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Abstract
We introduce a process calculus for nondeterministic systems that are reversible, i.e., capable of undoing

their actions starting from the last performed one. The considered systems are sequential so as to be

neutral with respect to interleaving semantics vs. truly concurrent semantics of parallel composition. As

a natural continuation of previous work on strong bisimilarity in this reversible setting, we investigate

compositionality properties and equational characterizations of weak variants of forward-reverse bisimi-

larity as well as of its two components, i.e., weak forward bisimilarity and weak reverse bisimilarity.

1. Introduction

Reversibility in computing started to gain attention since the seminal works of Landauer [1] and

Bennett [2], where it was shown that reversible computations may achieve lower levels of heat

dissipation. Nowadays reversible computing has many applications ranging from computational

biochemistry and parallel discrete-event simulation to robotics, control theory, fault tolerant

systems, and concurrent program debugging.

In a reversible system, two directions of computation can be observed: a forward one, coin-

ciding with the normal way of computing, and a backward one, along which the effects of the

forward one can be undone when needed in a causally consistent way, i.e., by returning to a past

consistent state. The latter task is not easy to accomplish in a concurrent system, because the

undo procedure necessarily starts from the last performed action and this may not be uniquely

identifiable. The usually adopted strategy is that an action can be undone provided that all of

its consequences, if any, have been undone beforehand [3].

In the process algebra literature, two approaches have been developed to reverse computations

based on keeping track of past actions: the dynamic one of [3] and the static one of [4], later

shown to be equivalent in terms of labeled transition systems isomorphism [5].

The former approach yields RCCS, a variant of CCS [6] that uses stack-based memories

attached to processes so as to record all the actions executed by the processes themselves.

A single transition relation is defined, while actions are divided into forward and backward

resulting in forward and backward transitions. This approach is suitable when the operational
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semantics is given in terms of reduction semantics, like in the case of very expressive calculi

as well as programming languages.

In contrast, the latter approach proposes a general method, of which CCSK is a result, to

reverse calculi, relying on the idea of retaining within the process syntax all executed actions,

which are suitably decorated, and all dynamic operators, which are thus made static. A forward

transition relation and a backward transition relation are separately defined, which are labeled

with actions extended with communication keys so as to remember who synchronized with

whom when going backward. This approach is very handy when it comes to deal with labeled

transition systems and basic process calculi.

In [4] forward-reverse bisimilarity was introduced too. Unlike standard bisimilarity [7, 6], it is

truly concurrent as it does not satisfy the expansion law of parallel composition into a choice

among all possible action sequencings. The interleaving view can be restored in a reversible

setting by employing back-and-forth bisimilarity [8]. This is defined on computation paths

instead of states, thus preserving not only causality but also history as backward moves are

constrained to take place along the path followed when going forward even in the presence of

concurrency. In the latter setting, a single transition relation is considered, which is viewed as

bidirectional, and in the bisimulation game the distinction between going forward or backward

is made by matching outgoing or incoming transitions of the considered processes, respectively.

In [9] forward-reverse bisimilarity and its two components, i.e., forward bisimilarity and re-

verse bisimilarity, have been investigated in terms of compositionality properties and equational

characterizations, both for nondeterministic processes and for Markovian processes. In order

to remain neutral with respect to interleaving view vs. true concurrency, the study has been

conducted over a sequential processes calculus, in which parallel composition is not admitted

so that not even the communication keys of [4] are needed. Furthermore, a single transition

relation viewed as bidirectional and the distinction between outgoing and incoming transitions

in the bisimulation game have been adopted like in [8].

In this paper we extend the work done in [9] to weak variants of forward-reverse, forward,

and reverse bisimilarities over nondeterministic reversible sequential processes, where by weak

we mean that the considered equivalences abstract from unobservable actions, traditionally

denoted by 𝜏 . As far as compositionality is concerned, compared to [9] we discover that an

initiality condition is necessary not only for forward bisimilarity but also for forward-reverse

bisimilarity, which additionally solves the congruence problem with respect to nondeterministic

choice affecting all weak variants of bisimilarity [6, 10]. As for equational characterizations,

we retrieve the 𝜏 -laws of weak bisimilarity [6] and branching bisimilarity [10] over standard

forward-only processes in the case of forward bisimilarity and forward-reverse bisimilarity

respectively, along with some variants of those laws in the case of reverse bisimilarity. Together

with the results in [8, 11], this emphasizes once more the connection between forward-reverse

bisimilarity and branching bisimilarity.

The paper is organized as follows. In Section 2 we recall syntax and semantics for the calculus

of nondeterministic reversible sequential processes as well as the forward, reverse, and forward-

reverse bisimilarities introduced in [9]. In Section 3 we define the weak variants of the three

aforementioned bisimilarities. In Section 4 we study their compositionality properties. Finally,

in Section 5 we provide sound and ground-complete equational characterizations for the three

weak bisimilarities.



2. Background

2.1. Syntax of Nondeterministic Reversible Sequential Processes

Given a countable set 𝐴 of actions – ranged over by 𝑎, 𝑏, 𝑐 – including an unobservable action

denoted by 𝜏 , the syntax of reversible sequential processes is as follows [9]:

𝑃 ::= 0 | 𝑎 . 𝑃 | 𝑎†. 𝑃 | 𝑃 + 𝑃
where:

• 0 is the terminated process.

• 𝑎 . 𝑃 is a process that can execute action 𝑎 and whose continuation is 𝑃 .

• 𝑎† . 𝑃 is a process that executed action 𝑎 and whose continuation is in 𝑃 .

• 𝑃1 + 𝑃2 expresses a nondeterministic choice between 𝑃1 and 𝑃2 as far as both of them

have not executed any action yet.

We syntactically characterize through suitable predicates three classes of processes generated

by the grammar above. Firstly, we have initial processes, i.e., processes in which all the actions

are unexecuted:

initial(0)
initial(𝑎 . 𝑃 ) ⇐= initial(𝑃 )

initial(𝑃1 + 𝑃2) ⇐= initial(𝑃1) ∧ initial(𝑃2)
Secondly, we have final processes, i.e., processes in which all the actions along a single path

have been executed:

final(0)
final(𝑎†. 𝑃 ) ⇐= final(𝑃 )

final(𝑃1 + 𝑃2) ⇐= (final(𝑃1) ∧ initial(𝑃2)) ∨ (initial(𝑃1) ∧ final(𝑃2))
Multiple paths arise only in the presence of alternative compositions, i.e., nondeterministic

choices. At each occurrence of +, only the subprocess chosen for execution can move, while

the other one, although not selected, is kept as an initial subprocess within the overall process

to support reversibility.

Thirdly, we have the processes reachable from an initial one, whose set we denote by P:

reachable(0)
reachable(𝑎 . 𝑃 ) ⇐= initial(𝑃 )
reachable(𝑎†. 𝑃 ) ⇐= reachable(𝑃 )

reachable(𝑃1 + 𝑃2) ⇐= (reachable(𝑃1) ∧ initial(𝑃2)) ∨ (initial(𝑃1) ∧ reachable(𝑃2))
It is worth noting that:

• 0 is the only process that is both initial and final as well as reachable.

• Every initial or final process is reachable too.

• P also contains processes that are neither initial nor final, like e.g. 𝑎†. 𝑏 . 0.

• The relative positions of already executed actions and actions to be executed matter;

in particular, an action of the former kind can never follow one of the latter kind.

For instance, 𝑎†. 𝑏 . 0 ∈ P whereas 𝑏 . 𝑎†. 0 /∈ P.



(Actf )
initial(𝑃 )

𝑎 . 𝑃
𝑎−→ 𝑎†. 𝑃

(Actp)
𝑃

𝑏−→ 𝑃 ′

𝑎†. 𝑃
𝑏−→ 𝑎†. 𝑃 ′

(Chol)
𝑃1

𝑎−→ 𝑃 ′
1 initial(𝑃2)

𝑃1 + 𝑃2
𝑎−→ 𝑃 ′

1 + 𝑃2

(Chor)
𝑃2

𝑎−→ 𝑃 ′
2 initial(𝑃1)

𝑃1 + 𝑃2
𝑎−→ 𝑃1 + 𝑃 ′

2

Table 1
Operational semantic rules for reversible action prefix and nondeterministic choice

2.2. Operational Semantic Rules

According to the approach of [4], dynamic operators such as action prefix and alternative

composition have to be made static by the semantics, so as to retain within the syntax all the

information needed to enable reversibility. For the sake of minimality, unlike [4] we do not

generate two distinct transition relations – a forward one −→ and a backward one −⇝ – but a

single transition relation, which we implicitly regard as being symmetric like in [8] to enforce

the loop property: each executed action can be undone and each undone action can be redone.

In our setting, a backward transition from 𝑃 ′
to 𝑃 (𝑃 ′ 𝑎

−⇝ 𝑃 ) is subsumed by the correspond-

ing forward transition 𝑡 from 𝑃 to 𝑃 ′
(𝑃

𝑎−→ 𝑃 ′
). As will become clear with the definition of

bisimulation equivalences, like in [8] when going forward we view 𝑡 as an outgoing transition

of 𝑃 , while when going backward we view 𝑡 as an incoming transition of 𝑃 ′
. The semantic

rules for −→ ⊆ P×𝐴× P are defined in Table 1 and generate the labeled transition system

(P, 𝐴,−→) [9].

The first rule for action prefix (Actf where f stands for forward) applies only if 𝑃 is initial

and retains the executed action in the target process of the generated forward transition by

decorating the action itself with †. The second rule for action prefix (Actp where p stands for

propagation) propagates actions executed by inner initial subprocesses.

In both rules for alternative composition (Chol and Chor where l stands for left and r stands

for right), the subprocess that has not been selected for execution is retained as an initial

subprocess in the target process of the generated transition. When both subprocesses are initial,

both rules for alternative composition are applicable, otherwise only one of them can be applied

and in that case it is the non-initial subprocess that can move, because the other one has been

discarded at the moment of the selection.

Every state corresponding to a non-final process has at least one outgoing transition, while

every state corresponding to a non-initial process has exactly one incoming transition due to

the decoration of executed actions. The labeled transition system underlying an initial process

turns out to be a tree, whose branching points correspond to occurrences of +.

Example 2.1. The labeled transition systems generated by the rules in Table 1 for the two

initial processes 𝑎 . 0 and 𝑎 . 0 + 𝑎 . 0 are depicted in Figure 1. As for the one on the right,

we observe that, in the case of a standard process calculus, a single 𝑎-transition from 𝑎 . 0+𝑎 . 0
to 0 would have been generated due to the absence of action decorations within processes.



0_a . 0_a . +

0_a . 0_a . +0_a . 0_a . +0_a . 

0_a . 
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Figure 1: Labeled transition systems underlying 𝑎 . 0 and 𝑎 . 0 + 𝑎 . 0

2.3. Strong Forward, Reverse, and Forward-Reverse Bisimilarities

While forward bisimilarity considers only outgoing transitions [7, 6], reverse bisimilarity consid-

ers only incoming transitions. Forward-reverse bisimilarity [4] considers instead both outgoing

transitions and incoming ones. Here are their strong versions studied in [9], where strong means

not abstracting from 𝜏 -actions.

Definition 2.2. We say that𝑃1, 𝑃2 ∈ P are forward bisimilar, written𝑃1 ∼FB 𝑃2, iff (𝑃1, 𝑃2) ∈
ℬ for some forward bisimulation ℬ. A symmetric relation ℬ over P is a forward bisimulation iff

for all (𝑃1, 𝑃2) ∈ ℬ and 𝑎 ∈ 𝐴:

• Whenever 𝑃1
𝑎−→ 𝑃 ′

1, then 𝑃2
𝑎−→ 𝑃 ′

2 with (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

Definition 2.3. We say that 𝑃1, 𝑃2 ∈ P are reverse bisimilar, written 𝑃1 ∼RB 𝑃2, iff (𝑃1, 𝑃2) ∈
ℬ for some reverse bisimulation ℬ. A symmetric relation ℬ over P is a reverse bisimulation iff

for all (𝑃1, 𝑃2) ∈ ℬ and 𝑎 ∈ 𝐴:

• Whenever 𝑃 ′
1

𝑎−→ 𝑃1, then 𝑃 ′
2

𝑎−→ 𝑃2 with (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

Definition 2.4. We say that 𝑃1, 𝑃2 ∈ P are forward-reverse bisimilar, written 𝑃1 ∼FRB 𝑃2,

iff (𝑃1, 𝑃2) ∈ ℬ for some forward-reverse bisimulation ℬ. A symmetric relation ℬ over P is a

forward-reverse bisimulation iff for all (𝑃1, 𝑃2) ∈ ℬ and 𝑎 ∈ 𝐴:

• Whenever 𝑃1
𝑎−→ 𝑃 ′

1, then 𝑃2
𝑎−→ 𝑃 ′

2 with (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

• Whenever 𝑃 ′
1

𝑎−→ 𝑃1, then 𝑃 ′
2

𝑎−→ 𝑃2 with (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

∼FRB ⊊ ∼FB ∩ ∼RB with the inclusion being strict because, e.g., the two final processes

𝑎†. 0 and 𝑎†. 0 + 𝑐 . 0 are identified by ∼FB (no outgoing transitions on both sides) and by ∼RB

(only an incoming 𝑎-transition on both sides), but distinguished by ∼FRB as in the latter process

action 𝑐 is enabled again after undoing 𝑎 (and hence there is an outgoing 𝑐-transition in addition

to an outgoing 𝑎-transition). Moreover, ∼FB and ∼RB are incomparable because for instance:

𝑎†. 0 ∼FB 0 but 𝑎†. 0 ̸∼RB 0
𝑎 . 0 ∼RB 0 but 𝑎 . 0 ̸∼FB 0

Note that that ∼FRB = ∼FB over initial processes, with ∼RB strictly coarser, whilst ∼FRB ̸=
∼RB over final processes because, after going backward, previously discarded subprocesses

come into play again in the forward direction.

Example 2.5. The two processes considered in Example 2.1 are identified by all the three

equivalences. This is witnessed by any bisimulation that contains the pairs (𝑎 . 0, 𝑎 . 0 + 𝑎 . 0),
(𝑎†. 0, 𝑎†. 0 + 𝑎 . 0), and (𝑎†. 0, 𝑎 . 0 + 𝑎†. 0).



As observed in [9], it makes sense that ∼FB identifies processes with a different past and that

∼RB identifies processes with a different future, in particular with 0 that has neither past nor

future. However, for ∼FB this results in a compositionality violation with respect to alternative

composition. As an example:

𝑎†. 𝑏 . 0 ∼FB 𝑏 . 0
𝑎†. 𝑏 . 0 + 𝑐 . 0 ̸∼FB 𝑏 . 0 + 𝑐 . 0

because in 𝑎†. 𝑏 . 0+𝑐 . 0 action 𝑐 is disabled due to the presence of the already executed action 𝑎†,
while in 𝑏 . 0 + 𝑐 . 0 action 𝑐 is enabled as there are no past actions preventing it from occurring.

Note that a similar phenomenon does not happen with ∼RB as 𝑎†. 𝑏 . 0 ̸∼RB 𝑏 . 0 due to the

incoming 𝑎-transition of 𝑎†. 𝑏 . 0.

This problem, which does not show up for ∼RB and ∼FRB because these two equivalences

cannot identify an initial process with a non-initial one, leads to the following variant of ∼FB

that is sensitive to the presence of the past.

Definition 2.6. We say that 𝑃1,𝑃2∈P are past-sensitive forward bisimilar, written 𝑃1∼FB:ps𝑃2,

iff (𝑃1, 𝑃2) ∈ ℬ for some past-sensitive forward bisimulation ℬ. A relation ℬ over P is a past-
sensitive forward bisimulation iff it is a forward bisimulation such that initial(𝑃1) ⇐⇒ initial(𝑃2)
for all (𝑃1, 𝑃2) ∈ ℬ.

Now ∼FB:ps is sensitive to the presence of the past:

𝑎†. 𝑏 . 0 ̸∼FB:ps 𝑏 . 0
but can still identify non-initial processes having a different past:

𝑎†1 . 𝑃 ∼FB:ps 𝑎†2 . 𝑃
It holds that ∼FRB ⊊ ∼FB:ps ∩ ∼RB, with ∼FRB=∼FB:ps over initial processes as well as

∼FB:ps and ∼RB being incomparable because, e.g., for 𝑎1 ̸= 𝑎2:

𝑎†1 . 𝑃 ∼FB:ps 𝑎†2 . 𝑃 but 𝑎†1 . 𝑃 ̸∼RB 𝑎†2 . 𝑃
𝑎1 . 𝑃 ∼RB 𝑎2 . 𝑃 but 𝑎1 . 𝑃 ̸∼FB:ps 𝑎2 . 𝑃

In [9] it has been shown that all the considered bisimilarities are congruences with respect to

action prefix, while only ∼FB:ps, ∼RB, and ∼FRB are congruences with respect to alternative

composition too, with ∼FB:ps being the coarsest congruence with respect to + contained in ∼FB.

Sound and ground-complete equational characterizations have also been provided for the three

equivalences that are congruences with respect to both operators.

3. Weak Bisimilarity and Reversibility

In this section we introduce weak variants of forward, reverse, and forward-reverse bisimilarities,

i.e., variants capable of abstracting from 𝜏 -actions.

In the following definitions, 𝑃
𝜏*
==⇒ 𝑃 ′

means that 𝑃 ′ = 𝑃 or there exists a nonempty

sequence of finitely many 𝜏 -transitions such that the target of each of them coincides with the

source of the subsequent one, with the source of the first one being 𝑃 and the target of the

last one being 𝑃 ′
. Moreover,

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ stands for an 𝑎-transition possibly preceded and

followed by finitely many 𝜏 -transitions. We further let �̄� = 𝐴 ∖ {𝜏}.



Definition 3.1. We say that 𝑃1, 𝑃2 ∈ P are weakly forward bisimilar, written 𝑃1 ≈FB 𝑃2, iff

(𝑃1, 𝑃2) ∈ ℬ for some weak forward bisimulation ℬ. A symmetric binary relation ℬ over P is a

weak forward bisimulation iff for all (𝑃1, 𝑃2) ∈ ℬ:

• Whenever 𝑃1
𝜏−→ 𝑃 ′

1, then 𝑃2
𝜏*
==⇒ 𝑃 ′

2 and (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

• Whenever 𝑃1
𝑎−→ 𝑃 ′

1 for 𝑎 ∈ �̄�, then 𝑃2
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
2 and (𝑃 ′

1, 𝑃
′
2) ∈ ℬ.

Definition 3.2. We say that 𝑃1, 𝑃2 ∈ P are weakly reverse bisimilar, written 𝑃1 ≈RB 𝑃2, iff

(𝑃1, 𝑃2) ∈ ℬ for some weak reverse bisimulation ℬ. A symmetric binary relation ℬ over P is a

weak reverse bisimulation iff for all (𝑃1, 𝑃2) ∈ ℬ:

• Whenever 𝑃 ′
1

𝜏−→ 𝑃1, then 𝑃 ′
2

𝜏*
==⇒ 𝑃2 and (𝑃 ′

1, 𝑃
′
2) ∈ ℬ.

• Whenever 𝑃 ′
1

𝑎−→ 𝑃1 for 𝑎 ∈ �̄�, then 𝑃 ′
2

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃2 and (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

Definition 3.3. We say that 𝑃1,𝑃2∈P are weakly forward-reverse bisimilar, written 𝑃1≈FRB𝑃2,

iff (𝑃1, 𝑃2) ∈ ℬ for some weak forward-reverse bisimulation ℬ. A symmetric binary relation ℬ
over P is a weak forward-reverse bisimulation iff for all (𝑃1, 𝑃2) ∈ ℬ:

• Whenever 𝑃1
𝜏−→ 𝑃 ′

1, then 𝑃2
𝜏*
==⇒ 𝑃 ′

2 and (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

• Whenever 𝑃1
𝑎−→ 𝑃 ′

1 for 𝑎 ∈ �̄�, then 𝑃2
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
2 and (𝑃 ′

1, 𝑃
′
2) ∈ ℬ.

• Whenever 𝑃 ′
1

𝜏−→ 𝑃1, then 𝑃 ′
2

𝜏*
==⇒ 𝑃2 and (𝑃 ′

1, 𝑃
′
2) ∈ ℬ.

• Whenever 𝑃 ′
1

𝑎−→ 𝑃1 for 𝑎 ∈ �̄�, then 𝑃 ′
2

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃2 and (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

Each of the three weak bisimilarities is strictly coarser than the corresponding strong one.

Similar to the strong case, ≈FRB ⊊ ≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable.

Unlike the strong case, ≈FRB ̸= ≈FB over initial processes. For instance, 𝜏 . 𝑎 . 0 + 𝑎 . 0 + 𝑏 . 0
and 𝜏 . 𝑎 . 0 + 𝑏 . 0 are identified by ≈FB but told apart by ≈FRB: if the former performs 𝑎,

the latter responds with 𝜏 followed by 𝑎 and if it subsequently undoes 𝑎 thus becoming 𝜏 †. 𝑎 . 0+
𝑏 . 0 in which only 𝑎 is enabled, the latter can only respond by undoing 𝑎 thus becoming

𝜏 . 𝑎 . 0 + 𝑎 . 0 + 𝑏 . 0 in which both 𝑎 and 𝑏 are enabled. An analogous counterexample with

non-initial 𝜏 -actions is given by 𝑐 . (𝜏 . 𝑎 . 0 + 𝑎 . 0 + 𝑏 . 0) and 𝑐 . (𝜏 . 𝑎 . 0 + 𝑏 . 0).

4. Congruence Properties

In this section we investigate the compositionality of the three weak bisimilarities with respect

to the considered process operators. Firstly, we observe that ≈FB suffers from the same problem

with respect to alternative composition as ∼FB. Secondly, ≈FB and ≈FRB feature the same

problem as weak bisimilarity for standard forward-only processes [6], i.e., for≈∈ {≈FB,≈FRB}
it holds that:



𝜏 . 𝑎 . 0 ≈ 𝑎 . 0
𝜏 . 𝑎 . 0 + 𝑏 . 0 ̸≈ 𝑎 . 0 + 𝑏 . 0

because if 𝜏 . 𝑎 . 0 + 𝑏 . 0 performs 𝜏 thereby evolving to 𝜏 †. 𝑎 . 0 + 𝑏 . 0 where only 𝑎 is enabled

in the forward direction, then 𝑎 . 0 + 𝑏 . 0 can neither move nor idle in the attempt to evolve in

such a way to match 𝜏 †. 𝑎 . 0 + 𝑏 . 0.

To solve both problems it is sufficient to redefine the two equivalences by making them

sensitive to the presence of the past, exactly as in the strong case for forward bisimilarity. By

so doing, 𝜏 . 𝑎 . 0 is no longer identified with 𝑎 . 0: if the former performs 𝜏 thereby evolving

to 𝜏 †. 𝑎 . 0 and the latter idles, then 𝜏 †. 𝑎 . 0 and 𝑎 . 0 are told apart because they are not both

initial or non-initial.

Definition 4.1. We say that 𝑃1, 𝑃2 ∈ P are weakly past-sensitive forward bisimilar, writ-

ten 𝑃1 ≈FB:ps 𝑃2, iff (𝑃1, 𝑃2) ∈ ℬ for some weak past-sensitive forward bisimulation ℬ.

A binary relation ℬ over P is a weak past-sensitive forward bisimulation iff it is a weak forward

bisimulation such that initial(𝑃1) ⇐⇒ initial(𝑃2) for all (𝑃1, 𝑃2) ∈ ℬ.

Definition 4.2. We say that 𝑃1, 𝑃2 ∈ P are weakly past-sensitive forward-reverse bisimilar,
written 𝑃1 ≈FRB:ps 𝑃2, iff (𝑃1, 𝑃2) ∈ ℬ for some weak past-sensitive forward-reverse bisimula-

tion ℬ. A binary relation ℬ over P is a weak past-sensitive forward-reverse bisimulation iff it is a

weak forward-reverse bisimulation such that initial(𝑃1) ⇐⇒ initial(𝑃2) for all (𝑃1, 𝑃2) ∈ ℬ.

Observing that ∼FRB ⊊ ≈FRB:ps as the former naturally satisfies the initiality condition, we

show the following congruence results. When present, side conditions on subprocesses just

ensure that the overall processes are reachable.

Theorem 4.3. Let ≈∈ {≈FB,≈FB:ps,≈RB,≈FRB,≈FRB:ps}, ≈′ ∈ {≈FB:ps,≈RB,≈FRB:ps},

and 𝑃1, 𝑃2 ∈ P:

• If 𝑃1 ≈ 𝑃2 then for all 𝑎 ∈ 𝐴:

– 𝑎 . 𝑃1 ≈ 𝑎 . 𝑃2 provided that initial(𝑃1) ∧ initial(𝑃2).

– 𝑎†. 𝑃1 ≈ 𝑎†. 𝑃2.

• If 𝑃1 ≈′ 𝑃2 then for all 𝑃 ∈ P:

– 𝑃1 +𝑃 ≈′ 𝑃2 +𝑃 and 𝑃 +𝑃1 ≈′ 𝑃 +𝑃2 provided that initial(𝑃 )∨ (initial(𝑃1)∧
initial(𝑃2)).

• ≈FB:ps is the coarsest congruence with respect to + contained in ≈FB.

• ≈FRB:ps is the coarsest congruence with respect to + contained in ≈FRB.

Like in the non-past-sensitive case, ≈FRB:ps ̸= ≈FB:ps over initial processes, as shown by

𝜏 . 𝑎 . 0 + 𝑎 . 0 and 𝜏 . 𝑎 . 0: if the former performs 𝑎, the latter responds with 𝜏 followed by 𝑎
and if it subsequently undoes 𝑎 thus becoming the non-initial process 𝜏 †. 𝑎 . 0, the latter can

only respond by undoing 𝑎 thus becoming the initial process 𝜏 . 𝑎 . 0 + 𝑎 . 0. An analogous

counterexample with non-initial 𝜏 -actions is given again by 𝑐 . (𝜏 . 𝑎 . 0 + 𝑎 . 0 + 𝑏 . 0) and

𝑐 . (𝜏 . 𝑎 . 0 + 𝑏 . 0).



It is worth noting that the aforementioned compositionality problems with respect to alter-

native composition may not be solved, in this reversible setting, by employing the construction

of [6] for building a weak bisimulation congruence. If we introduced a variant ≈′
FB of ≈FB such

that, when considering two initial processes, a 𝜏 -transition on either side must be matched by a

𝜏 -transition on the other side – possibly preceded and followed by finitely many 𝜏 -transitions

– with the two reached processes being related by ≈FB, then again 𝑎†. 𝑏 . 0 ≈′
FB 𝑏 . 0 but

𝑎†. 𝑏 . 0 + 𝑐 . 0 ̸≈′
FB 𝑏 . 0 + 𝑐 . 0 as explained in Section 2.3.

5. Equational Characterizations

In this section we investigate the equational characterizations of ≈FB:ps, ≈RB, and ≈FRB:ps

so as to highlight the fundamental laws of these behavioral equivalences. In the following, by

deduction system we mean a set comprising the following axioms and inference rules over P –

possibly enriched by a set 𝒜 of additional axioms – corresponding to the fact that ≈FB:ps, ≈RB,

and ≈FRB:ps are equivalence relations as well as congruences with respect to action prefix and

alternative composition as established by Theorem 4.3:

• Reflexivity, symmetry, transitivity: 𝑃 = 𝑃 ,

𝑃1 = 𝑃2

𝑃2 = 𝑃1
,

𝑃1 = 𝑃2 𝑃2 = 𝑃3

𝑃1 = 𝑃3
.

• .-Substitutivity:

𝑃1 = 𝑃2 initial(𝑃1) ∧ initial(𝑃2)

𝑎 . 𝑃1 = 𝑎 . 𝑃2
,

𝑃1 = 𝑃2

𝑎†. 𝑃1 = 𝑎†. 𝑃2

.

• +-Substitutivity:

𝑃1 = 𝑃2 initial(𝑃 ) ∨ (initial(𝑃1) ∧ initial(𝑃2))

𝑃1 + 𝑃 = 𝑃2 + 𝑃 𝑃 + 𝑃1 = 𝑃 + 𝑃2
.

It is known from [9] that, for the three strong bisimilarities, alternative composition turns

out to be associative and commutative and to admit 0 as neutral element, like in the case of

bisimilarity over standard forward-only processes [12]. The same holds true for ≈FB:ps, ≈RB,

and ≈FRB:ps as they are strictly coarser than their strong counterparts. This is formalized by

axioms 𝒜1 to 𝒜3 in Table 2.

Then, we have axioms specific to ∼FB:ps [9], which are thus valid for ≈FB:ps too. Axioms 𝒜4

and 𝒜5 together establish that the past can be neglected when moving only forward, but

the presence of the past cannot be ignored. Axiom 𝒜6 states that a previously non-selected

alternative can be discarded after starting moving only forward.

Likewise, we have axioms specific to ∼RB [9], which are thus valid for ≈RB too. Axiom 𝒜7

means that the future can be completely canceled when moving only backward. Axiom 𝒜8

states that a previously non-selected alternative can be discarded when moving only backward.

Since there are no constraints on 𝑃 , axiom 𝒜8 subsumes axiom 𝒜3.

Furthermore, the idempotency of alternative composition in the case of bisimilarity over

standard forward-only processes, i.e., 𝑃 + 𝑃 = 𝑃 [12], changes as follows depending on the

considered equivalence [9]:

• For ∼FB:ps, and hence ≈FB:ps too, idempotency is explicitly formalized by axiom 𝒜9,

which is disjoint from axiom 𝒜6 where 𝑃 cannot be initial.



(𝒜1) (𝑃1 + 𝑃2) + 𝑃3 = 𝑃1 + (𝑃2 + 𝑃3)
(𝒜2) 𝑃1 + 𝑃2 = 𝑃2 + 𝑃1

(𝒜3) 𝑃 + 0 = 𝑃

(𝒜4) [∼FB:ps] 𝑎†. 𝑃 = 𝑃 if ¬initial(𝑃 )

(𝒜5) [∼FB:ps] 𝑎†1 . 𝑃 = 𝑎†2 . 𝑃 if initial(𝑃 )
(𝒜6) [∼FB:ps] 𝑃 +𝑄 = 𝑃 if ¬initial(𝑃 ), where initial(𝑄)

(𝒜7) [∼RB] 𝑎 . 𝑃 = 𝑃 where initial(𝑃 )
(𝒜8) [∼RB] 𝑃 +𝑄 = 𝑃 if initial(𝑄)

(𝒜9) [∼FB:ps] 𝑃 + 𝑃 = 𝑃 where initial(𝑃 )
(𝒜10) [∼FRB] 𝑃 +𝑄 = 𝑃 if initial(𝑄) ∧ to_initial(𝑃 ) = 𝑄

(𝒜𝜏
1) [≈FB:ps] 𝑎 . 𝜏 . 𝑃 = 𝑎 . 𝑃 where initial(𝑃 )

(𝒜𝜏
2) [≈FB:ps] 𝑃 + 𝜏 . 𝑃 = 𝜏 . 𝑃 where initial(𝑃 )

(𝒜𝜏
3) [≈FB:ps] 𝑎 . (𝑃1 + 𝜏 . 𝑃2) + 𝑎 . 𝑃2 = 𝑎 . (𝑃1 + 𝜏 . 𝑃2) where initial(𝑃1) ∧ initial(𝑃2)

(𝒜𝜏
4) [≈FB:ps] 𝑎†. 𝜏 . 𝑃 = 𝑎†. 𝑃 where initial(𝑃 )

(𝒜𝜏
5) [≈RB] 𝜏 †. 𝑃 = 𝑃

(𝒜𝜏
6) [≈FRB:ps] 𝑎 . (𝜏 . (𝑃1 + 𝑃2) + 𝑃1) = 𝑎 . (𝑃1 + 𝑃2) where initial(𝑃1) ∧ initial(𝑃2)

(𝒜𝜏
7) [≈FRB:ps] 𝑎†. (𝜏 . (𝑃1 + 𝑃2) + 𝑃 ′

1) = 𝑎†. (𝑃 ′
1 + 𝑃2) if to_initial(𝑃 ′

1) = 𝑃1,

where initial(𝑃1) ∧ initial(𝑃2)
(𝒜𝜏

8) [≈FRB:ps] 𝑎†. (𝜏 †. (𝑃 ′
1 + 𝑃2) + 𝑃1) = 𝑎†. (𝑃 ′

1 + 𝑃2) if to_initial(𝑃 ′
1) = 𝑃1,

where initial(𝑃1)

Table 2
Axioms characterizing ≈FB:ps, ≈RB, ≈FRB:ps

• For ∼RB, and hence ≈RB either, an additional axiom is not needed as idempotency follows

from axiom 𝒜8 by taking 𝑄 equal to 𝑃 .

• For ∼FRB, and hence ≈FRB:ps too, idempotency is formalized by axiom 𝒜10, where func-

tion to_initial brings a process back to its initial version by removing all action decorations:

to_initial(0) = 0
to_initial(𝑎 . 𝑃 ) = 𝑎 . 𝑃
to_initial(𝑎†. 𝑃 ) = 𝑎 . to_initial(𝑃 )

to_initial(𝑃1 + 𝑃2) = to_initial(𝑃1) + to_initial(𝑃2)
This axiom appeared for the first time in [13] and subsumes axioms 𝒜9 and 𝒜6 for ∼FB:ps

and ≈FB:ps as well as axiom 𝒜8 for ∼RB and ≈RB.

Let us now focus on axioms specific to ≈FB:ps, ≈RB, and ≈FRB:ps, which are usually called

𝜏 -laws. Axioms 𝒜𝜏
1 to 𝒜𝜏

3 are valid for ≈FB:ps and coincide with those for weak bisimulation

congruence over standard forward-only processes [12]. A variant of 𝒜𝜏
1 with 𝑎 being decorated,

i.e., axiom 𝒜𝜏
4 , is also valid for ≈FB:ps; note that 𝑎†. 𝜏 †. 𝑃 = 𝑎†. 𝑃 is valid too, but it follows

from reflexity (𝑃 = 𝑃 ), axiom 𝒜5 or axiom 𝒜4 depending on whether 𝑃 is initial or not

(𝜏 †. 𝑃 = 𝑎†. 𝑃 ), and axiom 𝒜4 applied to the lefthand side along with transitivity. As far

as 𝜏 . 𝑃 = 𝑃 is concerned, which over standard forward-only processes is valid for weak



bisimilarity but not for weak bisimulation congruence [12], its reverse counterpart holds for

≈RB, yielding axiom 𝒜𝜏
5 . Axioms 𝒜𝜏

6 , 𝒜𝜏
7 , 𝒜𝜏

8 are valid for ≈FRB:ps and are related to the only

𝜏 -law of branching bisimulation congruence [10].

In the following, we denote by ⊢ the deduction relation and we examine the three sets of

additional axioms below:

• 𝒜𝜏
FB:ps = {𝒜1,𝒜2,𝒜3,𝒜4,𝒜5,𝒜6,𝒜9,𝒜𝜏

1 ,𝒜𝜏
2 ,𝒜𝜏

3 ,𝒜𝜏
4} for ≈FB:ps.

• 𝒜𝜏
RB = {𝒜1,𝒜2,𝒜7,𝒜8,𝒜𝜏

5} for ≈RB.

• 𝒜𝜏
FRB:ps = {𝒜1,𝒜2,𝒜3,𝒜10,𝒜𝜏

6 ,𝒜𝜏
7 ,𝒜𝜏

8} for ≈FRB:ps.

After proving its soundness, we demonstrate the ground completeness of the equational

characterization for each of the three considered weak bisimilarities by introducing as usual

equivalence-specific normal forms to which every process is shown to be reducible, so that we

then work with normal forms only. For each of the three weak bisimilarities, the normal form

comes from the one of the corresponding strong bisimilarity in [9] and relies on the fact that

alternative composition is associative and commutative, hence the binary + can be generalized

to the 𝑛-ary

∑︀
𝑖∈𝐼 for a finite nonempty index set 𝐼 . The proofs of the ground completeness

theorems will be by induction on the size of a process, which is inductively defined as follows:

size(0) = 1
size(𝑎 . 𝑃 ) = 1 + size(𝑃 )
size(𝑎†. 𝑃 ) = 1 + size(𝑃 )

size(𝑃1 + 𝑃2) = max(size(𝑃1), size(𝑃2))
We start with the soundness and ground completeness of 𝒜𝜏

FB:ps with respect to ≈FB:ps.

To this purpose, we introduce the following function that extracts the forward behavior from a

process by eliminating executed actions and non-selected alternatives:

to_forward(𝑃 ) = 𝑃 if initial(𝑃 )
to_forward(𝑎†. 𝑃 ) = to_forward(𝑃 )

to_forward(𝑃1 + 𝑃2) = to_forward(𝑃1) if ¬initial(𝑃1) ∧ initial(𝑃2)
to_forward(𝑃1 + 𝑃2) = to_forward(𝑃2) if ¬initial(𝑃2) ∧ initial(𝑃1)

which yields an initial process and satisfies the following properties.

Proposition 5.1. Let 𝑃, 𝑃 ′, 𝑃 ′′, 𝑄 ∈ P and 𝑎 ∈ 𝐴:

• to_forward(𝑃 ) is initial, with to_forward(𝑃 ) = 𝑃 when initial(𝑃 ) while to_forward(𝑃 )
∼FB 𝑃 when ¬initial(𝑃 ).

• 𝑃
𝑎−→ 𝑃 ′

iff to_forward(𝑃 )
𝑎−→ 𝑃 ′′

with 𝑃 ′ ∼FB:ps 𝑃
′′
.

• If 𝑃 ≈FB:ps 𝑄, then to_forward(𝑃 ) ≈FB:ps to_forward(𝑄) when 𝑃 and 𝑄 are initial or

cannot execute 𝜏 -actions, else to_forward(𝑃 ) ≈FB to_forward(𝑄).

Theorem 5.2. Let 𝑃1, 𝑃2 ∈ P. If 𝒜𝜏
FB:ps ⊢ 𝑃1 = 𝑃2 then 𝑃1 ≈FB:ps 𝑃2.

Definition 5.3. We say that 𝑃 ∈ P is in forward normal form, written F-nf, iff it is equal to one

of the following:



• 0.

•

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, where each 𝑃𝑖 is initial and in F-nf.

• 𝑎†. 𝑃 ′
, where 𝑃 ′

is initial and in F-nf.

Lemma 5.4. For all 𝑃 ∈ P there exists 𝑄 ∈ P in F-nf such that 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑄.

Following the approach adopted in [6] for weak bisimulation congruence over standard

forward-only processes, for ≈FB:ps we introduce a saturated normal form where, unlike [6],

two distinct equivalent processes 𝑃 ′
and 𝑃 ′′

come into play instead of a single process due to

the presence of action decorations within processes in our reversible setting. This leads to the

so-called saturation lemma, which immediately follows the definition below and, unlike [6],

features to_forward(𝑃 ′) in place of 𝑃 ′
in the final part of its statement.

Definition 5.5. We say that 𝑃 ∈ P is in forward saturated normal form, written F-snf, iff it is

equal to one of the following:

• 0

•

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, where each 𝑃𝑖 is initial and in F-snf

• 𝑎†. 𝑃 ′
, where 𝑃 ′

is initial and in F-snf

and whenever 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
, then 𝑃

𝑎−→ 𝑃 ′′
with 𝑃 ′ ≈FB:ps 𝑃

′′
.

Lemma 5.6. [saturation lemma] Let 𝑃 ∈ P be initial. If 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
then 𝒜𝜏

FB:ps ⊢
𝑃 = 𝑃 + 𝑎 . to_forward(𝑃 ′).

Lemma 5.7. For all 𝑃 ∈ P in F-nf there exists 𝑄 ∈ P in F-snf such that 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑄.

Theorem 5.8. Let 𝑃1, 𝑃2 ∈ P. If 𝑃1 ≈FB:ps 𝑃2 then 𝒜𝜏
FB:ps ⊢ 𝑃1 = 𝑃2.

As for the soundness and ground completeness of 𝒜𝜏
RB with respect to ≈RB, the latter does

not require saturation as no choice occurs when going backward.

Theorem 5.9. Let 𝑃1, 𝑃2 ∈ P. If 𝒜𝜏
RB ⊢ 𝑃1 = 𝑃2 then 𝑃1 ≈RB 𝑃2.

Definition 5.10. We say that 𝑃 ∈ P is in reverse normal form, written R-nf, iff it is equal to

one of the following:

• 0.

• 𝑎†. 𝑃 ′
, where 𝑃 ′

is in R-nf.

Lemma 5.11. For all 𝑃 ∈ P there exists 𝑄 ∈ P in R-nf such that 𝒜𝜏
RB ⊢ 𝑃 = 𝑄.

Theorem 5.12. Let 𝑃1, 𝑃2 ∈ P. If 𝑃1 ≈RB 𝑃2 then 𝒜𝜏
RB ⊢ 𝑃1 = 𝑃2.



We conclude with the soundness and ground completeness of 𝒜𝜏
FRB:ps with respect to

≈FRB:ps.

Theorem 5.13. Let 𝑃1, 𝑃2 ∈ P. If 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑃2 then 𝑃1 ≈FRB:ps 𝑃2.

Definition 5.14. We say that 𝑃 ∈ P is in forward-reverse normal form, written FR-nf, iff it is

equal to one of the following:

• 0.

•

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, where each 𝑃𝑖 is initial and in FR-nf.

• 𝑎†. 𝑃 ′
, where 𝑃 ′

is in FR-nf.

• 𝑎†. 𝑃 ′ +
∑︀

𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, where 𝑃 ′
is in FR-nf and each 𝑃𝑖 is initial and in FR-nf.

Lemma 5.15. For all 𝑃 ∈ P there exists 𝑄 ∈ P in FR-nf such that 𝒜𝜏
FRB:ps ⊢ 𝑃 = 𝑄.

Similar to branching bisimulation semantics over standard forward-only processes [14],

saturation is unsound for ≈FRB:ps. In particular, a normal form based on saturation cannot be

set up for ≈FRB:ps. First of all, the backward version of:

whenever 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′, then 𝑃
𝑎−→ 𝑃 ′′

with 𝑃 ′ ≈FRB:ps 𝑃
′′

which is:

whenever 𝑃 ′ 𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃, then 𝑃 ′′ 𝑎−→ 𝑃 with 𝑃 ′ ≈FRB:ps 𝑃
′′

can be satisfied only when 𝑃 ′
and 𝑃 ′′

coincide because 𝑃 can have only one incoming transition.

Secondly, not even the forward version of saturation works for ≈FRB:ps:

• Consider 𝑃 ≜ 𝜏 . (𝑎 . 𝜏 . 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0 along with its two transitions:

𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝜏 †. (𝑎†. 𝜏 †. 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0 ≜ 𝑃 ′

𝑃
𝑎−→ 𝜏 . (𝑎 . 𝜏 . 0 + 𝑏 . 0) + 𝑎†. 0 + 𝑏 . 0 ≜ 𝑃 ′′

Then 𝑃 ′ ̸≈FRB:ps 𝑃
′′
. Indeed, if 𝑃 ′

undoes 𝜏 with 𝑃 ′′
staying idle and then undoes 𝑎

thus reaching the non-initial process 𝜏 †. (𝑎 . 𝜏 . 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0, then 𝑃 ′′
can only

respond by undoing 𝑎 thus reaching the initial process 𝑃 .

• Consider 𝑄 ≜ 𝜏 . 𝑎 . (𝜏 . 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0 along with its two transitions:

𝑄
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝜏 †. 𝑎†. (𝜏 †. 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0 ≜ 𝑄′

𝑄
𝑎−→ 𝜏 . 𝑎 . (𝜏 . 0 + 𝑏 . 0) + 𝑎†. 0 + 𝑏 . 0 ≜ 𝑄′′

Then𝑄′ ̸≈FRB:ps 𝑄
′′
. Indeed, if𝑄′

undoes 𝜏 thus reaching 𝜏 †. 𝑎†. (𝜏 . 0+𝑏 . 0)+𝑎 . 0+𝑏 . 0
with 𝑄′′

staying idle, then in the forward direction the newly reached process can perform

𝑏 whereas 𝑄′′
cannot.

To investigate the ground completeness of 𝒜𝜏
FRB:ps for ≈FRB:ps, first of all we develop an

alternative characterization of ≈FRB:ps. This is inspired by the construction employed in [6]

over forward-only processes to define weak bisimulation congruence on the basis of weak

bisimulation equivalence. Consider for example 𝜏 . 𝑎 . 0 and 𝑎 . 0, which are identified by ≈FRB



but told apart by ≈FRB:ps. The reason for distinguishing them is that if 𝜏 . 𝑎 . 0 performs 𝜏
thereby evolving to the non-initial process 𝜏 †. 𝑎 . 0, then the only way for 𝑎 . 0 to respond is

idling thus remaining in an initial process. In the weak bisimulation congruence setting of [6],

this would be reformulated in terms of the fact that the latter process has no initial 𝜏 -transition

and hence cannot match the initial 𝜏 -transition of the former process.

In our reversible setting, the construction of [6] needs to be adapted as follows. In the case

of two initial processes, every transition of either process must be matched by an identically

labeled transition of the other process, with the two reached non-initial processes being related

by ≈FRB. In the case of two non-initial processes, in addition to requiring them to be ≈FRB-

equivalent, we also have to make sure that their initial versions are equivalent in the sense

above. For instance, the two non-initial processes 𝜏 †. 𝑎†. 0 and 𝑎†. 0 are identified by ≈FRB, but

to_initial(𝜏 †. 𝑎†. 0) = 𝜏 . 𝑎 . 0 ̸≈FRB:ps 𝑎 . 0 = to_initial(𝑎†. 0), hence 𝜏 †. 𝑎†. 0 ̸≈FRB:ps 𝑎†. 0
too. On the other hand, it is not enough to guarantee that the initial versions are equivalent, as

for example to_initial(𝑎†. 𝑏 . 0) = 𝑎 . 𝑏 . 0 = to_initial(𝑎†. 𝑏†. 0) but 𝑎†. 𝑏 . 0 ̸≈FRB 𝑎†. 𝑏†. 0.

Definition 5.16. We say that 𝑃1, 𝑃2 ∈ P are weakly forward-reverse bisimulation congruent,
written 𝑃1 ≈FRB:c 𝑃2, iff:

• either 𝑃1 and 𝑃2 are both initial and, for all 𝑎 ∈ 𝐴, whenever 𝑃1
𝑎−→ 𝑃 ′

1, then 𝑃2
𝑎−→ 𝑃 ′

2

and 𝑃 ′
1 ≈FRB 𝑃 ′

2, and vice versa;

• or 𝑃1 and 𝑃2 are both non-initial, 𝑃1 ≈FRB 𝑃2, and to_initial(𝑃1) ≈FRB:c to_initial(𝑃2).

Theorem 5.17. Let 𝑃1, 𝑃2 ∈ P. Then 𝑃1 ≈FRB:c 𝑃2 iff 𝑃1 ≈FRB:ps 𝑃2.

Secondly, we recast in our reversible setting a preliminary result for the completeness of

the axiomatization of branching bisimulation congruence provided in [15]. This yields two

lemmas, where the former is about ≈FRB-equivalent initial processes that are then prefixed by

an unexecuted action, while the latter has to do with ≈FRB-equivalent arbitrary processes that

are then prefixed by an executed action. The proof of the former lemma and part of the latter

lemma is inspired by the proof of the preliminary result in the aforementioned paper. Each

lemma is followed by the corresponding ground completeness result of 𝒜𝜏
FRB:ps for ≈FRB:ps, in

which the lemma itself can be employed thanks to the alternative characterization of ≈FRB:ps.

The former completeness result thus deals with ≈FRB:ps-equivalent initial processes. The latter

completeness result instead addresses ≈FRB:ps-equivalent non-initial processes, with the related

lemma exploiting completeness over initial processes.

Lemma 5.18. Let 𝑃1, 𝑃2 ∈ P be initial and 𝑎 ∈ 𝐴. If 𝑃1 ≈FRB 𝑃2 then 𝒜𝜏
FRB:ps ⊢ 𝑎 . 𝑃1 =

𝑎 . 𝑃2.

Theorem 5.19. Let 𝑃1, 𝑃2 ∈ P be initial. If 𝑃1 ≈FRB:ps 𝑃2 then 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑃2.

Lemma 5.20. Let 𝑃1, 𝑃2 ∈ P and 𝑎 ∈ 𝐴. If 𝑃1 ≈FRB 𝑃2 then 𝒜𝜏
FRB:ps ⊢ 𝑎†. 𝑃1 = 𝑎†. 𝑃2.

Theorem 5.21. Let 𝑃1, 𝑃2 ∈ P be not initial. If 𝑃1 ≈FRB:ps 𝑃2 then 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑃2.
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