Algebras (goi5) [9].

In a series of recent papers [10, 11, 12], Thomas Seiller proposed a combinatorial approach to

the Geometry of Interaction, interaction graphs, which specialises to all the previous ‘geometries’

of interaction proposed by Girard. It is crucial to note that this work on goi constructs the types

of Linear Logic via a realisabilty method, involving orthogonality within the computational

model of interaction graphs. However, proofs are interpreted in these models as abstract objects

(generalisations of dynamical systems) which remain far from the general intuition of what a

proof is.

This is where our work starts: we extend the use of realizability techniques to Linear Logic

in an untyped variant of the well known and ‘canonical’ context of proof nets; first to the

multiplicative fragment of Linear Logic, and secondly to second order multiplicative Linear

Logic. We obtain the results of soundness (e.g. adequacy) and completeness both for MLL and

MLL✠ – with furthermore assumptions on the interpretation basis. Soundness is also true at

the second–order for MLL2 proofs. Moreover we show that the types constructed by induction

for both the multiplicative and second–order preserve the finite testability 2
. In particular this is

true for the types capturing the proofs of the multiplicative fragment: this is done by encoding

the Danos Regnier criterion [13] in MLL✠ proofs, we provide, to our knowledge, the first proper

2

A type A is finitely testable if there exists a finite set 𝐵 such that A = 𝐵⊥
.



proof of the folklore result which states that ’tests of 𝐴 are proofs of its negation’. We are

still investigating how to capture the proofs of the second order multiplicative fragment while

remaining finitely testable. We believe this will lead to a novel correctness criterion for second

order multiplicative proof structures.

Summary of our work

As a computational model we chose the model of nets, a modern formulation – as hypergraphs

– of the model of proof structures introduced by Jean Yves Girard in his seminal paper [14].

Informally speaking the nets are hypergraphs constructed by composing the hyperedges, called

links, of the figure 1 such that a vertex is the target (resp. source) of at most one link. The

conclusion of a net is a vertex that is the source of no link and our hypergraphs are equipped

with an order on their conclusion. Nets that have conclusions can interact by placing cut links

in between their conclusions. Given two nets 𝑆 and 𝑇 their interaction is denoted 𝑆 :: 𝑇 .

Furhtermore, the nets come with a notion of computation which corresponds to cut elimina-

tion illustrated in figure 2. Contrary to the original multiplicative proof structures introduced

in 1987 by Jean Yves Girard, this rewriting is non–deterministic and not confluent.

The computation gives rise to the notion of orthogonality; two nets 𝑆 and 𝑇 are orthogonal

whenever their interaction 𝑆 :: 𝑇 has at least one way to reduce to the net ✠ the daimon link

with no output – we then denote 𝑆 ⊥ 𝑇 .

Definition 1 (Types). The orthogonal 𝐴⊥
of a set of multiplicative nets 𝐴 is defined by

{𝑃 | ∀𝑎 ∈ 𝐴,𝑃 ⊥ 𝑎}. A type A is a set of multiplicative nets such that A⊥⊥ = A, or

equivalently such that A = 𝐵⊥
for some set 𝐵.

Given a net 𝑆 with its conclusion ordered as 𝑝1 < · · · < 𝑝𝑛 for an integer 1 ≤ 𝑖 ≤ 𝑛 we

denote 𝑆(𝑖) the conclusion 𝑝𝑖 of 𝑆. Furthermore, we let Pos(𝑆) denote its set of vertices. Given

two nets 𝑆 and 𝑇 their sum 𝑆 + 𝑇 corresponds to the union of their graphs in which the set of

links is assumed to be disjoint.

Definition 2 (Construction on types). GivenA andB two types we define several constructions:

• Their parallel sum A ‖ B = {𝑎+ 𝑏 | 𝑎 ∈ A, 𝑏 ∈ B,Pos(𝑎) ∩ Pos(𝑏) = ∅}⊥⊥.

• Their functional composition A ·B = {𝑆 | for any 𝑎 ∈ A⊥, 𝑆 :: 𝑎 ∈ B}⊥⊥
.

• The tensor product of two types, A⊗B = {𝑎+𝑏+⟨𝑎(1), 𝑏(1) ▷⊗ 𝑝⟩ | Pos(𝑎)∩Pos(𝑏) =
∅, 𝑎 ∈ A, 𝑏 ∈ B}⊥⊥

.

• The `–product of two types, A`B = (A⊥ ⊗B⊥)⊥.

Definition 3 (Interpretation Basis). An interpretation basis ℬ is a function that associates to

each atomic proposition 𝑋 a type J𝑋Kℬ, the interpretation of 𝑋 , such that

• Each net in J𝑋Kℬ has one conclusion.

• For any atomic proposition 𝑋 we have J𝑋⊥Kℬ = J𝑋K⊥ℬ .

Definition 4 (Realizer of a formula). Given an interpretation basis ℬ, the interpretation of a

formula is lifted from atomic formulas to any formula and sequents of MLL by induction;
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Figure 1: Links defining the class of multiplicative nets. From left to right, they are respectively called
daimon link, parr (`) link, tensor link and cut link.
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cut cut
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Figure 2: Rules for the homogeneous cut elimination (in the first two rows) and non homogeneous
cut–elimination (in the last two rows). The cut elimination reduction depends on the kind of cut
eliminated e.g. the label of the links that are above the inputs of the cut link. The non–homogeneous
cut elimination of a daimon against a `–link is non deterministic, {𝑞1, . . . , 𝑞𝑘}, {𝑞𝑘+1, . . . , 𝑞𝑛} is a
partition of {𝑝2, . . . , 𝑝𝑛}.

J𝐴⊗𝐵Kℬ ≜ J𝐴Kℬ ⊗ J𝐵Kℬ ; J𝐴`𝐵Kℬ ≜ J𝐴Kℬ ` J𝐵Kℬ ; J𝐴1, . . . , 𝐴𝑛Kℬ ≜ J𝐴1Kℬ ∘ . . . ∘ J𝐴𝑛Kℬ.

If there is no ambiguity we relax the notation JΓKℬ to JΓK. We denote 𝑆 ⊩ℬ 𝐴1, . . . , 𝐴𝑛

whenever 𝑆 ∈ JΓKℬ.

Interpretation basis may come with several properties to ensure adequacy or completeness

for the logical system considered, namely MLL, MLL✠ or MLL2. A basis is:



• self dual whenever it maps atomic variables to self dual types A ⊆ A⊥
.

• approximable whenever it maps atomic variables to types containing the net made of one

daimon link with one conclusion.

Theorem 5 (Adequacy). Let 𝑆 be a multiplicative net and Γ be a sequent,
• For any basis ℬ; 𝑆 ⊢MLL Γ ⇒ 𝑆 ⊩ℬ Γ.
• For any approximable basis ℬ; 𝑆 ⊢MLL✠ Γ ⇒ 𝑆 ⊩ℬ Γ.

Theorem 6 (MLL✠ completeness). Given some sequent Γ and 𝑆 a cut–free net and ℬ a self dual
and approximable interpretation basis, if 𝑆 belongs to JΓKℬ then 𝑆 represents a proof of Γ from
MLL✠.

Definition 7 (Intersection and union type). Let ℬ be an interpretation basis, and Ω be a set of

types with one output. Given a Γ a sequent of MLL formulas and 𝑋 a propositional variable

the intersection type and union type on Ω of Γ in 𝑋 w.r.t. to ℬ are defined as follow;

J
⋂︁
𝑋∈Ω

ΓKℬ ≜
⋂︁
𝑅∈Ω

JΓKℬ{𝑋 ↦→𝑅} J
⋃︁
𝑋∈Ω

ΓKℬ ≜

(︃⋃︁
𝑅∈Ω

JΓKℬ{𝑋 ↦→𝑅}

)︃⊥⊥

.

Theorem 8 (MLL completeness). Given 𝑆 a proof like and cut–free net and ℬ some approximable
interpretation basis. If 𝑆 symmetrically realizes

⋂︀
𝑋∈𝒱J

⋂︀
𝑋∈Ω ΓKℬ then 𝑆 is the image of a proof

in MLL.

Definition 9 (realizers of MLL2). Let ℬ be an approximable interpretation basis and Ω denote

the set of types with one output. Given a formula 𝐴 of MLL2 its set of realizers is given by the

following induction:

J𝐴⊗𝐵K ≜ J𝐴K ⊗ J𝐵K
J𝐴`𝐵K ≜ J𝐴K ` J𝐵K

J∀𝑋 𝐴K ≜ {𝑆 + ⟨𝑆(1) ▷∀ 𝑞⟩ | 𝑆 ∈ J
⋂︀

𝑋∈Ω𝐴K}
J∃𝑋 𝐴K ≜ {𝑆 + ⟨𝑆(1) ▷∃ 𝑞⟩ | 𝑆 ∈ J

⋃︀
𝑋∈Ω𝐴K}⊥⊥

Theorem 10 (Soundness for MLL2). Let ℬ be an approximable interpretation basis. Given 𝑆 a
proof–like multiplicative second order net. If 𝑆 represents a proof of the sequent Γ then 𝑆 belongs
to JΓKℬ.
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