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Abstract
The Nuclear Medicine Scheduling (NMS) problem consists of assigning patients to a day, in which the
patient will undergo the medical check, the preparation, and the actual image detection process. The
schedule of the patients should consider the different requirements of the patients and the available
resources, e.g., varying time required for different diseases and radiopharmaceuticals used, number of
injection chairs, and tomographs available. In this paper we present a solution where modeling and solving
are done via Answer Set Programming. Experiments employing real data show that the solution provides
satisfying results in a short time.
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1. Introduction

Nuclear Medicine is a medical specialty that uses radiopharmaceuticals, a particular kind of drug
containing radioactive elements, to treat or diagnose diseases. According to data by the Italian
Ministry of Health, almost 2 millions nuclear medicine exams have been carried on during 2022
in Italy1. The process of treating patients with this technique is complex since it involves multiple
resources of the hospital and requires multiple steps of varying time. Moreover, often these drugs
contain radioactive elements characterized by short half-lives, meaning that they decay rapidly
after their preparation. Thus, the timing should be as precise as possible in order to obtain images
of good quality. Addressing this problem effectively is crucial due to the nature of the diagnosed
illnesses and treated through nuclear medicine, alongside the significant costs associated with
this kind of technique. An efficient, possibly optimal, solution can reduce the waiting time of the
patients and can thus increase the effective utilization of the resources, avoiding waste of time
and resources. Nevertheless, reducing the unnecessary time spent by the patients in the hospital
is vital for increasing the satisfaction of the patients.
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Thus, the Nuclear Medicine Scheduling (NMS) problem consists of assigning patients to
a day, in which the patient will undergo the medical check, the preparation, and the actual
image detection process. The schedule of the patients consider the different requirements of
the patients and the available resources, e.g., varying time required for different procedures and
radiopharmaceuticals used, number of injection chairs and tomographs available. We followed
the definition of the problem given by Medipass2, leading provider of technological innovation
across cancer care and diagnostic imaging in Italy, in collaboration with SurgiQ3, an Italian
company active in planning and scheduling solutions.

Complex combinatorial problems, possibly involving optimizations, such as the NMS problem,
are usually the target applications of AI languages for knowledge representation and reasoning,
such as Answer Set Programming (ASP). The success of ASP is due to different factors, including
a simple but rich syntax [1], which includes optimization statements as well as powerful database-
inspired constructs like aggregates, an intuitive semantics [2], the availability of efficient solvers
(see, e.g., [3, 4, 5, 6, 7]), and the fruitful combination with machine learning approaches (see,
e.g., [8, 9]). Moreover, ASP has been already successfully employed to solve other scheduling
applications (see, e.g., [10, 11, 12, 13, 14, 15]).

Subsequently, we propose a solution leveraging ASP, where we design an encoding that
encapsulates the problem specifications. This encoding is then processed using the state-of-
the-art system CLINGO [4] and executed on real data provided by Medipass. The results of an
experimental analysis conducted on such data demonstrate that our solution achieves satisfactory
quality outcomes, even in time-constrained scenarios.

The paper is structured as follows. Sections 2 and 3 present an informal description of the
problem and a precise, mathematical formulation, respectively. Then, after the needed background
on ASP in Section 4, Section 5 shows our ASP encoding, whose experimental evaluation is
presented in Section 6. The paper ends by discussing related works and conclusions in Section 7
and 8, respectively.

2. Problem Description

The NMS problem consists of assigning patients to a day and to a tomograph and/or injection
chair if required by the patient or the specific procedure. In our problem, for each day we consider
a set of 120 time slots (TS), each representing 5 minutes. Each patient needs an exam and
each exam is linked to a protocol defining the phases and the time required for each phase. We
considered 11 different protocols. Each protocol can encompass up to four phases, represented as
(p1) anamnesis, (p2) medical check, (p3) radiopharmaceuticals injection and bio-distribution
time, and (p4) image detection. Moreover, each phase can require a different amount of time
depending on the exam. Table 1 shows the total time needed by each protocol and the partial time
required by each phase, expressed in the number of time slots used.

Due to the high number of phases required by each patient and the variety of the considered
protocols, in many clinics the schedule of the patients is sub-optimal. A sub-optimal schedule is
problematic not only because of the high cost of the drugs and machines involved in the exams,
2https://ergeagroup.com/it/.
3https://surgiq.com/.
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Protocol Number #TS for p1 #TS for p2 #TS for p3 #TS for p4 #TS total
813 3 2 0 8 13
814 3 2 0 8 13
815 2 2 4 6 14
817 2 2 3 7 14
819 2 2 5 7 16
822 2 2 2 7 13
823 2 2 10 7 21
824 2 2 5 8 17
827 2 2 2 7 13
828 3 3 0 7 13
888 2 2 2 9 15

Table 1
Partial and total time required by each protocol in terms of number of time slots.

but is particularly detrimental for the patients since the order and the time required by each
phase, in particular the injection and the bio-distribution time, is fundamental for a proper image
detection.

Different clinics have different resource availability and may have different requirements in
defining a proper solution. Here we present the criteria followed in the clinic that provided us
with the real data of the patients and that we use to define the problem. We considered a clinic
with two rooms, each with one tomograph and three injection chairs. We started from a list of
patients, each requiring a specific protocol, to be assigned in a day. A proper solution must satisfy
the following conditions:

• a starting and an ending time should be assigned to every scheduled patient for each
required phase;

• there must be at most two patients concurrently in the medical check phase;
• the injection phase must be done in an injection chair or on a tomograph according to the

required protocol;
• each injection chair and tomograph can be used by just one patient at the same time;
• patients requiring an injection chair must be assigned to the tomograph of the same room;
• protocol identified by the id 815 cannot be assigned on the same day and tomograph for

more than one patient.

The solution should maximize the number of scheduled patients in the considered days and, to
increase the satisfaction of the patients and the effectiveness of the exams, the solution should
also try to minimize the unnecessary time spent in the clinic by the patients.

3. Formalization of the NMS problem

Let N be the set of reservation numbers, D be the set of days, TS denote the set of time slots, and
PR be the set collecting the protocol numbers referred to exams. Each protocol may comprise
a maximum of four phases, represented by the set P = {p1, p2, p3, p4}. Let R denote the set of



rooms and S = T ∪C∪{ε} be the set representing the available resources, given by the union of
the set T of tomographs, the set C of chairs and the element ε denoting that it is no required a
resource.

Moreover, let:

• λ : T ×PR → N be the function that returns the maximum number of exams that can
be executed on a tomograph of a specific protocol, for all the protocols that require a
limitation;

• ω : P×PR → N be the function that returns the number of time slots required for each
phase of a specific protocol;

• β : PR →{0,1} be the function that assigns the value 1 if the protocol requires both a chair
and a tomograph, 0 otherwise;

• α : S×R →{0,1} be the function that assigns the value 1 if there is an association between
the resource and the room, 0 otherwise. Furthermore, let A= α−1(1) be the set collecting
all the good associations between resource and room.

To associate a reservation number, a day, and a protocol, we now introduce the notion of
registration.

Definition 1. A registration ρ is a function of the form ρ : N ×D× PR → {0,1} such that
ρ(n,d,x) = 1 if there exists a reservation n on a day d for the protocol x, 0 otherwise. Let
R= ρ−1(1) = {(n,d,x) ∈ N ×D×PR | ρ(n,d,x) = 1} be the set collecting all the registrations.

Consequently, we define the notion of assignment to link together a registration with a specific
phase of the protocol under consideration and a time slot.

Definition 2. An assignment τ is a function of the form τ : R× P × TS → {0,1} such that
τ(n,d,x, p,y) = 1 if a phase p and an initial time slot y are assigned to a registration. Let
T = τ−1(1) = {(n,d,x, p,y) ∈ R×P× TS | τ((n,d,x), p,y) = 1} be the set collecting all the
assignments.

Before presenting the main problem of this paper, we define the concept of scheduling, which
connects an assignment with a resource and its allocation.

Definition 3. A scheduling σ is a function of the form σ : T×A→{0,1} that assigns the value
1 if there exists a reservation number n on day d for the protocol x, referred to the phase p on time
slot y, using the resource s in the room r. The set S= σ−1(1) = {t = (n,d,x, p,y,s,r) | σ(t) = 1}
collects all the tuples eligible as scheduling.

We can now define the Nuclear Medicine Scheduling (NMS) problem.

Definition 4 (NMS). The Nuclear Medicine Scheduling (NMS) problem is defined as the problem
of finding a set ψ of tuples t = (n,d,x, p,y,s,r) ∈ S that satisfies the following conditions:

(c1) ∀(y,s) ∈ TS×S |{(n,d,x, p,y′,s,r) ∈ ψ | p ̸= p1 ∧ y ∈ {y′, . . . ,y′+w(p,x)}}| ≤ 1;



(c2) ∀y ∈ TS |{(n,d,x, p,y′,s,r) ∈ ψ : p = p1 ∧ y ∈ {y′, . . .y′+w(p,x)}}| ≤ 2;
(c3) ∀x ∈ PR : β (x) = 1, it holds that t′ = (n,d,x, p′,y′,c,r′) and t′′ = (n,d,x, p′′,y′′, t,r′′)

belong to ψ iff r′ = r′′;
(c4) ∀t ∈ T |{x | (n,d,x, p,y,s,r) ∈ ψ}| ≤ λ (t,x);
(c5) t′ = (n,d,x, pi,y′,s′,r) and t′′ = (n,d,x, pi+1,y′′,s′′,r) belong to ψ iff y′′ ≥ y′+ω(pi,x)
(c6) ∀t = (n,d,x, p,y,s,r) ∈ ψ it holds that y+ω(p,x) ∈ T S
(c7) ∀t = (n,d,x, p,y,s,r) ∈ ψ

– if p = p1 it holds that s = ε ,
– if p = p2 or p = p3 and β (x) = 1 it holds that s = c, with c ∈C,
– if p = p2 or p = p3 and β (x) = 0 it holds that s = t, with t ∈ T ,
– if p = p4 it holds that s = t, with t ∈ T .

The specified conditions are necessary to enforce the following constraints: (c1) each resource
(chair or tomograph) can be used by at most one patient at a time; (c2) at most two patients at
a time are allowed during the anamnesis phase; (c3) patients requiring an injection chair must
be assigned to the tomograph of the same room; (c4) the number of protocols executed on a
single tomograph is limited; (c5) given two consecutive phases pi and pi+1 for a patient, the
initial time slot of pi+1 must be consistent with respect to pi, i.e. pi+1 must start after that pi has
terminated; (c6) each schedule must not exceed the available time slot; (c7) the resources must
be well distributed, i.e. the phase anamnesis does not include any resource, the phases 2 and 3
may require a chair or a tomograph depending on the protocol, and the last phase requires the
usage of a tomograph.

As previously explained, an optimal solution aims to maximize the number of scheduled
patients on the considered days while minimizing the idle time spent in the clinic by patients.
In order to define the notion of the optimal solution, we want to evaluate the idle time spent
by a patient. Accordingly, given (n,d,x, p1,y′,s′,r) and (n,d,x, p4,y′′,s′′,r) ∈ ψ let Htime(n) =
(y′′+ω(p4,x))− y′) be the time spent by the patient in the hospital deriving from the scheduling
and let Rtime(n) = ∑p∈P ω(p,x) be the minimum time required to execute the protocol.

Definition 5 (Dominating Solution). Let δψ = ∑n∈N |Htime(n)−Rtime(n)| be the sum of the
differences between the actual time required by a protocol and the time allocated by the solution
for that protocol for each patient n, and let Σψ = {(n,d,x, p,y,s,r)∈ ψ}. A solution ψ dominates
a solution ψ ′ if

• |Σψ ′ |< |Σψ |, or if
• |Σψ ′ |= |Σψ | ⇒ δψ < δψ ′ .

Finally, we define the notion of maximal scheduling solution.

Definition 6 (Maximal Scheduling Solution). A scheduling solution is maximal if any other
scheduling solution does not dominate it.



4. Background on ASP

Answer Set Programming (ASP) [2] is a programming paradigm developed in the field of non-
monotonic reasoning and logic programming. In this section, we overview the language of ASP.
More detailed descriptions and a more formal account of ASP, including the features of the
language employed in this paper, can be found in [2, 1]. Hereafter, we assume the reader is
familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings starting with
an uppercase letter, and constants are non-negative integers or strings starting with lowercase
letters. A term is either a variable or a constant. A standard atom is an expression p(t1, . . . , tn),
where p is a predicate of arity n and t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if
t1, . . . , tn are constants. A ground set is a set of pairs of the form ⟨consts : con j⟩, where consts
is a list of constants and con j is a conjunction of ground standard atoms. A symbolic set is
a set specified syntactically as {Terms1 : Con j1; · · · ;Termst : Con jt}, where t > 0, and for all
i ∈ [1, t], each Termsi is a list of terms such that |Termsi|= k > 0, and each Con ji is a conjunction
of standard atoms. A set term is either a symbolic set or a ground set. Intuitively, a set term
{X :a(X ,c), p(X);Y :b(Y,m)} stands for the union of two sets: the first one contains the X-values
making the conjunction a(X ,c), p(X) true, and the second one contains the Y -values making the
conjunction b(Y,m) true. An aggregate function is of the form f (S), where S is a set term, and f
is an aggregate function symbol. Basically, aggregate functions map multisets of constants to a
constant, e.g., the function #count computes the number of terms.

An aggregate atom is of the form f (S)≺ T , where f (S) is an aggregate function, ≺ ∈ {<,≤
,>,≥, ̸=,=} is a operator, and T is a term called guard. An aggregate atom f (S)≺ T is ground
if T is a constant and S is a ground set. An atom is either a standard atom or an aggregate atom.
A rule r has the following form:

a1 | . . . | an :– b1, . . . ,bk,not bk+1, . . . ,not bm.

where a1, . . . ,an are standard atoms, b1, . . . ,bk are atoms, bk+1, . . . ,bm are standard atoms, and
n,k,m ≥ 0. A literal is either a standard atom a or its negation not a. The disjunction a1 | . . . | an

is the head of r, while the conjunction b1, . . . ,bk,not bk+1, . . . ,not bm is its body. Rules with
empty body are called facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global variable of r. An
ASP program is a set of safe rules, where a rule r is safe if the following conditions hold: (i) for
each global variable X of r there is a positive standard atom ℓ in the body of r such that X appears
in ℓ, and (ii) each local variable of r appearing in a symbolic set {Terms :Conj} also appears in a
positive atom in Conj.

A weak constraint [16] ω is of the form:

:∼ b1, . . . ,bk,not bk+1, . . . ,not bm. [w@l]

where w and l are the weight and level of ω , respectively. (Intuitively, [w@l] is read as "weight w
at level l”, where the weight is the “cost” of violating the condition in the body of w, whereas



levels can be specified for defining a priority among preference criteria). An ASP program with
weak constraints is Π = ⟨P,W ⟩, where P is a program and W is a set of weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground if no variables
appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the Herbrand base BP

of P are defined as usual. The ground instantiation GP of P is the set of all the ground instances
of rules of P that can be obtained by substituting variables with constants from UP.

An interpretation I for P is a subset I of BP. A ground literal ℓ (resp., not ℓ) is true w.r.t. I
if ℓ ∈ I (resp., ℓ ̸∈ I), and false (resp., true) otherwise. An aggregate atom is true w.r.t. I if the
evaluation of its aggregate function (i.e., the result of the application of f on the multiset S) with
respect to I satisfies the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t. I whenever all
conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules of a program. Given a ground program GP

and an interpretation I, the reduct [17] of GP w.r.t. I is the subset GI
P of GP obtained by deleting

from GP the rules in which a body literal is false w.r.t. I. An interpretation I for P is an answer
set (or stable model) for P if I is a minimal model (under subset inclusion) of GI

P (i.e., I is a
minimal model for GI

P) [17].
Given a program with weak constraints Π = ⟨P,W ⟩, the semantics of Π extends from the basic

case defined above. Thus, let GΠ = ⟨GP,GW ⟩ be the instantiation of Π; a constraint ω ∈ GW is
violated by an interpretation I if all the literals in ω are true w.r.t. I. An optimum answer set for
Π is an answer set of GP that minimizes the sum of the weights of the violated weak constraints
in GW in a prioritized way.

Syntactic shortcuts. In the following, we also use choice rules of the form {p}, where p is an
atom. Choice rules can be viewed as a syntactic shortcut for the rule p | p′, where p′ is a fresh
new atom not appearing elsewhere in the program, meaning that the atom p can be chosen as true.

5. ASP Encoding

In this section, we present the ASP encoding for the problem presented in Section 2 and formalized
in Section 3. The underlying encoding is based on the input language of CLINGO [4].

Data Model. The input data is specified by means of the following atoms:

• instances of reg(ID,D,PrID) represent a registration with identification number ID, on
day D, for a specific exam with protocol number PrID;

• instances of avail(TS,D) denote that the time slots TS is available on day D;
• instances of exam(PrID,P,NumTS) denote the features of a exam, where PrID denotes

the exam protocol number, P indicates the phase, and NumTS specifies the time required for
that phase in terms of the number of time slots;



• instances of tomograph(T,R) and chair(C,R) denote the allocation of the tomograph
T and the chair C to the room R, respectively;

• instances of required_chair(PrID) denote the necessity of a chair for the phases 1
and 2 for the protocol PrID;

• instances of cost(PrID, NumTS) represent the total duration in terms of time slots,
denoted as NumTS, of the phases within the protocol identified by PrID;

• instances of limit(PrID,N) denote the maximum number N of exams with protocol
number PrID that can be executed on a fixed tomograph in a day.

The output consists of assignments represented by the atom x(ID,D,TS,PrID,P) where the
intuitive meaning is that the registration with identification number ID for the exam with protocol
number PrID, regarding the phase P, has been scheduled for the day D during the time slot
TS. Additionally, it includes atoms chair(C,ID,D) and tomograph(T,ID,D), denoting the

1 0 {x(ID, D, TS, PrID, 0) : avail(TS, D)} 1 :- reg(ID, D, PrID).
2 {x(ID, D, START, PrID, P+1) : avail(START,D), START >= TS+NumTS, START <

TS+NumTS+6} = 1 :- x(ID, D, TS, PrID, P), exam(PrID, P, NumTS), P >= 0,
P < 3.

3 :- x(ID, _, TS, PrID, 3), exam(PrID, 3, NumTS), TS + NumTS > 120.
4 timeAnamnesis(ID, TS..TS+NumTS-1) :- x(ID, D, TS, PrID, 0), exam(PrID, 0,

NumTS).
5 :- #count{ID: timeAnamnesis(ID, TS)} > 2, avail(TS,D).
6 timeOccupation(ID, D, TS, END-1, PrID) :- x(ID, D, TS, PrID, 1), x(ID, D,

END, PrID, 3).
7 res(ID, D, TS..END,0) :- timeOccupation(ID, D, TS, END, PrID),

required_chair(PrID).
8 res(ID, D, TS..TS+NumTS-1,1) :- x(ID, D, TS, PrID, 3), exam(PrID, 3,

NumTS), required_chair(PrID).
9 res(ID, D, TS..END+NumTS-1,1) :- timeOccupation(ID, D, TS, END, PrID),

exam(PrID, 3, NumTS), not required_chair(PrID).
10 :- #count{ID: tomograph(T, ID, D), x(ID, D, _, PrID, _)} > N, limit(PrID,

N), tomograph(T,_).
11 1 {chair(C, ID, D) : chair(C, _)} 1 :- x(ID, D, _, PrID, _),

required_chair(PrID).
12 1 {tomograph(T, ID, D) : tomograph(T, _)} 1 :- x(ID, D, _, PrID, _).
13 :- chair(C, ID, D), tomograph(T, ID, D), chair(C, R1), tomograph(T, R2), R1

!= R2.
14 chair(C, ID, D, TS) :- chair(C, ID, D), res(ID, D, TS, 0).
15 tomograph(T, ID, D, TS) :- tomograph(T, ID, D), res(ID, D, TS, 1).
16 :- #count{ID: tomograph(T, ID, D, TS)} > 1, tomograph(T,_), avail(TS,D).
17 :- #count{ID : chair(C, ID, D, TS)} > 1, chair(C,_), avail(TS,D).
18 :∼ not x(ID, D, _, _,0), reg(ID, D, _). [1@2, ID, D]
19 :∼ x(ID, _, START, PrID, 0), x(ID, _, END, _, 3), cost(PrID, NumTS), END -

START - NumTS >= 0. [END - START - NumTS@1, ID]

Figure 1: ASP encoding of the problem.



resource (either the chair C or the tomograph T, respectively) allocated to the patient ID on the
day D.

Encoding. The related encoding is shown in Figure 1 and is described next. To simplify the
description, we denote as ri the rule appearing at line i of Figure 1.
Rule r1 may assign or not the registration with identifier ID to a specific time slot TS for the
day D in phase 0, i.e. the phase of the anamnesis. Rule r2 assigns an already scheduled session
for a given phase P to the subsequent planned phases, under the condition that the start of the
phase does not extend beyond the latest available time slot for a session on that day. Furthermore,
it ensures that the subsequent phase starts at most 5 time slots after the ending of the previous
phase. Rule r3 ensures that the duration of the final phase is also consistent with the time slots,
ensuring that all phases are completed within the specified limit. Rule r4 keeps track of the
time slots allocated to a patient during phase 0 via the auxiliary atom timeAnamnesis(ID,
TS). Rule r5 restricts the number of patients during the anamnesis phase to a maximum of two.
Rule r6 produces the auxiliary atom timeOccupation(ID,D,TS,END,PrID), representing
the duration needed for each patient ID from the initial time slot TS of phase 1 to the final one
END of phase 2, concerning the protocol PrID on the day D. Rule r7 produces the auxiliary atom
res(ID, D, TS, 0) for each time slot derived from the previous rule. Specifically, the constant
0 denotes that a chair is required for each of these time slots. Rules r8 and r9 produce the atom
res(ID,D,TS,1), which differs from the previous one for the constant 1, indicating the use of a
tomograph. From rule r8, it is inferred that a tomograph is employed during phase 3, whereas rule
r9 indicates the tomograph’s usage from phase 1 to 3, according to the atom timeOccupation.
Rule r10 ensures that the limit of protocols that can be executed on a single tomograph is respected.
Rule r11 produces the atom chair(C,ID,D) representing the assignment of a chair C on the
day D to the patient ID when the protocol PrID requires a chair. Rule r12 produces the atom
tomograph(T,ID,D) representing the assignment of a tomograph T on the day D to the patient
ID. Rule r13 prevents the patient who moves from the chair to the tomograph from changing
room. Rule r14 and r15 generate the atoms chair(C,ID,D,TS) and tomograph(T,ID,D,TS)
respectively, indicating the time slots TS during which the chair C and tomograph T are utilized by
the patients ID on the day D. Rule r16 and r17 ensure that at most one patient is assigned to each
tomograph and chair in every time slot, respectively. Finally, the optimal solution is achieved
through the application of rule r18, which minimizes (with the highest priority) the number of
registrations not assigned to a schedule, and rule r19, which minimizes the duration of patient
appointments beyond the time necessary to perform the test.

6. Experimental Results

In this section, we report the results of an empirical analysis of the NMS problem via ASP. The
data used for the empirical analysis are real data coming from a medium size hospital provided by
Medipass. We performed experiments on an Apple M1 CPU @ 3.22 GHz machine with 8 GB of
physical RAM. The ASP system used was CLINGO [4] 5.6.2, using parameters --restart-on-model
for faster optimization and --parallel-mode 2 for parallel execution: we conducted a preliminary
analysis with various options and found these parameters to be the most effective.



6.1. NMS benchmarks

We tested instances of more than a year of daily exams. In particular, we tested 366 instances,
each corresponding to a weekday excluding weekends, resulting in a total of 72 weeks. The
solution schedules the patients in a day in a range of 10 hours, split into 120 time slots of 5
minutes. Each patient is linked to one of the possible exams. In particular, one exam protocol is
required by more than 85% of the patients, thus, the majority of the patients need a exam protocol
that requires 2 time slots for the anamnesis and other 2 time slots for medical preparation, 10 time
slots for the drug injection and the bio-distribution time and, at last, the image detection requires
7 time slots. The other patients can be associated with one of the other 11 possible protocols. The
schedule is done having as available resources two rooms for the radiotherapy. In each room,
there is a tomograph and 3 chairs. The number of patients requiring exam changes every day but,
on average, there are 29 patients to be scheduled, with a maximum of 37 patients.

6.2. Results

The results obtained by testing the encoding presented in Section 5 with the real data are reported
in the following.

We decided to schedule the patients with a time limit of 60 seconds. This allows the hospital
to get a result in a very short time and to get an estimation of the usefulness of our solution in a
time-constrained environment. Figure 2 presents the average, the maximum, and the minimum
times required to obtain a solution according to the number of patients to be scheduled. In this
way, it is possible to analyze the waiting time a hospital should expect to get a solution, depending
on the number of patients to be assigned. From the graph it can be seen that up to 29 patients
all the instances are optimally solved before the time limit. While on average the instances are
solved optimally in less than 60 seconds in the instances with less than 36 patients. We were able
to test the encoding in just a few days having 36 and 37 patients and, in that case, the encoding is
not able to optimally schedule the patients. In general, we are able to find the optimal solution for
more than 60% of the instances.

After analyzing the time required to generate schedules on different days, we proceed to evalu-
ate the quality of the results obtained. Specifically, we first examine the number of registrations
that the solution fails to assign during the day, as this was the primary optimization criterion.
Subsequently, we assess the second optimization criterion.

To gain a better understanding of the schedule’s quality, we present the results considering all
schedules and we specifically focus on non-optimal solutions. Even when the solution is optimal,
some days still have a high number of unassigned patients due to constraints imposed by the data.

When considering instances where the encoding failed to find an optimal solution, we observed
that in the majority of cases (more than 80%), the solution assigns the exam to over 80% of the
possible patients. In the remaining instances, the solution still manages to assign over 70% of the
total patients in all cases. These findings indicate that even under strict time limits, the results
remain of satisfactory quality, a crucial aspect for operational scenarios.

Next, we summarize the results obtained across all instances, whether optimally or non-
optimally solved. Figure 3 illustrates the number of schedules with at least a certain percentage
of assigned patients. Unlike the non-optimal solutions, optimally solved instances occasionally
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Figure 2: Average time (seconds) required to solve the instances with the different number of patients.

exhibit a percentage of assigned patients below 60%, attributed to resource limitations, which we
further investigate. However, overall, the majority of solutions have a patient assignment rate
exceeding 80%.
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Figure 3: Number of solutions with a percentage of assigned patients at least equal to the corresponding
x-axis value and smaller than the next value.

As previously discussed, some optimal solutions exhibit a low percentage of assigned patients.
Here, we aim to analyze in more details this scenario to ensure that no better solution could
have been identified. Specifically, we focus on the only instance where the schedule fails to
assign an exam to more than 50% of the patients. In this case, the schedule assigns exams to



16 out of the total 33 patients. Upon closer examination, we find that among the 33 patients, 14
require protocol with id 823, while the remaining 19 require protocol with id 815. The solution
successfully assigns exams to all 14 patients with protocol id 823. However, due to the nature
of the protocol with id 815, the solution can only assign one patient with this protocol to each
tomograph. Consequently, it manages to assign exams to just 2 patients. This limitation explains
the low percentage of assigned patients in this instance.

Finally, after examining the results related to the first optimization criterion, we proceed to
analyze the second one. Specifically, we focus on the average waiting time for each patient,
quantified as the unnecessary number of time slots spent in the hospital. In over 70% of instances,
the encoding successfully assigns patients with zero waiting times. This indicates that in these
solutions, patients can adhere to their protocols optimally. These results greatly improve those
obtained by the hospital in terms of unnecessary time spent in the hospital by the patients. Indeed,
in the original schedule of the hospital, just 19% of the considered days had zero waiting times
for each patient. Moreover, while in the ASP-based solution we have 95% of days with less than
5 time slots of waiting time, in the original schedule there were just 75% of days with this average
waiting time.

7. Related Work

The section is organized in two paragraphs: The first is focused on alternative methods for
solving the NMS problem, while the second mentions works in which ASP has been employed in
scheduling problems.

Solving the NMS problem. Pérez et al. [18] proposed four different scheduling solutions to
the NMS, each giving priority to a different aspect. Specifically, the first solution focuses on
the preferences of the patients. The second one assigns the patients as soon as possible. The
third one is a combination of the first two, while the fourth one fixes the technologists to the
machines and assigns the patients based on the machine availability. The proposed solutions were
tested on the data of one of the biggest hospitals in Texas and tested in a simulated environment.
Another work using real data to validate the solution is from Xiao et al. [19]. The authors got
the data from the West China Hospital and proposed a two-step solution. The first step is the
development of a nonlinear integer programming model considering the settings of the hospital
and the drugs. After obtaining the solution of the first step, they developed a stochastic online
algorithm following different scheduling strategies to adapt the solution to the real requests of
patients. Akhavizadegan et al. [20] addressed the NMS problem using a Markov decision process
(MDP) to decide how many patients to schedule in a day from a tactical perspective and which
patient can move on to the next phase from an operational perspective. The MDP is then solved
using two heuristic algorithms and a mathematical programming model. This system is evaluated
against historical data of patients scheduled following a First-Come-First-Served strategy. The
historical data comes from the public Hospital in Tehran-Iran.

Solving scheduling problems with ASP. ASP has been successfully used for solving hard
combinatorial and application scheduling problems in several research areas. In the Healthcare



domain (see, e.g., [21] for a recent survey), the first solved problems were the Nurse Scheduling
Problem [22, 23, 24], where the goal is to create a scheduling for nurses working in hospital
units, and the Operating Room Scheduling [25, 26], whose goal is to assign operating rooms to
patients. More recent problems include the Chemotherapy Treatment Scheduling problem [11],
in which patients are assigned a chair or a bed for their treatments, the Rehabilitation Scheduling
Problem [10], which assigns patients to operators in rehabilitation sessions. In [13] and [27]
the problems are split into two subproblems and solved using ASP. The former deals with the
problem of assigning a date to visit or therapy for multiple recurrent exams to chronic patients, the
latter, schedule patients for the Pre-Operative Assessment Clinic problem. Concerning scheduling
problems beyond the healthcare domain, ASP encodings were proposed in different contexts.
Balduccini [28] used ASP for the Incremental Scheduling Problem, where the goal is to assign
jobs to devices such that their executions do not overlap one another. Abels et al. [29] proposed
a hybrid approach, using both pure ASP and difference constraints, to solve the problem of
routing, scheduling, and optimizing real-world training scheduling. Gebser et al. [14] used
ASP for routing driverless transport vehicles in the context of car assembly at Mercedes-Benz
Ludwigsfelde GmbH. El-Kholany et al. [30] proposed a solution to the Job-shop Scheduling
Problem (JSP), where tasks sharing a machine are to be scheduled in a sequence in order to
complete jobs as early as possible. To solve it they decomposed the problem into time windows
whose operations can be successively scheduled and optimized by means of multi-shot ASP
solving. Finally, we refer the reader to the survey paper by Falkner et al. [15], where industrial
applications dealt with ASP are presented, including those involving scheduling problems.

8. Conclusion

In this paper, we have presented an analysis of the NMS problem, modeled and solved with ASP.
We started from a mathematical formulation of the problem, whose specifications come from a
real scenario, and then presented our ASP solution. Results on real data show satisfying outcomes
in terms of quality in a relatively short time.

Future works include improving the scalability of the encoding and providing the solution of
the NMS rescheduling problem, which comes into play when the computed schedule can not
be implemented due to some unavailability, and the implementation of a web application for
easy usage of our solution. Additionally, exploiting the modularity of ASP, we plan to extend
the program taking into account the fairness of the scheduling, ensuring that all the protocols are
assigned equally, and a level of priority among patients.
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