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Abstract
Audio deepfake detection (ADD) is a prominent problem in artificial intelligence. With diverse spoofing attacks emerging
continually, generalization of ADD algorithms in the face of unknown domains and robustness in complex environments
become key points for this field. However, when only limited and low-quality learning data is available, as in the case of ADD
2023 Challenge Track 1.2, it is an open issue to achieve good generalization and robustness. In this paper, we propose a Shuffle
Mix Aggregation and Separation Domain Generalization (SM-ASDG) method which enables single-domain generalization.
Specifically, we first design a pre-processing module to improve the robustness of the method against low-quality data. Next,
we split the single domain into multiple data domains via the proposed data shuffle module. Finally, a well-generalized feature
space is constructed through the designed feature extractor and MixStyle domain classifier. The proposed SM-ASDG obtain
the weighted equal error rate (WEER) of 23.17% on ADD Challenge Track 1.2, which achieves the Top-5 rank in the challenge.
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1. Introduction
Audio deepfake detection (ADD) is an important yet chal-
lenging task, which has raised several concerns due to its
high societal impact [1, 2, 3]. This task aims to accurately
classify real and fake audio, where one of the main chal-
lenges is to identify accurately in the face of unknown
spoofing methods or low quality audio.

In recent years, several works [4, 5] achieve promising
results on intra-domain datasets. However, the perfor-
mance of these methods degrades significantly when
extending to cross-domain scenarios [6]. This is mainly
due to the fact that these methods do not take sufficient
account of the unknown domain and the damaged audio
quality. Consequently, the issues of generalization and
robustness become two key concerns for ADD.

To address generalization and robustness issues, some
methods [2, 3] adopt data augmentation schemes to im-
prove model performance by learning diverse audio fea-
tures over a larger amount of data. Specifically, Piotr et al.
[7] utilize a combination of three deepfake and spoofing
datasets to increase the training stability. However, larger
data sets also lead to higher computational costs. More-
over, as forgery techniques are constantly updated, there
are always unknown attack methods outside the domain.
Therefore, it is not sufficient to rely on data augmenta-
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tion and further strategies for improving generalizability
are required.

To this end, several methods propose the domain in-
variant representation learning (DIRL) strategy [8, 9, 10]
in order to overcome the issue of generalizing to invisible
target domains with limited source data. The DIRL strat-
egy aims to reduce representation differences between
multiple different source domains to ensure domain in-
variance. However, for situations where multiple source
domains are not available, as in the case of the ADD 2023
Audio fake game (FG) Challenge [11] where there is only
one acceptable training set, the DIRL strategy cannot
be applied effectively. In addition, the performance of
the ADD method degrades significantly when a large
amount of noise, reverberation and other disturbances
are mixed into the source domain data. Therefore, how
to construct ADD models with good generalizability and
robustness based on single-domain, low-quality data is an
open problem that remains to be explored.

In this paper, we introduce a novel Shuffle Mix
Aggregation and Separation Domain Generalization (SM-
ASDG) method for single-domain ADD. The key idea of
our approach is assuming that in an ideal classification
feature space, the data distribution of real audio can be
clustered in a single set, while the data distribution of
fake audio should be more scattered. This is because
different types of attacks impact more on spoofing audio,
although different recording devices or channel also have
some impact on real audio. Based on this idea, we pro-
pose a modified DIRL strategy that allows the application
to a single source domain. To be specific, the proposed
SM-ASDG contains a total of four modules, namely pre-
processing, data shuffle, feature extractor and MixStyle
domain classifier. First, the pre-processing module con-
tains three carefully designed pre-processing strategies
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Figure 1: The whole pipeline of our proposed SM-ASDG method. Our proposed framework consists of four parts: the
pre-processing module, the data shuffle module, the feature extractor and the MixStyle domain classifier.

to eliminate the effects of noise and other factors on
the model and to improve the robustness of the algo-
rithm. Second, the data shuffle module is introduced to
approximate a multi-source domain situation by splitting
the single domain. Then, we construct a feature extrac-
tor based on W2V2-XLS-R [12]. Finally, we propose a
MixStyle domain classifier by mixing feature statistics of
training samples across source domains. By this means,
the model can diversify the style information at the bot-
tom layers of the networks. Our proposed SM-ASDG
method achieve outstanding results in the ADD 2023 Au-
dio FG Challenge, demonstrating the effectiveness of our
method. In summary, our contributions are as follows:

• We propose SM-ASDG, a high efficient audio
deepfake detection method which achieves the
top-5 rank in the ADD 2023 challenge track 1.2.

• A modified DIRL strategy is proposed for the situ-
ation where only a single source domain is avail-
able. The proposed domain generalization strat-
egy can improve performance by 9% to 11% on
different models.

• The effects of a series of pre-processing strate-
gies are explored. In addition to common pre-
processing methods such as noise addition and
reverberation, we also explore the effect of silent
frames in forgery identification performance.

2. Proposed Method

2.1. Preprocessing
To address the effect of codec variabilities, we first adopt
a low-pass filter [13]. This is because that in complex
speech scenarios, focusing on the low-frequency speech
components can often make the model more effective.
Specifically, we utilize a Chebyshev Type I lowpass filter
to preprocess the original 16 kHz signal into a low-pass
filtered signal. We set the order of the filter to 8, with
maximum ripple and critical frequencies set to 0.05 and
4 kHz, respectively.

We further adjust the amplitude of signals due to the
observation that the amplitude of genuine speech is dif-
ferent from that of spoofed speech. In the training set,
we observe that the genuine speech has higher ampli-
tude than spoofed speech. This may cause the model
tends to classify high-amplitude speech as genuine and
low-amplitude speech as spoofed during inference. Thus,
we compute the average amplitude of genuine and fake
speech and increase the amplitude of each fake speech in
the training set to match the average amplitude of gen-
uine speech, thereby equalizing their average amplitudes
in training process.

To enhance the robustness of the model in a noisy situ-
ation, we introduce a noise enhancement strategy in the
pre-processing. We add reverberation and noise obtained
from MUSAN [14] and RIR [15] to the original speech,
which is a high effective strategy in speech recognition
and speaker verification.

2.2. Data Shuffle
To improve the generalization ability of the model, we
divide the training data into three different domains ran-
domly. Randomly shuffling the domains enriches the
style information of each domain, allowing the domain
adversarial loss to aggregate all real speech from various
styles. In the experimental section, we further verify that
randomly shuffling the domains is more effective than
direct grouping the validation set into one domain and
the training set into two domains.

2.3. Feature Extractor
We first extract features via a W2V2 based front-end,
which is trained using a contrastive method with a
masked feature encoder. The front-end feature extractor
has a feature extractor with seven CNN layers to process
speech signals of different lengths, followed by a Trans-
former network with 24 layers, 16 attention heads, and
an embedding size of 1024 to obtain context represen-
tations. Consequently, the last hidden states from the
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Table 1
The architecture of Mix Style Domain Classifier

Module ConvFilter Output

Input - (1,201,1024)

Conv2d/MFM/Pool 5 × 5 / 1 × 1 (32,100,512)

MixStyle - (32,100,512)

Conv2d/MFM/BN 1 × 1 / 1 × 1 (32,100,512)

Conv2d/MFM/Pool/BN 3 × 3 / 1 × 1 (48,50,256)

Conv2d/MFM/BN 1 × 1 / 1 × 1 (48,50,256)

Conv2d/MFM/Pool 3 × 3 / 1 × 1 (64,25,128)

Conv2d/MFM/BN 1 × 1 / 1 × 1 (64,25,128)

Conv2d/MFM/BN 3 × 3 / 1 × 1 (32,25,128)

Conv2d/MFM/BN 1 × 1 / 1 × 1 (32,25,128)

Conv2d/MFM/Pool 3 × 3 / 1 × 1 (32,12,64)

Reshape/Transformer - (64,384)

Flatten/FC - (16,512)

transformer provide reliable contextual information of
genuine speech and different from the fake speech.

2.4. MixStyle Domain Classifier
After get the W2V2 feature from feature extractor, we
propose a MixStyle Domain Classifier to generate the
feature space by optimizing three different loss function.
The detailed architecture is described in Table 1, which
is modified on the traditional LCNN [16]. In the architec-
ture, MFM means the Max-Feature-Map layer to select
the critical channels for ADD task of the feature and
BN means Batch Normalization. After MixStyle domain
classifier, we get the feature space of the shape (16,512).

Through the mixing of training instance styles, we
can implicitly synthesize novel domains, which results
in increased domain diversity of the source domains and
ultimately improves the generalizability of the trained
model. Given an input batch 𝑥, we first random choose a
reference batch �̃� from 𝑥. Then, Mixstyle computes the
mixed feature statistics as follow:

𝛾mix = 𝜆𝜎(𝑥) + (1− 𝜆)𝜎(�̃�),

𝛽𝑚𝑖𝑥 = 𝜆𝜇(𝑥) + (1− 𝜆)𝜇(�̃�),
(1)

where 𝜆 is the weight sample from the Beta distribution
Beta(𝛼, 𝛼). We set 𝛼 to 0.1 in our paper. Then, the style
normalized feature 𝑥 is computed by the mixed feature
statistics,

MixStyle(𝑥) = 𝛾𝑚𝑖𝑥
𝑥− 𝜇(𝑥)

𝜎(𝑥)
+ 𝛽𝑚𝑖𝑥. (2)

2.5. Loss Function
BCE loss. First, our main task is binary classification,
which is to determine whether the features obtained are
genuine or spoofed. We use several FC layer to down
sample the feature from 512 to 1 and compute Binary
Cross Entropy (BCE) to classify. It is worth mention that
the feature normalization and weight normalization is
used for this process, which will balance the numerical
values of features and weights from speech signals across
different domains, facilitating the convergence of the
model.
Triplet loss. Our proposed ASDG strategy is that the
real speech from different domain should be aggregated
and the spoof one will be separate. The triplet mining
method is suitable for the goal, which is defined as follow:

𝐿𝑡𝑟𝑖 =

𝑁∑︁
𝑖

‖𝑓 (𝑥𝑎
𝑖 )− 𝑓 (𝑥𝑟

𝑖 )‖22 −⃦⃦⃦
𝑓 (𝑥𝑎

𝑖 )− 𝑓
(︁
𝑥𝑓
𝑖

)︁⃦⃦⃦2

2
+ 𝛼,

(3)

where 𝑥𝑎
𝑖 , 𝑥𝑟

𝑖 , 𝑥𝑓
𝑖 represent the anchor sample, real sam-

ple, and fake sample. By minimizing 𝐿𝑡𝑟𝑖, the euclidean
distance between the anchor and the real sample may
get closer while the anchor may get further away from
the fake sample. We set 𝛼 to 0.1 which is a margin value.
Adversarial loss. In the feature space, the distribution
of real speech should be aggregated regardless of domain.
Thus, we design a single-side domain discriminator with
Gradient Reverse Layer (GRL) [17]. Let 𝑝(𝑋𝑟) denotes
the distributions of real feature and 𝑌𝐷 denotes the do-
main of 𝑋𝑟 . The adversarial loss function of the domain
discriminator is defined as follows:

min
𝐷

max
𝐺

𝐿𝑎𝑑𝑎 (𝐺,𝐷) =

− 𝐸𝑥∼𝑃 (𝑋𝑟),𝑦∼𝑌𝐷

3∑︁
𝑑=1

𝑝 (𝑦 = 𝑑)𝑙𝑜𝑔 (𝐷 (𝐺(𝑥)) ,

(4)
where 𝑑 denotes the domain label. The feature genera-
tor is trained to learn a robustness feature to spoof the
domain discriminator in order to maximize 𝐿𝑎𝑑𝑎. In the
meantime, the discriminator is trained to identify the
feature domain by minimizing. To achieve this goal, we
use the Gradient Reversal Layer (GRL), which reverses
the gradient during back propagation by multiplying neg-
ative dynamic coefficients. This makes the discriminator
unable to identify the domain of the real feature, which
leads to the aggregation of genuine speech in the feature
space without being divided by domains.
Total loss. The total loss 𝐿𝑎𝑙𝑙 for our system is defined
as follow:

𝐿𝑎𝑙𝑙 = 𝐿𝐵𝐶𝐸 + 𝜆1𝐿𝑎𝑑𝑎 + 𝜆2𝐿𝑡𝑟𝑖, (5)
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where 𝜆1 and 𝜆2 set to 0.1 to balance the value of three
different losses. By utilizing the 𝐿𝑎𝑙𝑙 loss, we can con-
struct an optimal classification feature space for ADD
task, where genuine speech signals from diverse domains
are clustered together while fake speech signals are sep-
arated from them.

3. Experiments

3.1. Dataset and metrics
All experiments are conducted on the ADD 2023 Audio
FG-D datasets. There are 27,084 audio clips in the train-
ing set and 28,324 audio clips in the development set. We
divide the dataset as 90%/10% for training and validation,
respectively. The audio amplitude in the training set is in-
consistent and contains noise, and there are repeated tail
segments without valid information. The audio situation
in the test set is much more complex, including noise,
reverberation, background music, and a large number of
silent clips. Therefore, how to improve the generalization
and robustness of methods is the core challenge.

Weighted equal error rate (WEER) is used as the eval-
uation metric, which is defined as

𝑊𝐸𝐸𝑅 = 𝛼𝐸𝐸𝑅𝑅1 + 𝛽𝐸𝐸𝑅𝑅2, (6)

where 𝛼 = 0.4 and 𝛽 = 0.6 represent the weights for
equal error rate (EER) obtained in round 1 (𝐸𝐸𝑅𝑅1) and
round 2 (𝐸𝐸𝑅𝑅2) of ADD Challenge Track 1.2, respec-
tively.

3.2. Implementation details
All training audio files are trimmed or padded to 4s. For
baseline AASIST, the input is the raw waveform of about
4s (64000 samples). For baseline Resnet18, we use 80-
dimensional LFCCs with a shape of (80,404) as front-end.
During training, the parameters of W2V2 front-end are
frozen. After front-end, we can get the last hidden states
vector with shape of (201, 1024) as input of back-end. For
training strategy, the Adam optimizer is adopted with
𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−9 and weight decay is
10−4. The learning rate is initialized as 10−5 and halved
every 5 epochs.

3.3. Ablation studies on architecture
Impact of backbone models and features. We first in-
vestigate the impact of the backbone models and features.
As shown in Table 2, we compare with three baseline
backbone models: AASIST [5], ResNet18 [18] and LCNN
[19]. Furthermore, we compare W2V2 based feature and
manual feature connected with the same LCNN back-end.
It can be observed that the W2V2 based feature shows

Table 2
Performance comparison with the state-of-the-art ADD mod-
els on the ADD-FG dataset.

Method Feature 𝐸𝐸𝑅𝑅1 𝐸𝐸𝑅𝑅2

AASIST [5] Raw Audio 49.59 49.21
ResNet18 [18] LFCC 50.16 49.15

LCNN [19] Mel 60.05 58.67
LCNN [19] W2V2 38.57 35.24
SM-ASDG W2V2 24.06 22.59

Table 3
Investigation on the MixStyle module.

Model Feature 𝐸𝐸𝑅𝑅1 𝐸𝐸𝑅𝑅2

SM-ASDG w/o MIX W2V2 26.97 27.09
SM-ASDG W2V2 24.06 22.59

better performance than manual feature. This is due to
that the W2V2 is trained on a large amount of real utter-
ances from different source domains which can enhance
the differential capability in complex scenarios. More-
over, results show that our SM-ASDG model outperforms
all backbone models.
Impact of MixStyle. We further investigate the impact
of the MixStyle units. As shown in Table 3, “SM-ASDG
w/o MIX” denotes removing the MixStyle layer from
our full model. It can be observed that the performance
of the model decreases by 2.91% in round1 and 4.50%
in round2 with the removal of MixStyle. This demon-
strates the effectiveness of our MixStyle domain classifier
module. This is due to the fact that the bottom layer of
CNN corresponds to style information and the top layer
corresponds to label information. MixStyle enables the
diversification of the bottom style information of LCNN.
That is, our model can generate diverse new styles of real
speech and fake speech to enhance the ability of domain
generalization.
Visualization for feature To analyze the effect of the
MixStyle and our proposed ASDG backbone, we visu-
alize the distribution of different hidden features using
T-SNE [20]. As shown in Figure 2, we randomly select
360 samples for three source data domains. In each do-
main, we select 60 samples for real utterances and 60
for fake utterances. Figure 2 (a) and (b) demonstrate
that the hidden feature distributions become more dis-
tinct after applying MixStyle, indicating that MixStyle
facilitates the diversification of the bottom style infor-
mation in LCNN. The feature space depicted in Figure 2
(c) aligns with our conception of an ideal feature space
by ASDG, where genuine speech signals are clustered
together, while synthetic ones are segregated.
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Figure 2: Feature visualization for three different layer. Sub-
figure (a), (b) and (c) exhibit the visualization result of the
layer before applying mixstyle, after mixstyle and final fea-
ture space. Different colors indicate features from differ-
ent domains, which we shuffle to create three new domains.
Different shapes represent different category information:
point=fake, cross=real.

3.4. Ablation studies on pre-processing
To improve the robustness and generalization of the
model, we explore a series of pre-processing strategies,
including data shuffle, noise augmentation, low-pass fil-
tering, amplitude adjustment, and region of interest (ROI)
detection.
Does data shuffle help? We first explore the efficacy
of data shuffle strategy. As shown in Table 4, we design
two domain segmentation schemes, namely data shuf-
fle and direct division. The direct division refers to the
directly using the test set and validation set as two sep-
arate source domains. The two domain segmentation
schemes are used in four variant, namely ASDG model
and the ASDG model with different data augmentation
strategies. “Rawboost” denotes the raw data boosting
and augmentation strategy [3]. We utilize the best per-
formance strategy in ASVspoof2021LA, which combines
linear and non-linear convolutive noise with impulsive,
signal-dependent noise. “RM” means adding noise and
reverberation from RIRs [15] and MUSAN [14] datasets
to the audio of training set in a Kaldi [21] like manner. In
each pair of comparison data (the red row in Table 4 and
its upper row), we can observe that the shuffle strategy
can effectively improve the forensic performance. Data
shuffle can reduce the order and pattern in the dataset,
thus improving the generalization of the model.
Does noise augmentation help? Since the test data
contain a large amount of noise and background music
that are not available in the source domain dataset, we
incorporate a noise augmentation strategy in the prepro-
cessing stage, that is, introducing noise during training to
improve the robustness of the model. It can be seen from
Table 5 (the fourth row from top) that when the noise aug-
mentation strategy is removed, the model performance
decreases by 9.02% in round1 and 9.43% in round2. In ad-
dition, the effectiveness of different noise augmentation
strategies can also be seen in Table 4 (as shown in red
rows), as the RM strategy can maximize the robustness

Table 4
Performance comparison with the same model in different
domain segmentation strategies. We propose several variants
to investigate the impact of shuffled data and directly divided
data.

Domain segmentation strategy 𝐸𝐸𝑅𝑅1 𝐸𝐸𝑅𝑅2

ASDG (direct) 48.56 47.89
ASDG (shuffle) 37.07 38.67
ASDG+Rawboost (direct) 46.97 44.67
ASDG+Rawboost (shuffle) 34.54 33.27
ASDG+Rawboost+RM (direct) 42.70 41.82
ASDG+Rawboost+RM (shuffle) 32.27 31.44
ASDG+RM (direct) 37.55 38.67
ASDG+RM (shuffle) 28.05 27.96

Table 5
Performance comparison with different pre-processing strate-
gies. “MIX” is shorthand for MixStyle, “AMP” is shorthand for
amplitude adjustment, “LP” is shorthand for low-pass filter-
ing, “NA” is shorthand for noise augmentation and ‘ROI” is
shorthand for ROI detection.

Pre-processing strategy 𝐸𝐸𝑅𝑅1 𝐸𝐸𝑅𝑅2

SM-ASDG w/o MIX 26.97 27.09
SM-ASDG w/o [MIX+AMP] 27.53 27.80
SM-ASDG w/o [MIX+AMP+LP] 28.05 29.24
SM-ASDG w/o [MIX+AMP+LP+NA] 37.07 38.67
SM-ASDG with ROI 26.25 26.45
SM-ASDG 24.06 22.59

of the model. So we ultimately choose RM strategy as
the noise augmentation strategy.
Does low-pass filter help? To against complex speech
scenarios, we add low-pass filters to focus on the core
frequency of the speech. The result shown in Table 5
(the third row from top) indicates that low-pass filters
can help improve the forgery detection performance.
Does amplitude adjustment help? The amplitude level
of the data samples varies greatly in the training and test-
ing datasets. However, we find in our experiments that
the amplitude of the audio is learned by the model and
affects the classification results. Therefore, we adjust
the amplitudes to the same interval range uniformly dur-
ing both testing and training. As shown in Table 5 (the
second row from top), audio normalization has obvious
effects on the performance.
Does ROI detection help? Due to the large number of
silent segments that do not contain speech content in the
test data, a straightforward idea to improve performance
is to detect only speech segments, that is, to detect ROIs.
However, as shown in Table 5 (the red row), when ROI
detection is added, the overall performance of the model
decreases by 2.19% in round1 and 3.86% in round2. This
is mainly due to that silent segments also contain artifact
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information for distinguishing real and fake audio [22].
Therefore, simply eliminating silent segments does not
improve the generalization and robustness of the model.

4. Conclusion
In this paper, we propose SM-ASDG, a novel shuffle
mix aggregation and separation domain generalization
method for single domain ADD. The proposed method
achieves a WEER of 23.17% in ADD 2023 track 1.2 final
ranking, which is one of the top-5 performing methods.
The outstanding robustness and generalization of the pro-
posed SM-ASDG model is due to our carefully designed
preprocessing module, data shuffle and MixStyle domain
classification module. In future works, we plan to em-
bed more high-level semantic features of audio, such as
sentiment features, into the model to further improve
generalization.
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