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Abstract
We analyze to what extent final users can infer information about the level of protection of their data
when the data obfuscation mechanism is a priori unknown to them (the so-called “black-box" scenario). In
particular, we delve into the investigation of two notions of local differential privacy (LDP), namely 𝜀-LDP
and Rényi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it
is not possible to have an algorithm able to infer the level of data protection with provable guarantees.
On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of
the involved densities on a closed interval), such guarantees exist and can be achieved by a simple
histogram-based estimator.

1. General setting

Differential privacy (DP) [1] is nowadays one of the best established and theoretically most
solid tools to ensure data protection. Intuitively, given a set of databases, differential privacy
requires that databases that only slightly differ one from the other (e.g. in one individual
record) are mapped to the same obfuscated value with similar probabilities. The success of this
privacy notion is witnessed by its wide application, both in academia and in industry (see e.g.
[2, 3, 4, 5, 6]).

The first formulation of DP that we are going to consider is a distributed version of DP, called
local differential privacy (LDP) [7]. Here, we do not work anymore with (adjacent) databases
but directly on values from a set 𝒳 . In this setting, a randomized mechanism 𝒦 : 𝒳 → 𝒟𝒵
(where 𝒟𝒵 denotes the set of probability distributions over 𝒵) is said to be 𝜖-LDP if, for every
𝑧 ∈ 𝒵 and 𝑥1, 𝑥2 ∈ 𝒳 , we have that

𝑝𝑍|𝑋(𝑧|𝑥1) ≤ 𝑒𝜖 𝑝𝑍|𝑋(𝑧|𝑥2) (1)

where the notation 𝑝𝑍|𝑋( · |𝑥𝑖) denotes either the density distribution of𝒦(𝑥𝑖) in the continuous
case or the probability distribution [𝑧 ↦→ Pr(𝒦(𝑥𝑖) = 𝑧)] in the discrete one. Here, 𝜖 controls
the level of privacy: the smaller 𝜖, the higher the level of privacy.
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A second variant is the so-called Rényi differential privacy (RDP) [8], a relaxation of DP based
on the notion of Rényi divergence. More formally, a randomized mechanism 𝒦 is 𝜖-LRDP of
order 𝛼 > 1 if, for every 𝑥1, 𝑥2, we have that

𝐷𝛼(𝒦(𝑥1)‖𝒦(𝑥2)) ≤ 𝜖 (2)

where 𝐷𝛼( · ‖ · ) denotes Rényi divergence [9]. Also here the value of 𝜖 controls the level of
privacy, in the sense that a smaller 𝜖 corresponds to a higher privacy.

However, both notions of DP are built into existing software products by the producing
companies, and the final users have no way of testing the real level of security (i.e., the real
value of 𝜖). They can only trust the producers, sometimes leading to unexpected (and unwanted)
behaviors. For this reason, we would like to study to what extent final users can infer information
about the level of protection of their data when the data obfuscation mechanism is a priori
unknown to them, and they can only sample from it (the so-called “black-box" scenario). A few
black-box approaches to related problems have been presented in the literature:

• [10] that, given an oracle who has access to the probability density functions on the
outputs, casts the problem of testing differential privacy on typical datasets (i.e., datasets
with sufficiently high probability mass under a fixed data generating distribution) as a
problem of testing the Lipschitz condition. Their result concerns variants of differential
privacy called probabilistic DP and approximate DP.

• [11] prove both an impossibility result for DP and a possibility result for approximate
DP. Their impossibility result shows that, for any 𝜖 > 0 and proximity parameter 𝛼 > 0,
no privacy property tester with finite query complexity exists for DP. Moreover, they
achieve their possibility result using randomized algorithms.

• [12, 13], where the authors focus on (𝜖, 𝛿)-DP and the estimation of the DP parameters of
a given (unknown) mechanism. In [12] the authors aim to estimate the parameters for a
fixed pair of adjacent databases by focusing on the relation between the number of samples
required and the accuracy of the estimation, whereas they estimate the parameters of the
mechanism by repeating their estimation on every possible pair. In [13] the authors aim
at estimating, once 𝜖 is given, the 𝛿 of a certain (unknown) mechanism by focusing on
polynomial-time approximate estimators on a given subset 𝒯 of all the possible databases
(thus defining and estimating the notion of relative DP).

• The paper that is most closely related to ours is [14], but there are some differences. First,
they only consider central DP, whereas we focus on LDP and LRDP. Second, we both
consider a pair of databases/values and evaluate the 𝜖 for this pair; to compute a better
under-approximation of the overall 𝜖, they iterate their method over a (somehow chosen)
finite set of pairs without provable guarantees, whereas our method comes equipped
with formal guarantees. Third, we use histograms and rely on the Lipschitzness of the
noise function, whereas they use kernel density estimation and rely on Holder continuity
(a generalization of Lipschitzness). Fourth, we upper bound the number of samples 𝑛
needed to achieve a certain precision and confidence in the estimation of 𝜖, whereas
their theorem states that the estimation approximates 𝜖 asymptotically (within a certain
confidence range) as 𝑛 grows.



2. Our contributions

We first focus on (1) and try to estimate the (equivalent) quantity

𝜖⋆(𝑥1, 𝑥2)
def
= sup

𝑧∈𝒵(𝑥1,𝑥2)
log

(︂
𝑝𝑍|𝑋(𝑧|𝑥1)
𝑝𝑍|𝑋(𝑧|𝑥2)

)︂
(3)

where 𝒵(𝑥1, 𝑥2)
def
= {𝑧 ∈ 𝒵 | 𝑝𝑍|𝑋(𝑧|𝑥1) > 0 ∧ 𝑝𝑍|𝑋(𝑧|𝑥2) > 0}. In this setting, an estimator

�̃� is an algorithm that takes in input a pair (𝑥1, 𝑥2), a precision 𝛾 and a confidence 𝛿 (with
𝛾 > 0 and 0 < 𝛿 < 1), and returns a real that is supposed to approximate 𝜖⋆(𝑥1, 𝑥2) for at most
the precision with probability at least the confidence. Our first main result states that such an
estimator cannot exist:

Theorem 1 (Impossibility). For every 𝛾 > 0 (precision), 0 < 𝛿 < 1 (confidence), 𝑥1, 𝑥2 ∈ 𝒳 ,
and probabilistic estimator algorithm �̃� that almost surely terminates, there exists a probability
distribution 𝑝𝑍|𝑋 such that

Pr
(︀⃒⃒
𝜖⋆(𝑥1, 𝑥2)− �̃�(𝑥1, 𝑥2, 𝛾, 𝛿)

⃒⃒
> 𝛾

)︀
> 1− 𝛿.

We remark that this impossibility result is very strong: it shows that no estimator exists, even
if (1) we are not very demanding about the precision and the confidence (namely, even if 𝛾 is
large and 𝛿 is small), (2) even if the number of samples is unbounded and (3) the estimator is
adaptive (namely, it can decide on the fly whether to stop or to continue sampling, based on
previous samples).

By contrast, if we confine ourselves to the continuous case and assume that the densities
𝑝𝑍|𝑋(·|𝑥1) and 𝑝𝑍|𝑋(·|𝑥2) over𝒵 = [𝑎, 𝑏] are 𝐶-Lipschitz with 𝐶 < 2

(𝑏−𝑎)2
, then a probabilistic

histogram-based estimator exists, whose pseudocode is provided in Algorithm 1. For the desired

precision 𝛾, the estimator first divides 𝒵 into 𝑚 sub-intervals, each of width 𝑤
def
= 𝑏−𝑎

𝑚 , where

𝑚
def
=

⌈︂
6𝐶(𝑏− 𝑎)

𝜏𝛾

⌉︂
and 𝜏

def
=

1

𝑏− 𝑎
− 𝐶(𝑏− 𝑎)

2
. (4)

In particular, we set 𝑧0 = 𝑎 and 𝑧𝑗+1 = 𝑧𝑗 + 𝑤; one can readily check that 𝑧𝑚 = 𝑏. Then, the
estimator chooses 𝑛 (the number of samples) such that

2𝑚(1− 𝑤𝜏)𝑛 + 4𝑓(𝑛,𝑤𝜏, 𝛾/12) ≤ 1− 𝛿, (5)

where 𝑓 is defined as

𝑓(𝑥, 𝑦, 𝑧)
def
=

exp
(︁
−𝑥𝑦(𝑒𝑧−1)2

1+𝑒𝑧

)︁
+ exp

(︁
−𝑥𝑦(1−𝑒−𝑧)2

2

)︁
1− (1− 𝑦)𝑥

(6)

(note that 𝑓 is exponentially decreasing in 𝑥 and 𝑦). The estimator then invokes the sampler
𝑛 times both for 𝑥1 and for 𝑥2 (lines 4-7), counts the number of samples that appear in each
sub-interval (lines 8-14), and considers these numbers as the approximations of 𝑝𝑍|𝑋(·|𝑥1) and
𝑝𝑍|𝑋(·|𝑥2) in that sub-interval; so, it computes their ratio and returns the highest value. The
fact that this algorithm has provable guarantees is the second main result of our paper.



Algorithm 1 Histogram-based estimator for 𝜖⋆(𝑥1, 𝑥2)
1: Input: 𝒵(= [𝑎, 𝑏]), 𝛾, 𝛿, 𝐶
2: Output: �̃�(𝑥1, 𝑥2,𝒵, 𝛾, 𝛿, 𝐶) ◁ differing from 𝜖⋆(𝑥1, 𝑥2) for ≤ 𝛾 with prob. ≥ 𝛿
3: Compute 𝑚 and 𝑛 as in eq. (4) and eq. (5), resp.
4: for 1 ≤ 𝑖 ≤ 𝑛 do
5: 𝑠1[𝑖]← 𝒮(𝑥1)
6: 𝑠2[𝑖]← 𝒮(𝑥2)
7: end for
8: for 1 ≤ 𝑗 ≤ 𝑚 do
9: 𝑁𝑗 ←

∑︀
𝑖 1 (𝑧𝑗 ≤ 𝑠1[𝑖] < 𝑧𝑗+1)

10: 𝑀𝑗 ←
∑︀

𝑖 1 (𝑧𝑗 ≤ 𝑠2[𝑖] < 𝑧𝑗+1)
11: if 𝑁𝑗 = 0 or 𝑀𝑗 = 0 then
12: fail
13: end if
14: end for
15: return max𝑗 log

(︁
𝑁𝑗

𝑀𝑗

)︁

Theorem2 (Correctness). Let densities 𝑝𝑍|𝑋(·|𝑥1) and 𝑝𝑍|𝑋(·|𝑥2) over𝒵 = [𝑎, 𝑏] be𝐶-Lipschitz,
with 𝐶 < 2

(𝑏−𝑎)2
. For every 𝛾 > 0 (precision) and 0 < 𝛿 < 1 (confidence):

Pr
(︀

Algorithm 1 succeeds and |𝜖⋆(𝑥1, 𝑥2)− �̃�(𝑥1, 𝑥2,𝒵, 𝛾, 𝛿, 𝐶)| ≤ 𝛾
)︀
≥ 𝛿.

Once we have this estimator for a single pair of values, we then aim at estimating the overall
𝜖, i.e.

𝜖⋆(𝑝𝑍|𝑋)
def
= sup

𝑥1,𝑥2∈𝒳
𝜖⋆(𝑥1, 𝑥2). (7)

To this aim, we assume 𝒳 to be a closed interval as well, divide it in 𝑘 buckets (for a proper 𝑘),
take the mid-points of all the buckets, run the previous estimator for all pairs of mid-points,
and return the maximum. The details are given in Algorithm 2. If we also assume 𝑝𝑍|𝑋(𝑧|·) to
be 𝐷-Lipschitz, for some 𝐷 and for all 𝑧 ∈ 𝒵 (so any doubly differentiable function satisfies
this requirement), this new algorithm is able to estimate the overall 𝜖 with provable guarantees
as established in the following result, where we say that the algorithm succeeds if at least one
invocation of Algorithm 1 succeeds. This is our third main result.

Theorem 3. Let 𝒵 = [𝑎, 𝑏], 𝒳 = [𝑐, 𝑑], and 𝑝𝑍|𝑋 be such that, for every 𝑥 ∈ 𝒳 , 𝑝𝑍|𝑋(·|𝑥) is
𝐶-Lipschitz, for 𝐶 < 2/(𝑏− 𝑎)2, and that, for every 𝑧 ∈ 𝒵 , 𝑝𝑍|𝑋(𝑧|·) is 𝐷-Lipschitz, for some
𝐷. For every 𝛾 > 0 (precision) and 0 < 𝛿 < 1 (confidence), we have that

Pr
(︀

Algorithm 2 succeeds and |𝜖⋆(𝑝𝑍|𝑋)− �̃�(𝒵,𝒳 , 𝛾, 𝛿, 𝐶,𝐷)| ≤ 𝛾
)︀
≥ 𝛿.

We note that the Lipschitzness assumptions required by our theorems are met by the two
most widely used DP mechanisms, namely Laplacian and Gaussian [15, 16]. Then, we validate



Algorithm 2 Estimator for 𝜖⋆(𝑝𝑍|𝑋)

1: Input: 𝒵(= [𝑎, 𝑏]),𝒳 (= [𝑐, 𝑑]), 𝛾, 𝛿, 𝐶,𝐷
2: Output: �̃�(𝒵,𝒳 , 𝛾, 𝛿, 𝐶,𝐷)

3: Let 𝑘 ≥ 3𝐷(𝑑−𝑐)
𝜏𝛾 , where 𝜏 is defined in eq. (4)

4: Divide 𝒳 in 𝑘 buckets, with 𝑥𝑖 the mid-point of bucket 𝑖
5: for all {𝑥𝑖, 𝑥𝑗} ⊆ {1, . . . , 𝑘} do
6: �̃�𝑖𝑗 ← �̃�(𝑥𝑖, 𝑥𝑗 ,𝒵, 𝛾3 ,

√
𝛿, 𝐶), by invoking Alg.1

7: end for
8: return max𝑖𝑗 �̃�𝑖𝑗

all our results for the Laplace distribution. We first consider the number of samples the estimator
does; this parameter depends on 𝛾, 𝛿, 𝐶 and |𝒵|, and we discover that the strongest dependency
is on 𝛾. Then, we compare the estimated 𝜖 against the real one and we discover that the
number of samples required to have satisfactory results in practice is significantly lower than
the theoretical one (i.e., that of (5)). Furthermore, we study the proportion of estimated 𝜖 that
are close to 𝜖 within 𝛾 across 100 executions for different values of the number of samples. We
discover that the lowest number of samples that yields a proportion greater than 𝛿 is around
400 times lower than the theoretical one in this case.

Finally, our last bunch of results is on LRDP (see eq. (2)), for which we mimic the steps
outlined above, with similar outcomes. In this setting, the impossibility result is more surprising:
indeed, if there is some output where the probabilities differ significantly but the probability of
this output is low, then one would think that this would not violate the RDP guarantee since
Rényi divergence averages over all outputs, instead of taking the pointwise maximum. However,
we formally prove that this is not the case. Then, we adapt the two estimators by requiring
more complex bounds both on the number of experiments and on the number of intervals
required. In particular, for the estimator �̃�𝛼(𝑥1, 𝑥2,𝒵, 𝛾, 𝛿, 𝐶) (see Algorithm 1), the number 𝑚
of sub-intervals and the number 𝑛 of samples are such that

𝐶𝐾(𝑏− 𝑎)(2𝛼− 1)

2𝑚𝜏0𝐾 ′(𝛼− 1)
≤ 𝛾

2
1− 2𝑚(1− 𝑤𝜏0)

𝑛 − 2𝑚𝑓(𝑛,𝑤𝜏0, 𝛾
′) ≥ 𝛿

where 𝑓 is defined in eq. (6) and 𝜏0
def
= 1

𝑏−𝑎−
𝐶(𝑏−𝑎)

2 , 𝜏1
def
= 1

𝑏−𝑎+
𝐶(𝑏−𝑎)

2 , 𝐾 def
=

2𝜏𝛼1
𝜏𝛼−1
0

, 𝐾 ′ def
=

𝜏𝛼0
𝜏𝛼−1
1

,

and 𝛾′ = min
(︁

𝛾𝐾′(𝛼−1)
2𝐾(2𝛼−1) ,

log 2
2𝛼−1

)︁
. The returned value is 1

𝛼−1 log
∑︀

𝑗
1
𝑛

(︁
𝑁𝑗

𝑀𝑗

)︁𝛼
𝑀𝑗 . For the esti-

mator �̃�𝛼(𝒵,𝒳 , 𝛾, 𝛿, 𝐶,𝐷) (see Algorithm 2), the new number of buckets is 𝑘 ≥ 3(2𝛼−1)𝐾𝐷(𝑑−𝑐)
2(𝛼−1)𝐾′𝜏0𝛾

and, of course, we invoke the estimator �̃�𝛼(𝑥1, 𝑥2,𝒵, 𝛾, 𝛿, 𝐶) modified as described above for
LRDP.

We run experiments similar to the ones for LDP that confirm the quality of our approach
also for LRDP. In particular, for this second setting the gap between the number of samples
sufficient for achieving the guarantees of the theorem and the theoretical one is even more
dramatic than for LDP: here the practical one is around 105 times smaller.

For all details, we refer the reader to [17].
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