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Abstract
The Bijective Burrows-Wheeler Transform (BBWT) is a variant of the famous BWT [Burrows and
Wheeler, 1994]. The BBWT was introduced by Gil and Scott in 2012, and is based on the extended BWT
of Mantaci et al. [TCS 2007] and on the Lyndon factorization of the input string. In the original paper,
the compression achieved with the BBWT was shown to be competitive with that of the BWT, and it
has been gaining interest in recent years. In this work, we present the first study of the number of runs
𝑟𝐵 of the BBWT, which is a measure of its compression power. We exhibit an infinite family of strings
on which 𝑟𝐵 of the string and of its reverse differ by a multiplicative factor of Θ(log𝑛), where 𝑛 is the
length of the string. We also present experimental results and statistics on 𝑟𝐵(𝑠) and 𝑟𝐵(𝑠

rev), as well as
on the number of Lyndon factors in the Lyndon factorization of 𝑠 and 𝑠rev.
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1. Introduction

The Burrows-Wheeler-Transform (BWT) [1] is a fundamental invertible string transform orig-
inally introduced in 1994 by Michael Burrows and David J. Wheeler as a preprocessing step
for string compression. The BWT tends to be easier to compress than the original input and
supports efficient pattern matching tasks while keeping the transform in compressed form. Due
to this, this transform has become the cornerstone of several string compressors and compressed
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data structures [2, 3] and several commonly used bioinformatics tools such as Bowtie [4, 5] and
BWA [6].

These properties are due to the so-called clustering effect of the BWT. In fact, if the input
text is highly repetitive, the final transform will tend to include few long runs of the same
character, the number of which is usually denoted 𝑟. This motivated the interest for 𝑟 as a
parameter to measure text repetitiveness, with several recent papers studying the suitability of
𝑟 as a repetitiveness measure as well as how 𝑟 is related to other such measures [7, 8, 9]. Since
a string and its reverse are repetitive in the same way, we would expect the number of runs of
their transformations to be the same. However, Giuliani et al. [10] showed that the parameter 𝑟
is not invariant w.r.t. string reversal; in fact, there are strings 𝑠 for which 𝑟(𝑠) and 𝑟(𝑠rev) differ
by a multiplicative factor of Θ(log 𝑛), where 𝑛 is the length of the string.

The Bijective Burrows-Wheeler Transform (BBWT) [11, 12] is another invertible transforma-
tion, which is a variation of the BWT. It is defined as the extended BWT (eBWT) [13] of the
factors of the Lyndon factorization of the input string. As opposed to the BWT, the BBWT is
bijective: no two different words have the same BBWT, and every word is the BBWT of some
word.

This transformation has met increasing interest in the last decade, with several papers
published on this topic. Recently Bannai et al. in [14] presented the first linear time algorithm
for constructing the Bijective BWT, thus unlocking the efficient computation of this transform
for large inputs. In [15], it was further shown how to use in-place algorithms for constructing
the BBWT and converting the BWT to the BBWT in quadratic time, thus highlighting a strong
connection between these two transforms. Finally, in [16], Bannai et al. presented the first
self-index based on the BBWT supporting efficient pattern-matching queries on the original
input, similar to the original BWT. This comes with a small additional log(|𝑃 |) factor in the
backward search algorithm, where 𝑃 is the pattern.

In the original BBWT paper [11], the authors studied the suitability of this transform for text
compression. Their experimental results show that on the Calgary corpus, the compression
guaranteed by the BBWT is competitive. In particular, on average, the BBWT was about 1%
more compressible than the BWT. The BBWT properties were further studied in subsequent
papers, and it has inspired the definition of other bijective BWT variants [12, 17, 18]. However,
the effectiveness of the number 𝑟𝐵 of runs of the BBWT as a repetitiveness measure has not
been studied before.

In this paper, we present the first results on 𝑟𝐵 as a repetitiveness measure, comparing the
behaviour of 𝑟𝐵 of a string and of its reverse. We define an infinite family of words for which 𝑟𝐵
of the string and its reverse differ by a multiplicative factor of Θ(log 𝑛), where 𝑛 is the length
of the string, thus proving a parallel result on the BBWT to that of Giuliani et al. [10] on the
BWT. This result shows the BBWT, as a measure of repetitiveness, exhibits the same defect as
the BWT, namely that reversing the string may change it significantly, while repetitiveness is,
of course, preserved. The family of strings used in this paper derive from finite Fibonacci words,
as do those of [10], but the similarities end there; both the strings themselves and the proof
techniques employed are different.

In the final part of the paper, we present experimental results on 𝑟𝐵 , studying the multiplica-
tive and additive difference between a string and its reverse, as well as the relationship to the
number of factors of its Lyndon factorization.



Due to space constraints, some proofs have been omitted and will be included in the full
version of this paper. A preliminary version of some of the results in this paper was contained
in the first author’s master thesis [19].

2. Basics

Let Σ be a finite ordered alphabet of size 𝜎. A string (or word) over Σ is a finite sequence
𝑤 = 𝑤1 · · ·𝑤𝑛 of characters 𝑤𝑖 from Σ. We denote the length of string 𝑤 as |𝑤|. The empty
string is the only string of length 0 and is denoted 𝜀. For 𝑛 ≥ 0, Σ𝑛 denotes the set of all words
of length 𝑛, and Σ* = ∪𝑛≥0Σ

𝑛 the set of all finite words over Σ.
Let 𝑤, 𝑢, 𝑥, 𝑣 ∈ Σ* such that 𝑤 = 𝑢𝑥𝑣. Then 𝑢 is called a prefix, 𝑥 a substring, and 𝑣 a suffix

of 𝑤. A string 𝑡 is a subsequence of 𝑤 if 𝑡 can be obtained from 𝑤 by deleting some (possibly 0,
possibly all) characters from 𝑤. A prefix (suffix, substring) 𝑢 of a word 𝑤 is a called proper if
𝑢 ̸= 𝑤. For a string 𝑢 and an integer 𝑘 ≥ 1, 𝑢𝑘 = 𝑢 ·𝑢 · · ·𝑢 denotes the 𝑘-fold concatenation of
𝑢. A string 𝑤 is called primitive if 𝑤 = 𝑢𝑘 implies 𝑢 = 𝑤 and 𝑘 = 1. If 𝑤 is not primitive then
it is called a power. Every word 𝑤 can be uniquely written as 𝑤 = 𝑢𝑘 for a primitive string 𝑢,
called root of 𝑤. Given a string 𝑢, we also define the infinite word 𝑢𝜔 = 𝑢 · 𝑢 · 𝑢 · · · We denote
the number of maximal equal-letter runs of a string 𝑤 by runs(𝑤).

The lexicographic order on Σ* is defined as follows: 𝑢 <lex 𝑣 if either 𝑢 is a proper prefix of 𝑣,
or if there exists 𝑥 ∈ Σ* and 𝑏, 𝑐 ∈ Σ, 𝑏 < 𝑐 such that 𝑥𝑏 is a prefix of 𝑢 and 𝑥𝑐 is a prefix of 𝑣.
Another order relation on Σ* is the omega-order defined as follows: Let 𝑢 = 𝑠𝑘 and 𝑣 = 𝑡ℓ, 𝑠, 𝑡
primitive. Then 𝑢 <𝜔 𝑣 if 𝑠 = 𝑡 and 𝑘 < ℓ, or else if 𝑠𝜔 <lex 𝑡𝜔 . Note that the lexicographic and
the omega-order coincide on strings of the same length, but they can differ if one is a proper
prefix of the other, e.g. ab <lex aba but aba <𝜔 ab.

Two words 𝑤 and 𝑤′ are called conjugates (or rotations) if there exists 𝑢, 𝑣, possibly empty,
s.t. 𝑤 = 𝑢𝑣 and 𝑤′ = 𝑣𝑢. Conjugacy is an equivalence relation. We denote the conjugacy class
of a word 𝑤 ∈ Σ, as [𝑤] = {𝑣 | 𝑤 and 𝑣 are conjugates}. A word 𝑤 is primitive if and only if
its conjugacy class has cardinality |𝑤|.

A primitive word is called a Lyndon word if it is lexicographically strictly smaller than all
of its rotations. A necklace is a Lyndon word or a power of a Lyndon word. For a primitive
word 𝑤, we denote by 𝐿(𝑤) the unique conjugate which is a Lyndon word (its Lyndon rotation).
Every string 𝑤 can be uniquely written as 𝑤 = 𝑓1 · 𝑓2 · · · 𝑓𝑚 such that 𝑓𝑖 are Lyndon words for
𝑖 = 1, . . . ,𝑚, and 𝑓1 ≥ 𝑓2 ≥ . . . ≥ 𝑓𝑚 [20]. This is called 𝑤’s Lyndon factorization. A string 𝑠
is Lyndon if and only if its Lyndon factorization consists of one factor only. The multiset of
Lyndon factors in the Lyndon factorization of 𝑤 is denoted ℒ𝑦𝑛(𝑤).

The Burrows-Wheeler Transform (BWT) [1] of a string 𝑠 is a permutation of the characters of
𝑠, whose 𝑖th character is the last character of the 𝑖th rotation of 𝑠, where the rotations are taken
w.r.t. lexicographic order. For example, BWT(banana) = nnbaaa, see Fig. 1. The number of
runs of the BWT is denoted 𝑟(𝑠) = runs(BWT(𝑠)), e.g. 𝑟(banana) = 3.

The extended BWT (eBWT) [13] is a generalization of the BWT to a multiset of primitive strings
ℳ: eBWT(ℳ) is a permutation of the characters of the strings in ℳ, whose 𝑖th character is
the last character of the 𝑖th rotation, where the rotations of all strings in ℳ are listed w.r.t.
omega-order. For an example, see Fig. 2. Note that for all strings 𝑠, eBWT({𝑠}) = BWT(𝑠).



Next we list some known properties of the eBWT.

Lemma 1 1. Let 𝑠 ∈ 𝒮 . Then BWT(𝑠) is a subsequence of eBWT(𝒮).

2. Let 𝒮 be a multiset of primitive strings, and 𝑠′ a conjugate of some 𝑠 ∈ 𝒮 . Then the number
of runs of eBWT(𝒮 ∪ {𝑠′}) equals the number of runs of eBWT(𝒮).

3. Given an integer 𝑚 > 0 and a primitive word 𝑠, let 𝒮 be the multiset consisting of 𝑚 copies
of 𝑠. Then BWT(𝑠𝑚) = eBWT(𝒮).

3. The bijective BWT

Let 𝑠 = 𝑓1 · 𝑓2 · · · 𝑓𝑚 be the Lyndon factorization of string 𝑠. Then BBWT(𝑠) = eBWT(ℳ),
where ℳ = ℒ𝑦𝑛(𝑠) = {𝑓1, 𝑓2, . . . , 𝑓𝑚} is the multiset of Lyndon factors of 𝑠. As an example,
BWT(banana) = nnbaaa, while BBWT(banana) = annbaa, since the Lyndon factorization
of banana is b · an · an · a, and thus ℒ𝑦𝑛(banana) = {a, an, an, b}, see Fig. 1.

sorted rotations BWT
abanan n
anaban n
ananab b
banana a
nabana a
nanaba a

omega-rotations sorted rotations BBWT
aaaa. . . a a
anan. . . an n
anan. . . an n
bbbb. . . b b
nana. . . na a
nana. . . na a

Figure 1: BWT and BBWT of the word banana

First we look at under what circumstances the two transforms coincide:

Lemma 2 BWT(𝑠) = BBWT(𝑠) if and only if 𝑠 is a necklace.

Proof First assume that BWT(𝑠) = BBWT(𝑠) holds. Let 𝑠 = 𝑢𝑚, where 𝑢 is primitive and 𝑚 ≥ 1,
and let 𝑡 be the conjugate of 𝑠 which is a necklace. Then clearly, 𝑡 = 𝑣𝑚 with 𝑣 = 𝐿(𝑢), and
ℒ𝑦𝑛(𝑡) consists of 𝑚 copies of 𝑣. Thus:

BBWT(𝑡)
def.
= eBWT(ℒ𝑦𝑛(𝑡)) Lemma 1

= BWT(𝑡)
𝑠, 𝑡 conj.
= BWT(𝑠) = BBWT(𝑠).

By bijectivity of the BBWT, this implies that 𝑠 equals its own necklace rotation 𝑡, and is thus a
necklace.

Conversely, if 𝑠 = 𝑢𝑚 is a necklace, then ℒ𝑦𝑛(𝑠) consists of 𝑚 copies of 𝑢, and BBWT(𝑠) =
eBWT(ℒ𝑦𝑛(𝑠)) = BWT(𝑠), again by Lemma 1. □

Let us denote by 𝑟𝐵(𝑠) = runs(BBWT(𝑠)), the number of runs of the BBWT of 𝑠. It is known
that the number of runs 𝑟(𝑠) of the BWT of a binary string 𝑠 is always even. This is because
necessarily the first character must be b, and the last character must be a. This is not the case
of the BBWT since a and b are the smallest and the greatest Lyndon factor, respectively, that a
binary word can have, and therefore, BBWT may start and end with either a or b. In the next
lemma, we give the conditions that a or b appear as a Lyndon factor.



Lemma 3 Let 𝑠 ∈ {a, b}* be a binary string, with a < b. Then, a ∈ ℒ𝑦𝑛(𝑠) if and only if a is
the last letter of 𝑠. Symmetrically, b ∈ ℒ𝑦𝑛(𝑠) if and only if b is the first letter of 𝑠.

Proof We prove just the first statement on a, and the other case is treated symmetrically. For
the first direction, observe that a is the smallest Lyndon factor (both in lexicographical and 𝜔
order) that any binary word can have. Since the Lyndon factorization requires that any Lyndon
factor must be greater or equal than the following in 𝑠 (if any), a ∈ ℒ𝑦𝑛(𝑠) implies that either the
next letter in 𝑠 is another a, or there are no more letters in 𝑠. For the other direction, suppose by
contradiction that 𝑠 ends with an a and a /∈ ℒ𝑦𝑛(𝑠). Then, there exist ℓ ≥ 0, 𝑚 ≥ 1, 𝑢 ∈ {a, b}*
such that the word 𝑤 = aℓb𝑚𝑢a ∈ ℒ𝑦𝑛(𝑠), that is the Lyndon factor containing the last a of 𝑠.
However, one can verify that aℓ+1b𝑚𝑢 < aℓb𝑚𝑢a, which contradicts that 𝑤 is a Lyndon word. □

We next characterize when 𝑟𝐵(𝑠) is odd.

Lemma 4 Let 𝑠 ∈ {a, b}* be a binary word. It holds that 𝑟𝐵(𝑠) is odd if and only if 𝑠 starts and
ends with the same letter.

However, it turns out that there is a simple connection between 𝑟𝐵(𝑠) and 𝑟𝐵(𝑠
rev), namely

that they must have the same parity:

Lemma 5 For every binary string 𝑠, the difference between the number of runs of the BBWT of 𝑠
and the BBWT of its reverse is even.

Proof If 𝑠 starts and ends with the same character, then so does 𝑠rev, and by Lemma 4, both have
an odd number of runs. If 𝑠 starts and ends with different characters, then so does 𝑠rev, and by
Lemma 4, both have an even number of runs. □

The BWT of a word achieves maximal compression when it has as many runs as the size
of the alphabet. In case of binary alphabets, it was shown in [21] that the perfect clustering
effect of the BWT is a characterization for the family of standard Sturmian words. These words
can be constructed through a directive sequence, an infinite sequence of integers {𝑑𝑖}𝑖≥0 such
that 𝑑0 ≥ 0 and 𝑑𝑖 > 0 for all 𝑖 > 0. The standard Sturmian words generated by this sequence
are the words of the sequence {𝑠𝑖}𝑖≥0 such that 𝑠0 = b, 𝑠1 = a, and 𝑠𝑖+1 = 𝑠

𝑑𝑖−1

𝑖 𝑠𝑖−1 for
𝑖 > 1. For instance, the directive sequence 1, 1, 1, 1, . . . generates the well-known sequence of
finite Fibonacci words: 𝑠0 = b, 𝑠1 = a, 𝑠2 = ab, 𝑠3 = aba, 𝑠4 = abaab, 𝑠5 = abaababa, 𝑠6 =
abaababaabaab, 𝑠7 = abaababaabaababaababa, . . .

Theorem 1 ([21]) BWT(𝑠) = b𝑘aℓ, for some 𝑘, ℓ ≥ 1, if and only if 𝑠 is the power of a rotation
of a standard Sturmian word.

We give a similar characterization for the BBWT. As opposed to the BWT, here it is not
necessary that the transform begins with b and ends with a.

Lemma 6 The number of runs of the BBWT of a string 𝑠 is 2 if and only if (i) 𝑠 has the form b𝑘aℓ

for some 𝑘, ℓ ≥ 1, or (ii) 𝑠 is the Lyndon rotation of a standard Sturmian word or a power of the
Lyndon rotation of a standard Sturmian word.

In the rest of the paper, we will look at the relationship between 𝑟𝐵(𝑠) and 𝑟𝐵(𝑠
rev). To

this end, we define the runs-ratio of string 𝑠 as 𝜌𝐵(𝑠) = max( 𝑟𝐵(𝑠)
𝑟𝐵(𝑠rev) ,

𝑟𝐵(𝑠rev)
𝑟𝐵(𝑠) ), and the runs-

difference of 𝑠 as 𝛿𝐵(𝑠) = 𝑟𝐵(𝑠)− 𝑟𝐵(𝑠
rev).



4. Fibonacci words

In this section, we will show that the Lyndon rotation of a Fibonacci word of order 𝑘 has the
following interesting property: the number of runs of the BBWT of its reverse has 2(𝑘 − 2)
runs, while the BBWT of the word itself has only 2 runs. Thus, 𝜌𝐵 of these words is Θ(log 𝑛),
where 𝑛 is the length of the word.

Fibonacci words were defined in the previous section. It follows directly from the defini-
tion that for all 𝑘 ≥ 0, |𝑠𝑘| = 𝐹𝑘, where {𝐹𝑘}𝑘≥0 is the well-known Fibonacci sequence
1, 1, 2, 3, 5, 8, 13, . . . Fibonacci words have been studied extensively, see [22] for an overview.
Some of the properties of Fibonacci words also follow from properties that have been shown
for all standard words, see e.g. [23, 24, 25, 26, 21]. We next list some of these properties:

Proposition 1 (Some known properties of the Fibonacci words) Let 𝑠𝑘 be the Fibonacci
word of order 𝑘 ≥ 0. Then there exists a palindrome 𝑥𝑘 with the following properties:

1. for all 𝑘 ≥ 2: if 𝑘 is even, then 𝑠𝑘 = 𝑥𝑘ab, and if 𝑘 is odd, then 𝑠𝑘 = 𝑥𝑘ba, where 𝑥𝑘 is a
palindrome (in particular, 𝑥2 = 𝜀).

2. for all 𝑘 ≥ 4,

• if 𝑘 is even, then 𝑠𝑘 = 𝑥𝑘−1ba𝑥𝑘−2ab = 𝑥𝑘−2ab𝑥𝑘−1ab, and

• if 𝑘 is odd, then 𝑠𝑘 = 𝑥𝑘−1ab𝑥𝑘−2ba = 𝑥𝑘−2ba𝑥𝑘−1ba.

3. for all 𝑘 ≥ 2, a𝑥𝑘b is a Lyndon word.

4. for all 𝑘: (𝑠𝑘)rev is a conjugate of 𝑠𝑘.

5. for 𝑘 ≥ 2: BWT(𝑠𝑘) has two runs; in particular, BWT(𝑠𝑘) = b𝐹𝑘−2a𝐹𝑘−1 .

6. for 𝑘 ≥ 2: 𝑥𝑘ab and 𝑥𝑘ba, the so-called central words, are adjacent in the BW-matrix of
𝑠𝑘.

From these we can easily deduce further properties. Recall that 𝐿(𝑠) is the Lyndon rotation
of a primitive string 𝑠.

Corollary 1 Let 𝑥𝑘 be the palindrome from Prop. 1, i.e. 𝑠𝑘 = 𝑥𝑘ab for 𝑘 even, and 𝑠𝑘 = 𝑥𝑘ba
for 𝑘 odd. Then

1. 𝐿(𝑠𝑘) = a𝑥𝑘b,

2. 𝑥𝑘 = 𝑥𝑘−1ba𝑥𝑘−2 = 𝑥𝑘−2ab𝑥𝑘−1, if 𝑘 even,

3. 𝑥𝑘 = 𝑥𝑘−1ab𝑥𝑘−2 = 𝑥𝑘−2ba𝑥𝑘−1, if 𝑘 odd.

Since Lyndon rotations of Fibonacci words will be of central importance, we list the first few
here: 𝐿(𝑠0) = b, 𝐿(𝑠1) = a, 𝐿(𝑠2) = ab, 𝐿(𝑠3) = aab, 𝐿(𝑠4) = aabab, 𝐿(𝑠5) = aabaabab.

Next we study the Lyndon factorization of the reverse of the Lyndon rotation of a Fibonacci
word 𝑠𝑘 . We will show that it consists of the Lyndon rotations of 𝑠𝑖 for 𝑖 = 0, . . . , 𝑘− 2, where
the words of even order are listed increasingly (w.r.t. their order), followed by those of odd order
listed decreasingly, followed by one additional factor 𝐿(𝑠1) = a. Formally:



Lemma 7 Let 𝑡𝑘 = 𝐿(𝑠𝑘)
rev be the reverse of the Lyndon rotation of the Fibonacci word of order

𝑘. Then the Lyndon factorization of 𝑡𝑘 is as follows:

1. 𝑡𝑘 = 𝐿(𝑠0) · 𝐿(𝑠2) · 𝐿(𝑠4) · · ·𝐿(𝑠𝑘−2) · 𝐿(𝑠𝑘−3) · 𝐿(𝑠𝑘−5) · · ·𝐿(𝑠3) · 𝐿(𝑠1) · 𝐿(𝑠1) if 𝑘
is even, and

2. 𝑡𝑘 = 𝐿(𝑠0) · 𝐿(𝑠2) · 𝐿(𝑠4) · · ·𝐿(𝑠𝑘−3) · 𝐿(𝑠𝑘−2) · 𝐿(𝑠𝑘−4) · · ·𝐿(𝑠3) · 𝐿(𝑠1) · 𝐿(𝑠1) if 𝑘
is odd.

Example 1 In the following we list 𝑡𝑘 with its Lyndon factorization, for 𝑘 = 2, . . . , 8 :

• 𝑡2 = 𝐿(𝑠2)
rev = b · a,

• 𝑡3 = 𝐿(𝑠3)
rev = b · a · a,

• 𝑡4 = 𝐿(𝑠4)
rev = b · ab · a · a,

• 𝑡5 = 𝐿(𝑠5)
rev = b · ab · aab · a · a,

• 𝑡6 = 𝐿(𝑠6)
rev = b · ab · aabab · aab · a · a,

• 𝑡7 = 𝐿(𝑠7)
rev = b · ab · aabab · aabaabab · aab · a · a,

• 𝑡8 = 𝐿(𝑠8)
rev = b · ab · aabab · aabaababaabab · aabaabab · aab · a · a.

For the proof of Lemma 7, we will first need two other lemmas. The first one gives a simple
recursion for 𝑡𝑘:

Lemma 8 Let 𝑡𝑘 = (𝐿(𝑠𝑘))
rev. Then the following recursion holds for 𝑘 ≥ 2 :

• 𝑡𝑘 = 𝑡𝑘−2𝑡𝑘−1 if 𝑘 is even, and

• 𝑡𝑘 = 𝑡𝑘−1𝑡𝑘−2 if 𝑘 is odd.

Proof First note that since 𝐿(𝑠𝑘) = a𝑥𝑘b, and 𝑥𝑘 is a palindrome, therefore 𝑡𝑘 = b𝑥𝑘a. Let
𝑘 ≥ 2 be even. By Corollary 1, 𝑡𝑘 = b𝑥𝑘a = b𝑥𝑘−2ab𝑥𝑘−1a = 𝑡𝑘−2𝑡𝑘−1. Similarly, if 𝑘 is odd,
then 𝑡𝑘 = b𝑥𝑘a = 𝑥𝑘−1ab𝑥𝑘−2 = 𝑡𝑘−1𝑡𝑘−2. □

The second lemma gives a factorization of the Lyndon rotations of the 𝑠𝑘.

Lemma 9 Let 𝑘 ≥ 4. Then the following holds:

• 𝐿(𝑠𝑘) = 𝐿(𝑠𝑘−3)𝐿(𝑠𝑘−5) · · ·𝐿(𝑠3)𝐿(𝑠1)𝐿(𝑠1)𝐿(𝑠0)𝐿(𝑠2)𝐿(𝑠4) · · ·𝐿(𝑠𝑘−2), if 𝑘 is even,
and

• 𝐿(𝑠𝑘) = 𝐿(𝑠𝑘−2)𝐿(𝑠𝑘−4) · · ·𝐿(𝑠3)𝐿(𝑠1)𝐿(𝑠1)𝐿(𝑠0)𝐿(𝑠2)𝐿(𝑠4) · · ·𝐿(𝑠𝑘−3), if 𝑘 is odd.

Now we are ready to prove Lemma 7.



Table 1
Fibonacci central words of order 𝑘

𝑘 2 3 4 5 6 7
𝑢𝑘 ab aab abaab abaabaab abaababaabaab abaababaabaababaabaab
𝑣𝑘 ba aba ababa abaababa abaababaababa abaababaabaababaababa

Proof (of Lemma 7) The proof is by induction on 𝑘. For the base cases, 𝑡2 = b · a, and 𝑡3 =
b · a · a, as claimed. Now let 𝑘 > 3. If 𝑘 is even, then 𝑡𝑘 = 𝑡𝑘−2𝑡𝑘−1 = b𝑥𝑘−2ab𝑥𝑘−1a. Thus,

𝑡𝑘 =𝐿(𝑠0)𝐿(𝑠2) · · ·𝐿(𝑠𝑘−4)𝐿(𝑠𝑘−5) · · ·𝐿(𝑠3)𝐿(𝑠1)𝐿(𝑠1)⏟  ⏞  
𝑡𝑘−2 by the I.H.

·

𝐿(𝑠0)𝐿(𝑠2) · · ·𝐿(𝑠𝑘−4)𝐿(𝑠𝑘−3) · · ·𝐿(𝑠3)𝐿(𝑠1)𝐿(𝑠1)⏟  ⏞  
𝑡𝑘−1 by the I.H.

= 𝐿(𝑠0)𝐿(𝑠2) · · ·𝐿(𝑠𝑘−4)·
𝐿(𝑠𝑘−5) · · ·𝐿(𝑠3)𝐿(𝑠1)𝐿(𝑠1)𝐿(𝑠0)𝐿(𝑠2) · · ·𝐿(𝑠𝑘−4)⏟  ⏞  

𝐿(𝑠𝑘−2) by Lemma 9

·

𝐿(𝑠𝑘−3) · · ·𝐿(𝑠3)𝐿(𝑠1)𝐿(𝑠1)
= 𝐿(𝑠0) · 𝐿(𝑠2) · 𝐿(𝑠4) · · ·𝐿(𝑠𝑘−2) · 𝐿(𝑠𝑘−3) · 𝐿(𝑠𝑘−5) · · ·𝐿(𝑠3) · 𝐿(𝑠1) · 𝐿(𝑠1).

The claim for 𝑘 odd follows analogously. □

Example 2 For example, 𝑡8 = 𝑡6 · 𝑡7 = babaababaabaa · babaababaabaababaabaa =
b · ab · aabab · aabaababaabab · aabaabab · aab · a · a, where the new Lyndon factor is under-
lined; its factorization from Lemma 9 is 𝐿(𝑠6) = aabaababaabab = aab · a · a · b · ab · aabab.

Corollary 2 (from Lemma 7) Let 𝑡𝑘 be the reverse of the Lyndon rotation of the Fibonacci
word of order 𝑘. Then ℒ𝑦𝑛(𝑡𝑘) = {𝐿(𝑠0), 𝐿(𝑠1), 𝐿(𝑠2), . . . , 𝐿(𝑠𝑘−2)} ∪{𝐿(𝑠1)}, i.e. the factor
𝐿(𝑠1) = a appears with multiplicity 2 in the factorization, while all other factors appear exactly
once.

The final piece we need to prove the main theorem of this section will be Lemma 10, which
gives the number of runs of the eBWT of the set of Fibonacci words 𝒮𝑘 = {𝑠0, 𝑠1, . . . , 𝑠𝑘}. A
crucial role will be played by the central words, which we list up to order 7 in Table 1.

Lemma 10 Let 𝑘 > 0 and 𝒮𝑘 be the set of Fibonacci words of order up to 𝑘, i.e. 𝒮𝑘 =
{𝑠0, 𝑠1, . . . , 𝑠𝑘}. Then eBWT(𝒮𝑘) has 2𝑘 runs.

Proof We prove the claim by induction on 𝑘. For 𝑘 = 1, 2, eBWT({a, b}) = ab, which has 2
runs, and eBWT({a, b, ab}) = abab, which has 4 runs, as claimed.

Now let 𝑘 > 2. We will observe what happens to eBWT(𝒮𝑘−1) when we insert 𝑠𝑘 into 𝒮𝑘−1 and
will show that exactly 2 new runs are created, see Fig. 2.
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Figure 2: Tables showing the eBWT matrix for 𝑘 = {3, 4, 5}. Central words of order 𝑘 are marked in
the first column. 𝑘 = 3 : eBWT({b, a, ab, aba}) = ababaab, 𝑘 = 4 : eBWT({b, a, ab, aba, abaab}) =
abbababaaaab, 𝑘 = 5 : eBWT({b, a, ab, aba, abaab, abaababa}) = abbbbababaabaaaaaaab.

Let eBWT(𝒮𝑘−1) be given, and consider what happens when we add 𝑠𝑘 . Denote the two central
words of order 𝑘 as 𝑢𝑘 = 𝑥𝑘ab and 𝑣𝑘 = 𝑥𝑘ba. Note that 𝑠𝑘 = 𝑢𝑘 if 𝑘 is even, and 𝑠𝑘 = 𝑣𝑘 if
𝑘 is odd. Clearly, 𝑢𝑘 <𝜔 𝑣𝑘 for all 𝑘. Moreover, it can be proven that for 𝑘 > 2, the following
relationship holds between central words of subsequent order: 𝑢𝑘 >𝜔 𝑣𝑘−1 if 𝑘 is even, and
𝑣𝑘 <𝜔 𝑢𝑘−1 if 𝑘 is odd.

Now, when considering eBWT(𝒮𝑘−1), the two words 𝑢𝑘 and 𝑣𝑘 are inserted together, i.e. they
are adjacent in the eBWT-matrix of 𝒮𝑘. This is because they have the common prefix 𝑥𝑘, of
length |𝑠𝑘| − 2, which, for 𝑘 > 3, is longer than the longest word previously present (of length
|𝑠𝑘−1| = 𝐹𝑘−1 < 𝐹𝑘 − 2); for 𝑘 = 3 the claim can be seen by direct inspection (see Fig. 2, left).

Moreover, the two central words will be inserted immediately adjacent to one of the two central
words of order 𝑘 − 1. This is because one of the two central words is always equal to 𝑠𝑘 (𝑢𝑘 for 𝑘
even, 𝑣𝑘 for 𝑘 odd), and thus, 𝑢𝑘−1 is a proper prefix of 𝑣𝑘 or 𝑣𝑘−1 is a proper prefix of 𝑢𝑘 , and no
longer prefix of these words can be present. Thus we have 𝑠𝑘 = 𝑢𝑘 >𝜔 𝑣𝑘−1 = 𝑠𝑘−1 if 𝑘 is even,
and 𝑠𝑘 = 𝑣𝑘 <𝜔 𝑢𝑘−1 = 𝑠𝑘−1 if 𝑘 is odd. Therefore, 𝑢𝑘 and 𝑣𝑘 will be inserted immediately after
𝑠𝑘−1 = 𝑣𝑘−1 if 𝑘 is even, and immediately before 𝑠𝑘−1 = 𝑢𝑘−1 if 𝑘 is odd. It follows by induction
that 𝑠𝑘−1 was inserted immediately after (immediately before) 𝑠𝑘−2 if 𝑘 is even (if 𝑘 is odd). This
in turn implies that the word just before (just after) 𝑢𝑘 and 𝑣𝑘 is 𝑠𝑘−2, for 𝑘 even (for 𝑘 odd).

Now consider the number of runs of eBWT(𝒮𝑘−1). By the induction hypothesis, eBWT(𝒮𝑘−1)
has 2𝑘 − 2 runs. Inserting the two central words creates two new runs. This is because they end in



b and a, in this order, and they are inserted between the two previous Fibonacci words: if 𝑘 is even,
then they are inserted between 𝑠𝑘−1, which ends in a, and 𝑠𝑘−2, which ends in b; if 𝑘 is odd, then
between 𝑠𝑘−2, which ends in a, and 𝑠𝑘−1, which ends in b.

Note that, since 𝑠𝑘 is a standard word, BWT(𝑠𝑘) has the form b𝑘aℓ, and by Lemma 1, this will
be a subsequence of eBWT(𝒮𝑘). This implies that, if the two central words of order 𝑘 are inserted
between, say, position 𝑖 and position 𝑖 + 1 of eBWT(𝒮𝑘−1), then all rotations of 𝑠𝑘 ending in b

will be inserted before 𝑖, and all rotations ending in a will be inserted after 𝑖+ 1. Inserting a b will
create a new run only if it is inserted between two a’s; likewise, inserting an a will create a new run
only if it is inserted between two b’s. It is not difficult to prove (by induction) that all a-runs before
the position of 𝑠𝑘−1 have length 1, and that all b-runs after the position of 𝑠𝑘−1 have length 1.

Thus, exactly two new runs are created. This completes the proof. □

Theorem 2 Let𝑤𝑘 = 𝐿(𝑠𝑘) be the Lyndon rotation of the 𝑘th Fibonacci word 𝑠𝑘 . Then 𝜌𝐵(𝑤𝑘) =
Θ(log |𝑤𝑘|).

Proof First note that since 𝑤𝑘 is a Lyndon word, BBWT(𝑤𝑘) = BWT(𝑤𝑘) by Lemma 2. Since it
is a rotation of 𝑠𝑘, BWT(𝑤𝑘) = BWT(𝑠𝑘). By Prop. 1, BWT(𝑠𝑘) has two runs, so BBWT(𝑤𝑘) has
two runs, thus, 𝑟𝐵(𝑤𝑘) = 2.

Now let 𝑡𝑘 = (𝑤𝑘)
rev. By Corollary 2, the set of Lyndon factors of 𝑡𝑘 is 𝒮𝑘−2 = {𝑠0, . . . , 𝑠𝑘−2}.

It follows from Lemma 1 that the number of runs of a multiset depends only on the set of the
elements (and not on the multiplicity of each element). By Lemma 10, the number of runs of
eBWT(𝒮𝑘−2) is 2(𝑘 − 2), and therefore, 𝑟𝐵(𝑡𝑘) = 2(𝑘 − 2).

Finally, using the fact that |𝑤𝑘| = |𝑠𝑘| = 𝐹𝑘 grows exponentially in 𝑘, it follows that 𝜌𝐵(𝑤𝑘) =
2(𝑘−2)

2 = Θ(𝑘) = Θ(log |𝑤𝑘|). □

5. Experimental results

In our experiments, we studied the 𝑟𝐵 parameter of a string 𝑠 and its reverse, looking at both
multiplicative (𝜌𝐵) and additive difference (𝛿𝐵). We also studied the number of Lyndon factors
in the Lyndon factorization of 𝑠. We considered only those strings 𝑠 which are lexicographically
strictly smaller than their reverse. We refer to such strings also as forward strings , as opposed
to strings which are strictly larger than their reverse: we refer to these as reverse strings. This is
to avoid repeating the same experiment twice (as we compare 𝑟𝐵 of a string and of its reverse).
Note that this experimental setup excludes palindromes.

We computed the BBWT of all forward strings for lengths between 3 and 25, over a binary
alphabet. We also ran the same experiment over a ternary alphabet, for strings of length up to
15 (data not shown).

5.1. Multiplicative difference in 𝑟𝐵 of a string and its reverse

In the first step of our analysis, 𝜌𝐵(𝑠) was calculated for each forward string 𝑠. We report
the maximum 𝜌𝐵 for each length over a binary alphabet in Table 2 1. Our results show that
1The statistics reported in the summary do not include palindrome sequences since their 𝜌𝐵(𝑠) is always 1. The
number of palindromes of length 𝑛 is 2⌈𝑛/2⌉.



increasing the sequence length 𝑛, the average runs-ratio as the proportion of sequence pairs
having 𝜌𝐵(𝑠) = 1 decreases. On the other hand, large sequence lengths generate large maximum
𝜌𝐵(𝑠) values. This suggests that by increasing 𝑛, we observe more sequences for which the
𝜌𝐵(𝑠) is very close to 1 and only a small subset for which 𝑟𝐵(𝑠) is very different from 𝑟𝐵(𝑠

rev),
i.e., we observe extremal words with larger 𝜌𝐵(𝑠) values. In addition, for every 𝑛 up to 21, the
most frequent value of 𝜌𝐵(𝑠) is 1, i.e. probability that 𝑟𝐵(𝑠) = 𝑟𝐵(𝑠

rev) is high (see Fig. 3 for
𝑛 = 21).

Figure 3: Results for all 1047522 forward strings 𝑠 ∈ Σ* where Σ = {a, b} and |𝑠| = 21. Left: histogram
of 𝜌𝐵(𝑠); center: histogram of 𝛿(𝑠); right: histogram of the difference in the number of distinct Lyndon
factors. Note that the left plot is in log-linear scale.

As for the extremal words, we noticed that several of them are Lyndon rotations of standard
words (data not shown). In fact, these strings always have 𝑟𝐵(𝑠) = 2, and thus they tend to
generate large 𝜌𝐵(𝑠). In particular, for 𝜌𝐵(𝑛) ≥ 4 and 𝑛 ≤ 23, all extremal cases are Lyndon
rotations of standard words. However, no precise pattern is visible since also non-standard
words can be extremal words. On the other hand, if we consider the smallest 𝑛 values, which
present an increase in 𝜌𝐵(𝑛), for 𝜌𝐵(𝑛) ≥ 3, the extremal words are the Lyndon rotation of
the Fibonacci word of length 𝑛 and its reverse complement. For instance, 𝑛 = 8 is the smallest
𝑛 which allows to obtain 𝜌𝐵(𝑛) = 3, and the two extremal cases are aabaabab and ababbabb.
As for 𝜌𝐵(𝑛) ≤ 2, the situation appears more complex, since there are several extremal cases
that reach the same runs-ratio.

Table 2
The maximum runs-ratio of binary strings of length 𝑛, for 𝑛 = 3, . . . , 25.

𝑛 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
𝜌𝐵(𝑛) 1 2 2 2 2 3 2.33 3 3 3 4 3 3 4 3 4 4 3.5 5 4 4 4 4

5.2. Number of Lyndon factors and 𝑟𝐵

To conclude our experiment, we computed the number of Lyndon factors for all 𝑠 and put that
in relation to 𝑟𝐵(𝑠). In Fig. 4 we note that there are no strings with both a high number of
Lyndon factors and a high number of runs as the top right corners of both graphs for forward
(a) and reverse (b) are empty. The two plots are quite similar, with the exception of the number



of Lyndon factors that appear to be higher in reverse strings (see also Fig. 3). In addition, the
𝑥-axis for forward and reverse is the same, indicating that values of 𝑟 span the same range on
both forward and reverse strings.

Figure 4: Results for 𝑠 ∈ Σ* where Σ = {a, b} and |𝑠| = 21. Left and center: scatter plots of 𝑟𝐵(𝑠)
and number of Lyndon factors of 𝑠 (left) and 𝑠rev (center). Right: scatter plot of 𝛿𝐵(𝑠) and difference in
number of Lyndon factors of 𝑠 and 𝑠rev.

We believe that the behavior described above might be related to the way we define 𝑠; since 𝑠
is always lexicographically strictly smaller than its reverse, if 𝑠rev has a run of b at the beginning
and a run of a at the end the resulting Lyndon factorization will contain several length-one
Lyndon factors. For instance, the Lyndon factorization of bbbbababaababbaaaa results in
eight length-one Lyndon factors: b · b · b · b · ab · ab · aababb · a · a · a · a. However, also in
this case, no clear pattern arose from our experiments. In fact, there are cases where the Lyndon
factorization of 𝑠 leads to 𝑟𝐵(𝑠) which is much smaller than 𝑟𝐵(𝑠

rev).
On strings over a binary alphabet, we can observe in the right plot in Fig. 4 that many strings

are found on the vertical line indicating 0 as the difference in the number of runs, and the two
measures analysed do not seem to strongly correlate. Results were inconclusive also when
performing the same analysis counting only distinct Lyndon factors. Further details on the
experimental results will be given in the full version of the paper.
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