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Abstract
In tackling the complexities of vehicle trajectory planning at intricate traffic intersections, where prioritizing
safety and efficiency is crucial, this research introduces an innovative model dubbed Adaptive Hierarchical Traffic
Intersection Reinforcement Learning (AHTRL). This model is underpinned by a hierarchical deep deterministic
policy gradient algorithm, which is structured into two principal layers: the upper layer is tasked with policy
decision-making, while the lower layer focuses on the generation of precise waypoints. Steering and throttle
adjustments are meticulously managed by a foundational PID controller, ensuring pinpoint accuracy in vehicular
control. The model is further enhanced by integrating recurrent neural networks for the analysis of historical
vehicle trajectory data, alongside a spatio-temporal variational autoencoder (ST-VAE) for the prediction of pedes-
trian future movements, thereby markedly improving interactive safety measures. Rigorous testing conducted
on the Carla simulation platform has demonstrated the model’s exceptional performance, outstripping existing
methodologies across several critical metrics. Relative to the optimal baseline model, AHTRL has achieved a
commendable 11.9% boost in total average rewards, a notable 13% increase in average transit velocity, and a
significant 36% decrease in collision occurrences, affirming its dominance in ensuring safety and enhancing
efficiency within the realm of complex intersection trajectory planning. These outcomes not only underscore the
model’s superior safety and efficiency but also its remarkable adaptability and practicality in navigating complex
traffic scenarios. By melding advanced hierarchical reinforcement learning frameworks with cutting-edge deep
learning technologies, this study substantially elevates the caliber of vehicle trajectory planning at convoluted
traffic intersections. It paves the way for novel, efficacious solutions for fostering safe and efficient interactions
within intelligent transportation systems. This contribution is not only academically innovative but also sets a
robust foundation for real-world applications.
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1. Introduction

In modern society, with the acceleration of urbanization and the continuous increase in the number of
vehicles, traffic intersections have become one of the most complex and challenging parts of the urban
transportation system. Vehicle trajectory planning at traffic intersections is of great practical significance
for improving traffic efficiency, reducing traffic congestion, and lowering the rate of accidents. With
the development of autonomous driving technology, how to achieve safe and efficient vehicle trajectory
planning in complex traffic intersection environments has become a key issue in the field of autonomous
driving research.

In traditional vehicle trajectory planning research, the vast majority of methods depend on accurate
environmental models and predefined rules [1]. These approaches can exhibit good performance in
dealing with simple or predefined scenarios. However, the complexity of traffic intersections mainly
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arises from the dynamic changes of participants, the unpredictability of pedestrian behavior, and the
variability of traffic signals. These elements render traditional trajectory planning methods insufficiently
adaptable to the complexity and uncertainty inherent in traffic intersection scenarios.

In recent years, learning-based methods, especially reinforcement learning, have become effective
means for solving the problem of vehicle motion trajectory planning at traffic intersections. Reinforce-
ment learning, by interacting with the environment, learns the mapping from observed states to actions
taken, demonstrating strong potential [2]. However, despite this potential, early end-to-end reinforce-
ment learning approaches still face several challenges when dealing with complex traffic intersection
scenarios. These challenges include the opacity of the decision-making process, difficulty in generating
stable behaviors, and low sample efficiency, among others [3, 4]. These challenges highlight areas
that require further exploration and optimization when applying reinforcement learning in complex
environments.

Addressing the challenges mentioned above, this chapter introduces a hierarchical reinforcement
learning framework, AHTRL, specifically designed for the traffic intersection scenario. The core idea
of the AHTRL method is to decompose the decision-making problem in complex traffic intersections
into multiple sub-problems and solve them hierarchically, thereby enhancing the overall efficiency and
stability of decision-making. Moreover, this study pays special attention to the safe interaction between
vehicles and pedestrians. To accurately predict pedestrians’ future trajectories and plan the vehicle’s
driving path based on this, the chapter utilizes a Spatio-Temporal Variational Encoder (ST-VAE) to
process the historical trajectory data of pedestrians.

In terms of technical implementation, this study employs a hierarchical approach known as Hier-
archical Deep Deterministic Policy Gradient (HDDPG). The model is structured into three layers (as
shown in Figure 1), with the top layer, the selection layer, responsible for making vehicular action
decisions, such as stopping, turning left, turning right, and decelerating. These decisions are based on
an analysis and evaluation of the current state of the vehicle, environmental conditions, and objectives.
For instance, when approaching an intersection, the selection layer decides whether to continue straight,
decelerate, or stop, considering traffic rules, the condition of the intersection, and vehicle objectives.
This layer’s decisions provide guidance for the vehicle, ensuring that its actions comply with safety and
efficiency requirements. Guided by high-level decisions, the trajectory planning layer then generates
specific waypoint trajectories that detail how the vehicle should move from its current position to the
destination, considering the vehicle’s dynamic limitations, road conditions, and obstacle avoidance
needs to ensure the trajectory is both safe and practical. In this way, the trajectory planning layer
bridges high-level policy decisions and low-level execution controls, providing a clear and feasible
path. Finally, the Proportional-Integral-Derivative (PID) controller operates at the trajectory tracking
layer, ensuring the vehicle accurately follows the planned waypoint trajectory by dynamically adjusting
the vehicle’s state (such as speed and direction) to minimize deviations. The PID controller adjusts its
three parameters (proportional, integral, derivative) in response to any deviations from the trajectory,
ensuring the vehicle closely follows the predetermined path. Moreover, by analyzing pedestrians’
historical trajectories and predicting their future movements, this study can plan vehicle trajectories
more accurately, ensuring safe and effective interaction between vehicles and pedestrians at traffic
intersections.

In summary, this paper effectively addresses the vehicle trajectory planning problem in the complex
scenario of traffic intersections by proposing a hierarchical reinforcement learning framework specif-
ically designed for this context. Simulation results demonstrate that, compared to existing methods,
the framework proposed in this chapter performs better in adapting to the complexity and uncertainty
of traffic intersections, successfully reducing merging time and collision rates under the premise of
ensuring safety, and generating smoother trajectories. These achievements not only showcase the
application value of hierarchical reinforcement learning in the field of autonomous driving but also
offer new perspectives and methodologies for future trajectory planning research in complex traffic
environments. The main contributions are as follows:

• For the complex scenario of traffic intersections, this paper introduces a hierarchical decision
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Figure 1: The three-layer hierarchical architecture (the top layer being the selection layer, the bottom layer the
trajectory planning layer, and finally, the planned trajectories are precisely followed through a Proportional-
Integral-Derivative (PID) controller).

model, AHTRL, which effectively solves the vehicle motion trajectory planning problem. This
approach decomposes the complex decision-making problem into multiple sub-problems and
solves them layer by layer, significantly improving the efficiency and stability of the decision-
making process.

• This study incorporates a Spatio-Temporal Variational Autoencoder (ST-VAE) for processing
pedestrian historical trajectory data, with the objective of precisely forecasting future pedestrian
movements. Leveraging these predictions, the AHTRL model meticulously crafts vehicle driving
paths to ensure a safe interaction between vehicles and pedestrians. This approach not only
enhances the precision of trajectory predictions but also furnishes vehicles with robust decision-
making support for autonomous navigation in intricate environments.

• This research employs a hierarchical approach using Deep Deterministic Policy Gradient (DDPG)
methodology, coupled with a Proportional-Integral-Derivative (PID) controller, to realize a com-
prehensive process from high-level policy decision-making through to detailed trajectory planning
and precise trajectory tracking. This technical implementation not only elevates the accuracy of
trajectory planning but also ensures the smoothness and safety of the path.

• Testing on the Carla simulation platform has demonstrated that the AHTRL model surpasses
existing methodologies in both efficiency and safety. Compared to the optimal baseline model,
it achieved an 11.9% increase in total average rewards, a 13% improvement in average transit
speed, and a 36% reduction in collision rates. These results validate the superior performance and
practical value of the AHTRL model in complex intersection trajectory planning.

2. Related Work

This section provides a systematic overview of the existing research in the vehicle trajectory planning
domain, with a particular focus on traditional methods, the application of reinforcement learning, and the
progress in hierarchical reinforcement learning frameworks. These discussions lay the theoretical and
technical groundwork for this paper, aiming to offer robust background support for further exploration
and resolution of vehicle trajectory planning challenges.

2.1. Non-reinforcement Learning Methods

In the field of autonomous driving, trajectory planning is one of the key technologies ensuring safe
and efficient vehicle operation. In recent years, non-reinforcement learning (NRL) methods have
made significant progress in addressing trajectory planning problems. These methods can be broadly
categorized into four groups: classical planning methods, heuristic-based methods, supervised learning
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approaches, and statistical methods. Classical planning methods, such as Rapidly-exploring Random
Trees (RRTs) [5] and its variant RRT* [6], are widely used sampling-based planning techniques in
trajectory planning. They construct a tree-like structure through random sampling points to effectively
explore the environmental space, searching for paths from start to end. RRTs are suitable for complex
environments with obstacles but may not guarantee the optimal solution. RRT* improves the path’s
optimization level and efficiency by refining the path selection process. Heuristic-based methods,
including Time-To-Collision (TTC [7]) and slot-based approaches [8], rely on predefined rules and
heuristic strategies for trajectory planning. TTC [7] assesses safety by estimating vehicle arrival and
collision times, while slot-based methods [8] check the safety of the target lane or intersection. These
methods are effective in specific contexts but have limited generalization ability in unknown or variable
environments. Supervised learning approaches learn trajectory planning strategies by analyzing expert
drivers’ driving data, including deep imitation learning [9, 10, 11], which learns driving strategies in
urban scenarios through offline learning and enhances driving safety with safety control modules.
While these methods can mimic human driver behavior, they require large amounts of high-quality
driving data and may face challenges in unseen scenarios. Statistical methods [12] predict vehicle
behaviors and decision-making strategies by analyzing historical data, such as using change point-based
approaches for predicting and decision-making in autonomous driving vehicles. Bayesian change point
detection estimates the target vehicle’s strategy and simulates interactions between vehicles based
on these predictions. These methods can provide probabilistic forecasts of future behaviors but may
require complex calculations and extensive historical data.

In summary, non-reinforcement learning methods for trajectory planning each have their advantages
and limitations. Classical planning methods and heuristic-based approaches are effective in specific
scenarios but may lack flexibility and generalization capability. Supervised learning and statistical
methods can handle more complex scenarios but rely heavily on large amounts of data and computational
resources. In contrast, reinforcement learning methods offer a more dynamic and adaptive trajectory
planning solution through learning from interactions with the environment. Nonetheless, in-depth
research into non-reinforcement learning methods remains crucial for understanding and improving
the trajectory planning of autonomous vehicles.

2.2. Reinforcement Learning Methods

Although non-reinforcement learning methods can directly learn from human driving behaviors, their
reliance on large amounts of manually annotated data and the uncertainty brought about by differences
in decision-making among drivers limit their application in complex tasks. To reduce the dependency on
labeled data, researchers have turned to reinforcement learning (RL) for autonomous decision-making
and planning. The advent of Deep Reinforcement Learning (DRL), which combines deep learning
techniques, has shown immense potential in handling complex decision-making and planning problems,
especially achieving breakthrough progress in areas like intelligent gaming, natural language processing,
and autonomous driving. DRL is capable of exploring a wide range of possibilities, including hazardous
scenarios, and has the potential to achieve performance beyond human capabilities. The study by Mnih
et al. [13] marked a significant breakthrough in combining deep learning with reinforcement learning
by using an end-to-end Q-Learning framework to learn control signals directly from screen captures,
employing a deep learning approach based on Q-learning for the first time. Subsequently, Wolf et al.
[14] introduced the Q-learning method to the field of intelligent vehicles, defining various driving
actions in the Gazebo simulator and making action decisions based on image information to enhance
the processing of high-dimensional sensory inputs. Kendall et al. [15] successfully applied the Deep
Deterministic Policy Gradient (DDPG) algorithm in actual intelligent vehicles, using monocular images
as the sole input to teach the agent lane-keeping strategies, demonstrating performance comparable
to human drivers in a 250-meter road test. To improve the efficiency of exploration in continuous
spaces, Liang et al. [16] combined imitation learning with DDPG, introducing an adjustable gating
mechanism to selectively activate different control signals for central signal control of the model.
Addressing the limitations of learning efficiency in RL methods, Tian et al. [17] designed a new strategy
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that integrates human prior knowledge into reinforcement learning. Huang et al. [18] proposed a
human-guided reinforcement learning method, enhancing the learning efficiency and performance in
complex scenarios through an innovative priority experience replay mechanism.

Reinforcement learning offers an effective approach for vehicle trajectory planning, but to fully
leverage this technology’s potential, challenges such as low sample efficiency and handling complex
tasks must be overcome. Future research directions include exploring more efficient learning algorithms
and integrating advanced perception and decision-making mechanisms to achieve effective trajectory
planning in even more complex environments.

2.3. Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) simplifies the learning process by dividing the overall
problem into a hierarchical structure of multiple subtasks. Each subtask is assigned specific objectives
and strategies, and these subtasks are organized hierarchically, with higher-level subtasks providing
guidance and context to lower-level ones. This layered approach allows agents to focus on narrower
problem scopes, reducing the complexity of the learning task and making the problem more solvable.

Chen et al. [19] proposed a dual-layer architecture for lane-changing tasks, where the upper layer
network decides whether to perform a lane change, and the lower layer network learns the specific
strategy for executing the chosen action. Building on this, Shi et al. [20] and Li et al. [21] further
developed a two-stage hierarchical reinforcement learning method. Shi et al. [20] employed a pure
tracking strategy to follow trajectory points, while Li et al. [21] enhanced the performance of the lower-
level controller by integrating vehicle position, speed, and heading information. These methods offer
robust solutions for building efficient and safe autonomous driving systems. Lu et al. [22] introduced a
hierarchical reinforcement learning method for autonomous decision-making and motion planning in
complex dynamic traffic scenarios. Duan et al. [23] decomposed the navigation task into three modules,
where the main policy network, trained to select appropriate driving tasks, significantly improved
the model’s versatility and efficiency. Building on the work of Duan et al. [23], the introduction of
Cola-HRL [24] aimed to further enhance decision quality in complex scenarios. These studies highlight
the immense potential of Hierarchical Reinforcement Learning (HRL) in simplifying complex decision-
making and motion planning tasks, paving new pathways and perspectives for the development of
autonomous driving technology.

Hierarchical Reinforcement Learning (HRL) has garnered attention for its significant advantages in
simplifying complex tasks and improving learning efficiency. However, it faces considerable challenges
in ensuring pedestrian safety, a critical area. Particularly in unpredictable traffic intersection scenarios,
HRL shows certain limitations in dealing with dynamic environments involving pedestrian interactions.
The model’s insufficient predictive ability often struggles to accurately capture pedestrian movement
trajectories and intentions, limiting autonomous vehicles’ capacity for safe and efficient passage in
complex traffic situations. Moreover, the generalization ability of HRL strategies is also challenged.
Faced with new traffic scenes or previously unseen pedestrian behaviors, even well-trained models
may falter, struggling to respond appropriately, which compounds the difficulty of ensuring pedestrian
safety. This limitation in generalization, stemming from HRL’s inherent hierarchical structure, restricts
its adaptability in unknown environments. Thus, despite HRL’s notable advantages in handling complex
tasks, ensuring pedestrian safety in critical scenarios like traffic intersections remains fraught with
multiple challenges. Future developments should focus on enhancing the model’s predictive accuracy
regarding environmental changes and strengthening strategy generalization capabilities, aiming to
ensure pedestrian safety without compromising efficiency and fluidity in complex traffic environments.
This requires not only deepening technical research but also continuously exploring new ideas and
methods to overcome existing limitations, pushing autonomous driving technology towards higher
levels of safety and intelligence.

100



Zhenwei Xu et al. ICCBR’24 Workshop Proceedings

3. Method

3.1. Architecture Overview

Figure 2 depicts a Hierarchical Reinforcement Learning framework tailored for vehicle motion planning
at traffic intersections, named AHTRL. The AHTRL model is divided into three levels, each performing
different trajectory decision-making and planning tasks. Both the high-level selector and the low-level
planner utilize the Actor-Critic structure of the Deep Deterministic Policy Gradient (DDPG). The
high-level selector undertakes key decision-making tasks, such as stopping, turning, and decelerating,
based on a comprehensive analysis of the current situation of vehicles and pedestrians as well as
the surrounding environment. The lower-level trajectory planning layer generates precise waypoint
trajectories according to decisions made by the top level, taking into account the vehicle’s dynamic
characteristics, current traffic conditions, and obstacle avoidance needs, ensuring the safety and practi-
cality of the trajectory. The trajectory tracking layer ensures that the vehicle can accurately follow the
planned waypoints through a PID controller. Additionally, the framework integrates a Spatio-Temporal
Variational Autoencoder (ST-VAE) model, specifically for predicting pedestrian future trajectories,
which is crucial for ensuring safe interactions between vehicles and pedestrians at traffic intersections.

Figure 2: AHTRL model overall architecture (The framework consists of three layers: a decision selector, a
trajectory planner, and a trajectory tracker. Both the selector and the planner are based on the Actor-Critic
architecture, making and executing decisions based on the vehicle’s historical trajectory (𝐻𝑡), the predicted
future trajectory of pedestrians (𝑃𝑡), and environmental information (𝑆𝑡).)

3.2. Spatio-Temporal Variational Autoencoder

The ST-VAE (Spatio-Temporal Variational Autoencoder) model is dedicated to predicting the future
movement trajectories of entities within a scene. In a complex setting containing N pedestrians, the
ST-VAE model can predict their future location distribution over a future time span H by analyzing each
pedestrian’s spatial position over a time span T. The ST-VAE model particularly focuses on extracting
features from pedestrians’ social behaviors and independently predicting each pedestrian’s future
trajectory. This model is adaptable to scenarios of varying scales, especially in urban scenes where
dynamic changes occur rapidly and the pedestrian’s surrounding environment frequently changes.
Even when a pedestrian’s local neighborhood is difficult to continuously monitor, the ST-VAE model
can accurately predict their future positions. This predictive capability not only aids in enhancing the
efficiency of autonomous driving and intelligent surveillance systems but also provides new perspectives
and tools for understanding and analyzing crowd dynamic behaviors.

Figure 3 showcases the overall architecture of the model proposed in this study, centrally featuring a
time-based variational autoencoder integrated with the Complex Gated Recurrent Unit (CGRU) structure
designed in previous research [25], for sequence prediction relying on the CGRU state variables in an
autoregressive model. Diverging from traditional methods that directly predict time series data, this
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Figure 3: ST-VAE model structure (ST-VAE is used to capture pedestrian behavior patterns in both time and
space. At its core, ST-VAE employs a Variational Autoencoder (VAE), with a Graph Attention Network (GAT)
responsible for assessing the spatial influence between individuals. Meanwhile, a Convolutional Gated Recurrent
Unit (CGRU) focuses on improving the processing of temporal features. Finally, ST-VAE utilizes Final Position
Clustering (FPC) to enhance the diversity of trajectory predictions.)

model innovatively utilizes historical observational data as conditional variables. Moreover, the model
does not predict the future absolute positions 𝑥𝑇+1:𝑇+𝐻

𝑖 but rather the sequence of positional changes
𝑑𝑇+1:𝑇+𝐻
𝑖 , where 𝑑𝑡+1

𝑖 ≜ 𝑥𝑡+1
𝑖 − 𝑥𝑡𝑖. Through this approach, the target probability distribution of the

displacement sequence is precisely defined (as in Equation 1), providing a more nuanced and dynamic
perspective for pedestrian trajectory prediction.

𝑝(𝑑𝑇+1:𝑇+𝐻
𝑖 |𝑂1:𝑇

𝑖 ) =
𝐻∏︁
𝜏=1

𝑝(𝑑𝑇+𝜏
𝑖 |𝑑𝑇+1:𝑇+𝜏−1

𝑖 , 𝑂1:𝑇
𝑖 ). (1)

To effectively capture the complex interactions between pedestrians and other traffic participants
in crowded scenes, the ST-VAE model employs a Graph Attention Network (GAT). Traffic partici-
pants within the scene (such as pedestrians, traffic lights, vehicles, and crosswalks) are represented
as nodes in a graph, with edges between nodes indicating interactions between pedestrians and their
environment. GAT dynamically assigns importance weights to different nodes, thereby effectively
aggregating information from neighboring nodes. This enables the model to understand the nuanced
patterns of pedestrian interactions within social environments more intricately. This approach not only
considers the influence of other pedestrians but also takes into account the impact of the surrounding
environment on pedestrian behavior, addressing the limitations of traditional LSTM models in capturing
such complex social interactions. Recent studies have shown that in scenarios where the behaviors of
each traffic participant are interconnected with surrounding pedestrians and environmental factors,
GAT models provide a more comprehensive perspective for pedestrian trajectory prediction by mapping
these interactions onto a graph structure.

By employing a Graph Attention Network (GAT), we can acquire information on all pedestrians
from time step 1 to T. To synthesize the information of each pedestrian 𝑖 at every time point 𝑂1:𝑇

𝑖 , the
ST-VAE model utilizes a Long Short-Term Memory network (LSTM) to aggregate information across
time steps (as indicated in Equation 2).

𝑂1:𝑇
𝑖 = LSTM(�̂�1

𝑖 , �̂�
2
𝑖 , . . . , �̂�

𝑇
𝑖 ) (2)

Where𝑚𝑡
𝑖

ˆ represents the comprehensive hidden state of the 𝑖𝑡ℎ pedestrian at time 𝑡, which is obtained
after processing 𝑚𝑡

𝑖 (the state information of the 𝑖𝑡ℎ pedestrian at time step 𝑡) through two layers of
graph attention.

Another key feature of the ST-VAE model is its ability to generate stochastic predictions, enhancing
the model’s flexibility and the randomness of its forecasts. This is achieved by introducing latent
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variables during the sequence generation process, each of which updates its state via the CGRU network
to reflect the complexity of pedestrian movement states and environmental interactions (as indicated in
Equation 3).

𝑚𝑡
𝑖

ˆ = �⃗�
(︁
𝜓𝑧𝑑

(︀
𝑍𝑡
𝑖 , 𝑑

𝑡
𝑖

)︀
,𝑚𝑡

𝑖
ˆ
)︁

(3)

The training process of the ST-VAE model follows the standard VAE training objective of maximizing
the Evidence Lower Bound (ELBO), while also considering the potential accumulation of errors in
the final trajectory generated through displacement sequences. By employing the reparameterization
trick with Gaussian distributions and adjustments to the training loss, the model can compensate for
predictive errors from previous time steps, thereby enhancing the overall accuracy of the predictions
(as indicated in Equation 4).

E𝑖

[︃
1

𝐻

𝑇+𝐻∑︁
𝑡=𝑇+1

E
𝑑𝑡𝑖∼𝑝𝜉(·|𝑧𝑡𝑖 ,𝑚𝑡

𝑖
^ )

E
𝑧𝑡𝑖∼𝑞𝜑(·|𝑏𝑡𝑖,𝑚𝑡

𝑖
^ )

⎡⎣⃦⃦⃦⃦⃦𝑥𝑡𝑖 − 𝑥𝑇𝑖 −
𝑡∑︁

𝜏=𝑇+1

𝑑𝜏𝑖

⃦⃦⃦⃦
⃦
2
⎤⎦⎤⎦

+𝑞𝜑(𝑧
𝑡
𝑖 |𝑏𝑡𝑖,𝑚𝑡

𝑖
ˆ )− 𝑝𝜃(𝑧𝑡𝑖 |𝑚𝑡

𝑖
ˆ ). (4)

Where 𝑝𝜉 , 𝑞𝜑, and 𝑝𝜃 are parameterized through network parameters, forming Gaussian distributions.

3.3. AHTRL:Hierarchical Driving Model for Planning

3.3.1. Overview of AHTRL

In designing a hierarchical reinforcement learning model for trajectory planning, this paper utilizes two
independent network layers: a high-level selection network and a low-level planning network. This
layered approach allows for specific optimizations at different decision-making levels and facilitates
modular learning of complex tasks.

A. The high-level selection network
The high-level selection network is responsible for formulating long-term strategies and objectives,

functioning to generate sub-goals 𝑔𝑡 that guide the lower-level planning network. This network, by
observing the current environmental state 𝑠𝑡, generates a high-level action or sub-goal 𝑔𝑡 to indicate the
macro objective the vehicle aims to achieve. In the context of autonomous driving, these sub-goals could
be specific intersection behaviors such as "stop," "turn left," "turn right," or "decelerate." The selection
network’s responsibility for generating sub-goals 𝑔𝑡 can be represented by the following equation:

𝑔𝑡 = 𝜋𝑂(𝑠𝑡|𝜃𝑂) (5)

Where 𝜃𝑂 represents the parameters of the selection network’s policy, and 𝑠𝑡 is the current state.
The objective of the policy is to maximize the expected return, and the value function 𝑄𝑂 of the

selection network is represented as:

𝑄𝑂(𝑠𝑡, 𝑔) = E𝜋𝑂

[︃
𝑇∑︁

𝑘=𝑡

𝛾𝑘−𝑡𝑟𝑘|𝑠𝑡, 𝑔𝑡 = 𝑔

]︃
(6)

The policy parameters 𝜃𝑂 are updated through gradient ascent:

𝜃𝑂 ← 𝜃𝑂 + 𝛼∇𝜃𝑂𝑄𝑂(𝑠𝑡, 𝑔𝑡) (7)

And updated using the actor-critic method:

𝜋𝑃 ← 𝜋𝑃 + 𝛼𝑃∇𝜋𝑃𝑄𝑃 (𝑠𝑡, 𝑜𝑡, 𝜋𝑃 (𝑠𝑡, 𝑜𝑡)) (8)

𝑄𝑃 (𝑠𝑡, 𝑜, 𝑝)← 𝑄𝑃 (𝑠𝑡, 𝑜, 𝑝) + 𝛼𝑃 (𝑟𝑡 + 𝛾𝑄𝑃 (𝑠𝑡+1, 𝑜𝑡, 𝜋𝑃 (𝑠𝑡+1, 𝑜𝑡))−𝑄𝑃 (𝑠𝑡, 𝑜, 𝑝)) (9)
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B. A low-level planning network
The low-level planning network receives the sub-goal 𝑔𝑡 passed down from the selection network

and generates specific actions 𝑎𝑡 based on this. This layer’s network focuses on calculating short-term,
specific waypoint trajectories that adhere to the vehicle’s dynamic constraints, take into account road
conditions and obstacle avoidance requirements, to ensure the safety and practicality of the trajectory.
The planning network is responsible for outputting actions 𝑎𝑡 under the guidance of the given sub-goal
𝑔𝑡, which can be represented by the following equation:

𝑎𝑡 = 𝜋𝑃 (𝑠𝑡, 𝑔𝑡|𝜃𝑃 ) (10)

Where 𝜃𝑃 represents the parameters of the planning network’s policy.
The objective of the policy is to maximize the expected return, and the value function 𝑄𝑃 of the

planning network is represented as follows:

𝑄𝑃 (𝑠𝑡, 𝑔, 𝑎) = E𝜋𝑃 [𝑟𝑡 + 𝛾𝑄𝑃 (𝑠𝑡+1, 𝑔, 𝑎𝑡+1)|𝑠𝑡, 𝑔𝑡, 𝑎𝑡 = 𝑎] (11)

The policy parameters 𝜃𝑃 are updated through gradient ascent:

𝜃𝑃 ← 𝜃𝑃 + 𝛼∇𝜃𝑃𝑄𝑃 (𝑠𝑡, 𝑔𝑡, 𝑎𝑡) (12)

Here, 𝛾 is the discount factor, 𝛼 is the learning rate, and 𝑟𝑡 represents the immediate reward.
And updated using the actor-critic method:

𝜋𝑃 ← 𝜋𝑃 + 𝛼𝑃∇𝜋𝑃𝑄𝑃 (𝑠𝑡, 𝑜𝑡, 𝜋𝑃 (𝑠𝑡, 𝑜𝑡)) (13)

𝑄𝑃 (𝑠𝑡, 𝑜, 𝑝)← 𝑄𝑃 (𝑠𝑡, 𝑜, 𝑝) + 𝛼𝑃 (𝑟𝑡 + 𝛾𝑄𝑃 (𝑠𝑡+1, 𝑜𝑡, 𝜋𝑃 (𝑠𝑡+1, 𝑜𝑡))−𝑄𝑃 (𝑠𝑡, 𝑜, 𝑝)) (14)

3.3.2. The Neural Network

The network structures of the high-level selector and the low-level planner, as shown in Figure 4,
take 𝑆𝑡 (i.e., 2D LIDAR images and BEV semantic images processed through a 32×256 preprocessing
layer) as environmental inputs. The network architecture includes a self-attention mechanism, an
input layer (MLP), a Long Short-Term Memory network layer (LSTM), an output layer (MLP), and a
dense layer used for generating action behaviors. The self-attention layer aims to identify the most
critical parts within the fused features for the current task, thereby enhancing the precision of the
high-level selector and the low-level planner in the goal generation process. The input layer (MLP)
further processes the feature vectors, typically integrating multiple fully connected layers and nonlinear
activation functions to refine key features and construct a basis for decision-making. The LSTM layer,
essential for handling time-series data, is crucial for capturing time-dependent states and actions, such
as the vehicle’s historical movement trajectories. After processing through the LSTM layer, data flows to
the output layer (MLP), which maps features to the action space, laying the groundwork for generating
deterministic actions. Finally, the dense layer transforms output layer data into continuous action
values, directly guiding the vehicle’s movements in the environment.

3.4. Reward function

The design of the reward mechanism is based on several factors, including longitudinal speed, penalties
for collisions (in this chapter, collisions between vehicles and pedestrians are specifically identified
with 𝑃collision and given the maximum penalty), lane deviation, large steering angles, speeding, and
significant lateral acceleration. It is designed based on a similar environmental setup used by Chen et al.
[26] in 2019. The overall reward function is as follows:

𝑟 = 𝛼1𝑟P_collision + 𝛼2𝑟collision + 𝛼3𝑟longspeed + 𝛼4𝑟exceed + 𝛼5𝑟out + 𝛼6𝑟steer + 𝛼7𝑟latspeed + 𝛼8 (15)
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Figure 4: Selection Network And Planning Network Architecture

In the work of this chapter, the corresponding weights for each factor are designed as follows:
𝛼1 = 1000, 𝛼2 = 200, 𝛼3 = 1, 𝛼4 = 10, 𝛼5 = 1, 𝛼6 = 5, 𝛼7 = 0.2, 𝛼8 = −0.1.

4. Experiments

4.1. Experimental Environment Design

This paper utilized the CARLA simulator [27] in conjunction with the OpenAI Gym interface, based
on the setup by Chen et al. [26], to conduct an in-depth study on vehicle motion planning at traffic
intersections. Three maps with distinct traffic intersection characteristics (Town02, Town03, and
Town04) were selected to comprehensively evaluate the driving capabilities of vehicles in diverse urban
environments. These maps encompass a variety of traffic scenarios, ranging from simple T-intersections
to complex junctions involving five lanes. In each simulation map, to construct a dynamic and realistic
traffic environment, this study not only introduced 100 background traffic vehicles that can interact
with the reinforcement learning (RL) controlled agent vehicle but also added 100 pedestrian models
active at the intersections. These setups are aimed at enhancing the realism and complexity of the
simulation environment, providing a comprehensive and challenging test platform for evaluating the
proposed AHTRL model.

In the initial phase of the experiments, this paper conducted a random policy for 10,000 steps on
each map to initialize the experience replay buffer. Subsequently, 30,000 steps of training were carried
out, enabling the agent vehicle to effectively plan driving paths, avoid collisions, maintain lanes,
and appropriately interact with other vehicles and pedestrians in various intersection environments.
Moreover, to enhance the vehicle’s performance in pedestrian-dense traffic intersections, this study
added 100 pedestrian models at each intersection. On top of the original 30,000 steps of training, an
additional 10,000 steps of specialized training focused on vehicle-pedestrian interactions were conducted.

This paper particularly emphasizes the interactive planning between vehicles and pedestrians by
introducing pedestrian models with diverse behavior patterns. It designs algorithms that enable RL-
controlled vehicles to recognize pedestrians, predict their actions, and take appropriate measures to
avoid them when necessary, ensuring pedestrian safety. Through this series of experimental setups and
training, the approach not only improves the vehicle’s motion planning capabilities at intersections but
also significantly enhances its safety performance in pedestrian-dense environments.

Ultimately, this paper compared the proposed method with several baseline algorithms, validating its
effectiveness in complex traffic environments, particularly in ensuring the safe coexistence of vehicles
and pedestrians. This research not only showcases the application potential of hierarchical reinforcement
learning technology in the field of autonomous driving but also provides valuable insights and practical
guidance for the safe operation of autonomous driving systems in complex urban environments.

In the experiments conducted in this paper, the proposed AHTRL model (hereafter referred to as
Our_HRL) was compared with the original Deep Q-Network (hereafter referred to as DQN), H_DQN
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[3], the original Deep Deterministic Policy Gradient (hereafter referred to as DDPG), and atHRL [28].
This comparison aimed to demonstrate the performance of the method proposed in this paper among
different types of reinforcement learning approaches. Below is a brief overview of these comparative
methods and their significance:

1. DQN (Deep Q-Network): A cornerstone algorithm in deep reinforcement learning that combines
Q-learning with deep neural networks to handle high-dimensional state spaces. Comparing with
DQN allows for evaluating the effectiveness of hierarchical approaches against a foundational deep
learning-based method.

2. H_DQN [3]: An extension of the DQN that incorporates hierarchical structures to manage
complex decision-making processes by breaking down the problem into manageable sub-tasks. This
comparison highlights the advantages of different hierarchical approaches and their efficacy in complex
environments.

3. DDPG (Deep Deterministic Policy Gradient): A model-free, off-policy actor-critic algorithm
that can operate over continuous action spaces, making it highly relevant for real-world applications
like autonomous driving. Comparing with DDPG showcases the benefits of hierarchical modeling in
environments where precise control over actions is crucial.

4. atHRL [28]: A state-of-the-art hierarchical reinforcement learning approach that focuses on
learning abstract representations and temporal abstractions. This method serves as a benchmark
for advanced hierarchical models, allowing for an assessment of the proposed method’s novelty and
performance improvements.

By comparing Our_HRL with these methods, the paper aims to underscore the improvements in
learning efficiency, decision-making quality, and adaptability to complex scenarios brought about by
the proposed hierarchical reinforcement learning model, particularly in the context of autonomous
vehicle navigation and pedestrian safety.

4.2. Results and Discussion

Figure 5 displays the rewards obtained during the training process by different algorithms, where
the reward value comprehensively considers penalties for various factors including collisions with
pedestrians, other types of collisions, lane deviations, speeding, as well as large steering angles and
high lateral accelerations. Thus, the comparison of reward values effectively reflects the performance of
each method. The results indicate that after 30,000 steps of training, the strategy proposed in this study
achieved the highest reward among all four comparative methods. Figure 6 further demonstrates that
the method proposed by this study performs exceptionally well in pedestrian-dense traffic intersection
scenarios, obtaining the highest reward after 10,000 steps of training. Table 1 shows that the method
proposed by this study surpasses all other comparison methods in terms of average reward and average
speed. While the average reward reflects the overall performance of the agent, comparing average
speeds helps to verify the rationality of the vehicle driving strategy. Compared to the optimal baseline
model atHRL [28], the method proposed in this study increased the average reward by 11.9% and
improved the average speed by 13.0%, indicating that the strategy proposed in this study not only
ensures safety but also enhances driving efficiency.

Table 1
algorithm performance

Algorithm Average Reward Average Speed (m/s)
DQN 56 2.1
DDPG 141 2.7
H_DQN 183 3.7
atHRL 217 4.6
Our_HRL 243 5.2

The hierarchical reinforcement learning method proposed in this paper was compared with the
original DQN and DDPG algorithms. The results show that the use of a hierarchical planner significantly
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Figure 5: 30,000 routine training average reward

Figure 6: Intensive pedestrian scene 10,000-step training average reward

improved the performance of the reinforcement learning agent in specific urban driving scenarios.
Compared to the original DDPG, the average reward increased by 73%, and the average speed of vehicle
passage increased by 70.3%. This performance enhancement is not only reflected in a higher overall
average reward, indicating that the agent can effectively avoid collisions and ensure safe driving in the
simulated environment, but also in a faster average driving speed, demonstrating the agent’s enhanced
robustness in handling complex scenarios. The introduction of a high-level decision planner enhanced
the stability of motion control and reduced the risk of collisions. In contrast, learning low-level control
commands directly from observations could lead to unstable control and difficulties in learning strategies
for different tasks. Additionally, the method proposed in this paper performed better than H_DQN,
which has a similar trajectory planning structure. Although H_DQN is effective for simple decisions,
it is insufficient for more complex urban driving task combinations. Compared to the traditional
hierarchical DDPG model, atHRL, the average reward increased by 11.9%, and the average speed of
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vehicle passage increased by 13%. This indicates that by incorporating pedestrian trajectory prediction,
the method in this chapter more effectively managed interactions between pedestrians and vehicles
at traffic intersections. Furthermore, the introduction of a self-attention network into the actor-critic
model enabled the vehicle to focus on key environmental elements, thereby improving the overall
effectiveness of policy learning, leading to superior results in complex urban driving scenarios.

4.3. Safety Analysis

Safety analysis of vehicle trajectory planning is crucial in the development of autonomous driving
systems. By comprehensively assessing the system’s safety performance under various conditions, this
paper gains a deep understanding of the system’s behavior and promptly identifies potential safety
hazards. This provides essential guidance for system design, such as determining the appropriate
planning algorithms, route selection strategies, and parameter settings. Moreover, safety analysis
supports the optimization of planning strategies, aiding in the identification and resolution of existing
issues and shortcomings within the system. Furthermore, the results of the safety analysis offer targeted
recommendations and support for decision-making, thereby ensuring the safe operation of autonomous
driving systems in all circumstances. In summary, safety analysis of vehicle trajectory planning is
an indispensable part of the autonomous driving system development process, vital for ensuring the
system’s safety performance, guiding system design and optimization, and supporting decision-making.
To evaluate vehicle safety, this paper employs two key metrics: collision rate and success rate.

1. Collision Rate: The percentage of test events in which collisions occur.
2. Success Rate: The percentage of test events where the test vehicle successfully completes its

trajectory from start to end without any collisions.
The evaluation of the trained policy consists of 500 test episodes that cover the vehicle safely

navigating through various types of traffic intersections, including roundabouts, crossroads, T-junctions,
and intersections without traffic lights.

Table 2
Safety Performance Analysis

Algorithm Collision Rate % Success Rate %
DQN 3.4 96.6
DDPG 3.2 96.8
H_DQN 2.6 97.4
atHRL 2.2 97.8
Our_HRL 1.4 98.6

As shown in Table 2, across 500 test scenarios, the algorithm proposed in this paper demonstrated a
lower collision rate and a higher success rate. Compared to the best baseline model atHRL, the collision
rate decreased by 36.3%. The Our_HRL(AHTRL) algorithm exhibits significant advantages in vehicle
trajectory planning over traditional reinforcement learning algorithms. First, Our_HRL(AHTRL) can
handle continuous action spaces, producing smoother and more natural trajectories compared to DQN,
which enhances driving comfort and safety. Second, by incorporating a hierarchical structure and
recurrent neural networks, Our_HRL (AHTRL) achieves more flexible and precise decision-making and
more accurately predicts pedestrian behavior compared to DDPG, improving safety when navigating
through traffic intersections. Compared to hierarchical DQN (H_DQN) and hierarchical DDPG (atHRL),
Our_HRL (AHTRL) not only calculates continuous target waypoints but also adopts a mixed reward
mechanism and reward-driven exploration strategy, thereby improving learning efficiency and con-
vergence speed. In summary, the low collision rate and high success rate demonstrated by Our_HRL
(AHTRL) in navigating traffic intersections are attributed to its adaptability in continuous action spaces,
the stability of deterministic policy gradients, the efficiency of its hierarchical structure, the predictive
capability of recurrent neural networks, and the learning efficiency of its mixed reward mechanism.
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5. Conclusions and future works

This paper addresses the vehicle trajectory planning problem at complex traffic intersections by propos-
ing a hierarchical reinforcement learning-based model, AHTRL. By decomposing the decision-making
process, predicting pedestrian behavior, and integrating the pedestrian trajectory prediction model,
ST-VAE, the model effectively enhances vehicle trajectory planning performance in variable traffic
environments, significantly reducing collision rates and improving safety and efficiency. Experimental
results demonstrate the method’s exceptional performance across various traffic intersection environ-
ments, particularly in pedestrian-dense traffic intersection scenarios, where it significantly enhances
safety and reduces collision risks. These research achievements not only highlight the application
value of hierarchical reinforcement learning in autonomous driving technology but also provide new
perspectives and methods for future research on trajectory planning in complex traffic environments.

In future research, plans are in place to optimize and extend the AHTRL model proposed in this paper
from multiple dimensions. Firstly, efforts will be dedicated to the optimization and improvement of the
algorithm by exploring more efficient training strategies and novel reward mechanisms to enhance
the algorithm’s convergence speed and stability while fine-tuning the balance between safety and
efficiency. Secondly, considering the complexity of real-world traffic environments, research on multi-
agent collaboration will become a focus. This includes studying interaction strategies between vehicles
as well as between vehicles and pedestrians, thereby enhancing the coordination and efficiency of the
overall traffic system. Furthermore, transferring the model from simulation environments to real-world
applications and conducting tests with actual vehicles will be a critical step in verifying the model’s
practicality and robustness. At the same time, exploring the model’s cross-scenario generalization ability
aims to develop more versatile trajectory planning models adaptable to diverse traffic environments
and geographical locations. Finally, considering the social impact of autonomous driving technology,
future work will also address ethical and responsibility issues in artificial intelligence, ensuring that
technological development adheres to moral standards while safeguarding the rights of users and the
public. These research directions will not only drive technological progress in the field of autonomous
driving but also contribute to realizing a safer and more efficient autonomous driving future.
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