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Abstract
This paper presents the description of our speech synthesis system for the Audio Deep Synthesis Detection Challenge (ADD
2023). We utilizes a FastPitch-based model augmented with a BERT-based prosody feature and an utterance embedding
predictor to model the generated speech. We incorporate these components to improve one-to-many generation modeling.
Evaluation results indicate a significant advantage over some false speech detection models, earning a second-place ranking
in the competition overall.
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1. Introduction
The proliferation of deepfake technology has under-
scored the importance of reliable methods to detect and
prevent the malicious use of deepfakes. The Audio Deep-
fake Detection Challenge (ADD 2023) is a deep learning
competition that aims to promote research in the de-
tection and analysis of deepfake audio[1]. The primary
objective of the competition is to accelerate the develop-
ment of more robust and reliable deepfake detection tools
for audio and encourage the exploration of cutting-edge
techniques in this field.

The competition comprises four tracks, each with a
unique focus and set of challenges. In this paper, we
describe the speech synthesis system we employed in the
fake audio generation task (Track 1.1). This Track cen-
ters on "Adversarial Attacks," which involves generating
speech to deceive a model with false detection capabili-
ties. Participants are required to train their models using
the provided training dataset and evaluate their perfor-
mance on a test dataset. The success rate of generating
speech that can fool the detection model determines the
results of this task.

The primary challenge of Track 1.1 is the develop-
ment of effective adversarial attacks that can generate
speech that is difficult for detection models to distinguish
from genuine audio. Deepfake audio generated using ad-
vanced machine learning techniques can be challenging
to detect, even for humans. The competition offers an
opportunity for participants to benchmark and compare
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Figure 1: Acoustic Model

the performance of their models against those of other
participants in a fair and transparent setting.

Speech synthesis technology, based on deep learning,
has the capability to generate counterfeit speech that
mimics a target speaker’s voice from text and the target
speaker’s voice data[2, 3, 4]. Currently, speech synthesis
is primarily achieved through two methods: multi-stage
synthesis and end-to-end synthesis. Multi-stage synthe-
sis can be categorized further into autoregressive models
based on Tacotron[5] and non-autoregressive models
based on FastSpeech[6]. For our competition system, we
have employed the latter, FastPitch-based model as the
acoustic model framework[7].

This paper is organized as follows: Section 2 outlines
our data preprocessing process, Section 3 describes our
model structure, Section 4 provides detail of our compe-
tition results, and finally, the conclusion is presented.
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Figure 2: The Architecture of Encoder

2. Data preprocessing
In accordance with the requirements of Track 1.1 (gener-
ation task), the AISHELL-3[8] dataset has been utilized.
This extensive Chinese speech corpus comprises over
88 thousand utterances, which amount to 85 hours of
speech.

2.1. Encoder Input
Rhythm modeling in speech synthesis plays a crucial role
in enhancing the naturalness and fluency of generated
speech, particularly with respect to rhythm pauses in
unpunctuated long sentences. To address this, we have
introduced a pre-trained embedding modeling method
based on BERT 1. However, the length of the BERT em-
bedding is commensurate with the number of words,
while the base model of FastSpeech-based aligns longer
rhythm pauses as silence in the speech-text alignment
data. This misaligns the input BERT embedding sequence
with the phoneme sequence length, necessitating some
adjustments to the data preprocessing process. To this
end, we utilized the MFA[9] tool to force-align speech
text. Silences below 250 ms were marked as rhythm
pauses and merged with the previous phoneme, while
pauses ranging from 250 to 500 ms were marked as regu-
lar pauses, and those exceeding 500 ms were marked as

1https://github.com/Executedone/Chinese-FastSpeech2

long pauses to align punctuation with these two types
of pauses. Redundant punctuation was tagged with no
duration. To account for the silence mark that may
exist at the beginning of a sentence, we introduced a
placeholder in the text and phoneme sequence to ensure
length matching. Additionally, since a Chinese charac-
ter in the MFA phoneme set may correspond to an in-
definite length of phoneme representation, we recorded
Word corresponding Phoneme Num to ensure that the
length after upsampling the BERT embedding matches
the phoneme sequence exactly. Although AISHELL3 is a
purely Chinese dataset, we adapted the language depen-
dent phoneme(LDP) in MFA to IPA and added a phoneme
length regulator to the preprocessing process to accom-
modate potential cross-lingual TTS scenarios[7].

Speech synthesis is a clear one-to-many generation
task, wherein differences in prosodic pauses may occur
in addition to variations in speech rate, pitch, and energy,
even for the same text and speaker. To better capture
the variances of generated speech, we have incorporated
an utterance predictor modeling method, in addition to
BERT embedding. However, unlike the delightful TTS
model[10], we have utilized the intermediate vector rep-
resentation of a pre-trained emotion classification model2

as the supervisory target for our utterance predictor. The
positions of these Encoder inputs in our model are illus-
trated in Figures 1 and 2.

2https://github.com/audeering/w2v2-how-to
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2.2. Pitch and Energy
In the first step, we extracted energy features from the
linear spectrogram. Subsequently, we utilized the aligned
LDP duration to average the frame-level energy sequence
and generate the LDP-level energy sequence. The result-
ing sequence was quantized to aid in subsequent process-
ing. In the second step, we utilized the WORLD[11] tool
to extract the pitch sequence for each speaker’s speech.
Following this, we normalized the sequence using the
speaker’s average and variance. Subsequently, we ob-
tained the LDP-level normalized real-valued pitch se-
quence based on the aligned LDP duration.

3. Acoustic Modeling
Figure 1 showes the overall architecture of the proposed
TTS model. Our system can be divided into four compo-
nents and they are introduced in detail in the following
sections.

3.1. Encoder
To overcome any potential pronunciation interference
that may arise due to direct superposition of the BERT
embedding input and the aggregated phoneme input, we
employ a Conformer block to fuse the information. This
is accomplished by leveraging a linear layer to adjust the
dimension of the BERT embedding input. Analogously,
the utterance embedding is similarly inserted and pro-
cessed through a Conformer block. Ultimately, we obtain
the Encoder output by passing the input through two
Conformer blocks. The Conformer block utilized in our
approach is akin to the one described in the delightful
TTS. However, we have made certain modifications, such
as removing the Depthwise convolution and substitut-
ing the self-attention with Relative Position Multi-head
Attention[12] to circumvent any potential instability in
pronunciation that may arise towards the close of long
sentences due to absolute position information. The de-
tail of the Encoder inputs in the model are illustrated in
Figure ??.

3.2. Explicit modelings
During the training stage, we adopt the approach pro-
posed in [13] and employ a 1-D convolution layer to
transform the pitch value into pitch embedding. Simi-
larly, we use a lookup table to convert quantized energy
values into energy embedding. During inference stage,
we leverage variance adaptors, including the duration
predictor, in line with the methodology described in [14].
To ensure that the training of these variance adaptors
does not negatively impact the training of the encoder,
we implement a stop-gradient operation on the input of
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Figure 3: Vocoder Module

all variance adaptors. This is illustrated in the middle part
of Figure 1. These measures are imperative to ensure that
the encoder is immune to any adverse influence exerted
by the variance adaptors, as has been demonstrated in
[15, 16, 17].

3.3. Decoder
The Decoder architecture, akin to the Encoder, is com-
prised of four Conformer blocks. In this approach, we
fuse the Encoder output, pitch embedding, and energy
embedding, and pass the resultant through two Con-
former blocks. Subsequently, we incorporate the speaker
embedding obtained from the lookup table into the ar-
chitecture. Finally, we pass this through two Conformer
blocks and a linear layer to obtain the mel spectrum.

3.4. Vocoder and Post-processing
The log-mel spectrogram generated by the proposed ap-
proach are converted into speech signals using a univer-
sal and fine-tuned HiFi-GAN vocoder[18]. This vocoder
has been pre-trained on the AISHELL3 dataset. In our
experimental setup, we make a post-processing for the
input log-mel spectrum before feeding it to the vocoder.
This trick has been demonstrated to alleviate some high-
frequency noise. The processing steps are outlined below:

𝑚𝑒𝑙 = (𝑚𝑒𝑙 + 𝑠− 1) * 𝑠, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑠 = 1.2 (1)

while 𝑚𝑒𝑙 denotes the value of log-mel spectrogram
and 𝑠 is a factor used to adjust 𝑚𝑒𝑙. This adjustment
increases the difference between values around 0, which
may explain why high-frequency noise will be reduced.
However, if the coefficient is multiplied by excessively
large value, it can cause an increase in low-frequency
energy, which changes the speech quality and reduces
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Figure 4: Result of Track 1.1 Generation task (FG-G) in ADD Challenge;(a)Round 1 deception success rate (b)Round 2 deception
success rate (c)Round 2 baseline model deception success rate (d) Weighted deception success rate

perceived quality. We used default values based on our
experience. Additionally, we added an offset due to the
logarithmic distribution not being symmetric about the
zero-point.

4. Results

4.1. Experimental setup
In our experimental setup, we downsample the AISHELL-
3 audio from 44.1 kHz to 24 kHz for the TTS model and
to 16 kHz for all evaluations. We represent the audio
features as a sequence of 80-dimensional log-mel spec-
trogram frames. These frames are computed from 40 ms
windows that are shifted by 10 ms. The hidden size of
the Conformer blocks in our proposed model is set to
128. Each feed-forward layer of the Conformer blocks
comprises of two 1-D convolution layers, each with a ker-
nel size of 3 and 1024 intermediate channels. Regarding
the acoustic model, we utilize an l1 loss function for the
mel spectrum, while the mean-squared error (MSE) loss
function is applied to other components. The duration
and energy predictor compute the loss in the logarithmic

domain.

4.2. Metrics
Track 1.1 of the ADD challenge is an adversarial game
that requires participants to generate adversarial sam-
ples and enhance the anti-attack capabilities of the audio
deepfake detection model from two opposing sides. The
generation and detection tasks of Track 1 are evaluated
separately. For the generation task (Track 1.1), the decep-
tion success rate (DSR) is chosen as the metric. The DSR
metric quantifies the extent to which the audio deepfake
detection model is deceived by the generated utterances
and is defined as follows:

𝐷𝑆𝑅 =
𝑊

𝐴 ·𝑁 (2)

where W denotes the count of wrong detection sam-
ples by all the detection models on the condition of
achieving their respective equal error rate (EER) per-
formance, A is the number of evaluation samples, and N
represents the number of detection models. In the first
round, the DSR against the Track 1.2 submissions consti-
tutes the overall generation performance metric. In the
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second round, weighted consideration is also given to the
DSR against the detection model that we release. Specifi-
cally, in the second round, the generation performance
metric is defined as:

𝑊𝐷𝑆𝑅 = 𝛼𝐷𝑆𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒+ 𝛽𝐷𝑆𝑅 (3)

where 𝛼=0.4 and 𝛽=0.6, and they denote the respective
weights for EER and DSR in our consideration.

4.3. Evaluations
In Track 1.1, participants are tasked with generating at-
tack samples while adhering to the specified text and
speaker identities. Our team id is A02. As depicted in
Figures 4(a) and 4(b), our deception success rate (DSR)
ranks 7th and 8th in the first and second rounds, respec-
tively. Notwithstanding, in Figure 4(c), which displays
the DSR scores of the baseline models provided by the
organizers in the second round, we secured the first po-
sition and outperformed the second-ranking system by a
significant margin. Ultimately, our speech synthesis sys-
tem obtained the second position in the overall scoring
shown in Figure 4(d).

5. Conclusion
This paper presents our current speech synthesis system,
which has yielded promising results in the adversarial
process with the fake audio detection model. Specifically,
our system has demonstrated significant advantages over
baseline models, thereby validating its efficacy in the task
of fake audio generation.
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