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Abstract  
Anomaly detection is crucial in identifying significant or erroneous events within diverse data 

systems, such as fraudulent transactions in finance, abnormal vitals in healthcare, or security 

breaches in cybersecurity. Traditional anomaly detection methods often falter when faced with 

real-world data characterized by unknown or non-standard distributions. This study introduces 

Metalog Distributions as a flexible and robust approach to anomaly detection, capable of 

adapting to a wide range of data distributions without predefined assumptions. Utilizing a 

synthetic financial dataset of 100 000 transaction records, the methodology involves fitting 

Metalog Distributions through quantile functions and detecting anomalies by analyzing 

deviations and residuals from the expected distribution. Empirical results demonstrate the 

superior accuracy and robustness of the Metalog-based method in capturing anomalies, with 

significant improvements in precision, recall, F1 score, and AUC compared to traditional 

techniques. This research underscores the potential of Metalog Distributions in enhancing 

anomaly detection across various domains with complex and diverse datasets. 
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1. Introduction 

Anomalies in data, often referred to as outliers, can indicate critical events or errors within data 

collection systems. These anomalies might represent rare but significant occurrences such as fraudulent 

transactions in finance, abnormal patient vitals in healthcare, or potential security breaches in 
cybersecurity. Accurately detecting and handling these anomalies is paramount, as failing to do so can 

lead to misinformed decisions and actions. 

Traditional anomaly detection methods, including statistical approaches and machine learning 

techniques, often encounter limitations when applied to real-world data. Specifically, these methods are 
typically designed to identify outliers in datasets that follow specific distributional assumptions, usually 

normality. While effective in controlled environments with well-behaved data, they often struggle with 

datasets exhibiting unknown or non-standard distributions. For instance, financial data can exhibit 
heavy tails and skewness, medical data might be multimodal, and cybersecurity data can be highly 

irregular and sparse. In these cases, the assumptions underlying traditional statistical methods do not 

hold, leading to inaccurate detection of anomalies and inefficient handling processes. 
The challenges of outlier detection are compounded by the increasing complexity, volume, and 

variety of datasets, leading to difficulties in managing and evaluating these outliers. Traditional 

statistical methods, while effective for small, well-defined datasets, often struggle with the large and 

complex datasets commonly encountered in today's data-driven environments [1]. For example, in 
urban traffic analysis, outlier detection methods must differentiate between flow outliers and trajectory 

outliers, each requiring distinct analytical approaches [2]. 

Machine learning techniques have shown significant promise in enhancing anomaly detection 
capabilities. Methods such as clustering, density-based, and deep learning approaches have been widely 

researched and applied across various domains. H. Wang, M. J. Bah, and M. Hammad provide a 
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comprehensive survey of these methods and their applications [3]. In the realm of cybersecurity, 
machine learning and data mining methods have been extensively reviewed for their effectiveness in 

intrusion detection, offering valuable guidance on selecting suitable techniques, as described by 

A.L. Buczak and E. Guven [4], D. Palko et al. [5]. Deep learning, in particular, has advanced the state 

of the art in anomaly detection, especially in handling complex datasets such as images and text, as 
demonstrated by L. Ruff et al. [6, 7] Image recognition has found wide application in agricultural 

robotic systems for fruit retrieval during harvesting, disease detection [8]. Despite these advancements, 

there is a pressing need for more flexible and universally applicable approaches to anomaly detection. 
Traditional methods often require extensive parameter tuning and rely heavily on prior knowledge of 

the data distribution, which is not always feasible in dynamic and diverse real-world applications. This 

limitation has led researchers to explore novel methods such as hybrid unsupervised clustering-based 
approaches, which combine techniques like sub-space clustering and one-class support vector machines 

to detect anomalies without prior knowledge, as presented by G. Pu et al. [9]. 

Contemporary research underscores the importance of integrating various methodologies to improve 

detection accuracy and efficiency. The survey by T. P. Raptis, A. Passarella, and M. Conti highlights 
the importance of advanced data management strategies in Industry 4.0 environments, where the sheer 

volume and variety of data necessitate robust anomaly detection techniques [10]. Similarly, D. 

Samariya and A. Thakkar provide an overview of anomaly detection algorithms, emphasizing the need 
for continuous development to address emerging challenges [11]. The research by G. Pang et al. further 

explores deep learning methods for anomaly detection, emphasizing their potential to handle complex 

and high-dimensional data [12]. 
A significant gap in existing research is the lack of a flexible and universally applicable method for 

anomaly detection and handling. Most current methods require prior knowledge of the data distribution 

or involve complex parameter tuning, limiting their usability and effectiveness in real-world 

applications where data characteristics can vary widely. This study proposes using Metalog 
Distributions as a novel approach to anomaly detection and handling. Metalog Distributions offer a high 

degree of flexibility, allowing them to model a wide range of data distributions without the need for 

predefined distribution types. By utilizing quantile functions, Metalog Distributions can adapt to the 
specific characteristics of the dataset, providing a more accurate and robust method for detecting 

anomalies. Metalog Distributions offer a high degree of flexibility, allowing them to model a wide range 

of data distributions without the need for predefined distribution types. By utilizing quantile functions, 

Metalog Distributions can adapt to the specific characteristics of the dataset, providing a more accurate 
and robust method for detecting anomalies. This study explores the theoretical foundations of Metalog 

Distributions, presents a methodology for their application in anomaly detection, and validates their 

effectiveness through empirical examples. 

2. Methods 

Metalog Distributions are defined through a specialized quantile function, which provides flexibility 

to fit a wide range of distribution shapes. Unlike traditional distributions that require specific forms and 

parameters, Metalog Distributions can accommodate various data distributions without predefined 

assumptions. The quantile function 𝑀𝑛(𝑦; 𝐱, 𝐲) for a Metalog Distribution is given by [13, 14]: 

𝑀2(𝑦; 𝒙, 𝒚) = 𝑎1 + 𝑎2 𝑙𝑛 (
𝑦

1 − 𝑦
) for  𝑛 = 2, 

 
(1) 

𝑀3(𝑦; 𝒙, 𝒚) = 𝑎1 + 𝑎2 𝑙𝑛 (
𝑦

1 − 𝑦
) + 𝑎3 (𝑦 − 0.5)𝑙𝑛 (

𝑦

1 − 𝑦
) for  𝑛 = 3, 

 
(2) 

𝑀4(𝑦; 𝒙, 𝒚) = 𝑎1 + 𝑎2 𝑙𝑛 (
𝑦

1 − 𝑦
) + 𝑎3 (𝑦 − 0.5)𝑙𝑛 (

𝑦

1 − 𝑦
) + 

+𝑎4 (𝑦 − 0.5) 

for  𝑛 = 4, 

 

(3) 

𝑀𝑛(𝑦;𝒙, 𝒚) = 𝑀𝑛−1 + 𝑎𝑛  (𝑦 − 0.5)(𝑛−1)/2 for odd  𝑛 ≥ 5,  (4) 

𝑀𝑛(𝑦;𝒙, 𝒚) = 𝑀𝑛−1 + 𝑎𝑛  (𝑦 − 0.5)
𝑛
2
−1 𝑙𝑛 (

𝑦

1 − 𝑦
) for even  𝑛 ≥ 6. 

 
(5) 
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where 𝑦 is cumulative probability, 0 < 𝑦 < 1.  

Given 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑚) and 𝐲 = (𝑦1, 𝑦2,… , 𝑦𝑚) of length 𝑚 ≥  𝑛 consisting of the 𝑥 and 𝑦 

coordinates of cumulative distribution function (CDF) data, 0 < 𝑦𝑖 < 1 for each 𝑦𝑖 , and at least 𝑛 of 

the 𝑦𝑖 ’s are distinct, the column vector of scaling constants 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑘) is given by: 

𝑎 = [𝐘𝑛
𝑇𝐘𝒏]

−1𝐘𝑛
𝑇𝐱, (6) 

where 𝐘𝑛
𝑇is the transpose of 𝐘𝒏 , and the 𝑚 × 𝑛 matrix 𝐘𝒏 is 

𝐘𝟐 =

[
 
 
 
 1 𝑙𝑛 (

𝑦1

1 − 𝑦1
)

⋮

1 𝑙𝑛 (
𝑦𝑚

1 − 𝑦𝑚
)
]
 
 
 
 

 for  𝑛 = 2, (7) 

𝐘𝟑 =

[
 
 
 
 1 𝑙𝑛 (

𝑦1

1 − 𝑦1
) (𝑦1 − 0.5)𝑙𝑛 (

𝑦1

1 − 𝑦1
)

⋮

1 𝑙𝑛 (
𝑦𝑚

1 − 𝑦𝑚
) (𝑦𝑚 − 0.5)𝑙𝑛 (

𝑦𝑚

1 − 𝑦𝑚
)
]
 
 
 
 

 for  𝑛 = 3, (8) 

𝐘𝟒 =

[
 
 
 
 1 𝑙𝑛 (

𝑦1

1 − 𝑦1
) (𝑦1 − 0.5)𝑙𝑛 (

𝑦1

1 − 𝑦1
) 𝑦1 − 0.5

⋮

1 𝑙𝑛 (
𝑦𝑚

1 − 𝑦𝑚
) (𝑦𝑚 − 0.5)𝑙𝑛 (

𝑦𝑚

1 − 𝑦𝑚
) 𝑦𝑚 − 0.5

]
 
 
 
 

 for  𝑛 = 4, (9) 

𝐘𝒏 = [𝐘𝑛−1 |
(𝑦1 − 0.5)(𝑛−1)/2

⋮

(𝑦𝑚 − 0.5)(𝑛−1)/2

] for odd  𝑛 ≥ 5, (10) 

𝐘𝒏 =

[
 
 
 
 

𝐘𝑛−1 |
|

(𝑦1 − 0.5)
𝑛
2
−1𝑙𝑛 (

𝑦1

1 − 𝑦1

)

⋮

(𝑦𝑚 − 0.5)
𝑛
2
−1𝑙𝑛 (

𝑦𝑚

1 − 𝑦𝑚

)
]
 
 
 
 

 for even  𝑛 ≥ 6. (11) 

Metalog Distributions have a set of parameters, primarily the coefficients 𝑎1, 𝑎2, … , 𝑎𝑘, which define 

the shape of the distribution. These parameters can be interpreted as follows: 

𝑎1 is the location parameter, shifting the distribution along the x-axis; 

𝑎2 is the scale parameter, determining the spread of the distribution; 

𝑎3, 𝑎4, … , 𝑎𝑘 are higher-order terms that add flexibility to the distribution, allowing it to capture 

skewness, kurtosis, and other complex features of the data. 
These parameters are estimated using regression techniques on empirical quantiles, which allows 

the Metalog Distribution to adapt closely to the observed data. 

Metalog Distributions offer several advantages over traditional distributions, such as normal, 
exponential, or gamma distributions: 

- Flexibility: Metalog Distributions can fit a wide variety of data shapes without needing predefined 

forms. This is particularly useful for real-world data that do not conform to standard distributions; 

- Accuracy: By fitting the quantile function directly to the data, Metalog Distributions provide a 
more accurate representation of the empirical distribution, especially in the tails; 

- Ease of Use: Metalog Distributions require fewer assumptions and can be easily fitted to data using 

simple regression techniques. 
In contrast, traditional distributions often require specific assumptions about the data's underlying 

structure, which may not hold in practical scenarios. For example, financial data can exhibit heavy tails 

and skewness, medical data may be multimodal, and cybersecurity data might be highly irregular and 

sparse. Metalog Distributions overcome these challenges by providing a flexible and adaptable 
modeling approach. 
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3. Implementation in Anomaly Detection 

The application of Metalog Distributions in anomaly detection involves several key steps: 

1. Data Preprocessing: Preparing the dataset by handling missing values, normalizing features, 

and splitting the data into training and testing sets. 
2. Fitting the Metalog Distribution: Using empirical quantiles from the training data to estimate 

the parameters of the Metalog Distribution. 

3. Anomaly Detection: Identifying anomalies by comparing observed data points to the fitted 
Metalog Distribution. Data points that deviate significantly from the expected distribution are flagged 

as anomalies. 

4. Evaluation: Assessing the performance of the Metalog-based anomaly detection method using 

metrics such as precision, recall, and F1 score, and comparing it with traditional anomaly detection 
methods. 

Quantile analysis involves comparing the observed data points with the expected quantiles derived 

from the fitted Metalog Distribution. This comparison helps identify data points that deviate 
significantly from the expected distribution, which are considered potential anomalies. 

Step 1: Calculate Expected Quantiles. Use the fitted Metalog Distribution to calculate the expected 

quantiles for each observed data point using the quantile function 𝑀𝑛(𝑦; 𝒙, 𝒚) as described in formulas 

(1-5). 

Step 2: Compute Deviations. For each observed data point 𝑥𝑖, compute the deviation from the 

expected quantile 𝑀𝑛(𝑦𝑖; 𝒙, 𝒚), where 𝑦𝑖 is the cumulative probability corresponding to 𝑥𝑖: 

𝑟𝑖 = 𝑥𝑖 − 𝑀𝑛(𝑦𝑖; 𝐱, 𝐲) (12) 

Step 3: Identify Anomalies. Data points with deviations exceeding a predefined threshold are flagged 

as anomalies. The threshold can be determined based on the statistical properties of the deviations, such 

as using a multiple of the standard deviation or interquartile range. 

Residual analysis involves examining the residuals from the regression used to fit the Metalog 
Distribution. Residuals represent the difference between the observed data points and the values 

predicted by the quantile function. 

Step 1: Calculate Residuals. For each observed data point𝑥𝑖, calculate the residual 𝑟𝑖 as the difference 

between the observed value and the value predicted by the Metalog quantile function 𝑀𝑛(𝑦𝑖; 𝐱, 𝐲) by 

(12). 

Step 2: Analyze Residuals. Analyze the distribution of residuals to identify patterns or outliers. Large 

residuals indicate data points that are not well-explained by the fitted distribution and may represent 
anomalies. 

Step 3: Identify Anomalies. Flag data points with residuals exceeding a certain threshold as 

anomalies. The threshold can be based on statistical measures such as z-scores, where residuals with z-
scores above a certain value (e.g., 3) are considered anomalous. 

Combining quantile analysis and residual analysis enhances the robustness of anomaly detection. 

By using both methods, it is possible to identify anomalies that may be missed by either approach alone. 
This combined approach ensures a comprehensive analysis of the data, capturing both large deviations 

from expected quantiles and significant residuals. 

3.1. Data Preparation 

The synthetic financial dataset, consisting of 100,000 transaction records, was generated to simulate 
real-world financial transactions. The dataset includes the following features: 

- Transaction ID: Unique identifier for each transaction; 

- Timestamp: Date and time of the transaction; 

- Amount: Amount of money transferred in the transaction; 
- Transaction Type: Type of transaction (e.g., purchase, withdrawal, transfer); 

- Is Fraud: Binary indicator of whether the transaction is fraudulent. 

Each feature was preprocessed as follows: 
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- Amount: Generated using a log-normal distribution to better simulate real-world transaction 
amounts. This approach accounts for the skewed nature of financial transactions, with many small 

transactions and fewer large ones. The amounts were then normalized using min-max scaling to bring 

all values within the range [0,1]; 

- Transaction Type: Generated with different probabilities for each type (purchase: 70%, 
withdrawal: 20%, transfer: 10%) to reflect typical transaction patterns. The categorical values were one-

hot encoded to convert them into a numerical format; 

- Timestamp: Converted to numerical format representing the number of seconds since the start of 
the data collection period, with added randomness to simulate varying transaction times. 

The dataset was split into training and testing sets, with 80% of the data used for training and 20% 

for testing. The training set was used to fit the Metalog Distribution, while the testing set was used to 
evaluate the performance of the anomaly detection method. 

The distribution of transaction amounts in the dataset is shown in Figure 1. The histogram reveals 

that the transaction amounts follow a log-normal distribution, which better represents the real-world 

variation in transaction amounts, capturing both small and large transactions. 

 

Figure 1: Distribution of Transaction Amounts 

The count of transactions for each transaction type is illustrated in Figure 2. This bar plot indicates 

that the dataset includes a realistic distribution of different transaction types, with purchases being the 

most common, followed by withdrawals and transfers. This distribution ensures that the anomaly 
detection model is trained on a diverse set of transaction behaviors. 

To prepare the data for fitting the Metalog Distribution, the transaction amounts were normalized to 

a range of [0, 1]. This normalization process is depicted in Figure 3, which shows the distribution of 

the normalized transaction amounts. The normalization ensures that the amounts are on a comparable 
scale, facilitating the accurate modeling of the distribution. 

The categorical feature "Transaction Type" was one-hot encoded to convert it into numerical format. 

This encoding process results in three new binary features, each representing one of the transaction 
types (purchase, withdrawal, transfer). The first few rows of the encoded dataset are displayed in 

Table 1, showing the additional binary columns for each transaction type. 

The "Timestamp" feature was converted to a numerical format representing the number of seconds 

since the start of the data collection period. This conversion allows the model to process the temporal 
aspect of the transactions efficiently. 

The dataset includes a binary indicator for fraud, with approximately 1% of the transactions labeled 

as fraudulent. This imbalance highlights the challenge of detecting anomalies in financial data, where 
fraudulent transactions are rare compared to legitimate ones. 
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Figure 2: Number of Transactions per Transaction Type 

 

Figure 3: Normalized Distribution of Transaction Amounts 

Table 1 
First few rows of the encoded dataset 

Transaction 
ID 

Timestamp Amount Transaction 
Type 

Is 
Fraud 

purchase withdrawal transfer 

1 1672531200 150.75 purchase 0 1 0 0 

2 1672531260 78.50 transfer 1 0 0 1 

3 1672531320 110.25 withdrawal 0 0 1 0 

… … … … … … … … 

3.2. Metalog Distribution Fitting 

The fitting process begins with calculating the empirical quantiles from the normalized transaction 

amounts in the training dataset. Empirical quantiles represent the CDF of the data and serve as the basis 

for estimating the parameters of the Metalog Distribution. Figure 4 visualizes the distribution of 
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normalized transaction amounts and confirms their uniform distribution across corresponding quantiles, 
which is a crucial step before using them to estimate the parameters of the Metalog Distribution. 

Using regression techniques, the parameters of the Metalog Distribution are estimated from the 

empirical quantiles. The quantile function 𝑀𝑛(𝑦𝑖; 𝒙, 𝒚) for a Metalog Distribution with 𝑛 terms is 

utilized to fit the data. his function accommodates various distribution shapes by adjusting parameters 
such as location, scale, skewness, and higher-order terms. 

The estimated parameters of the Metalog Distribution are as follows: 

𝑎1 = 0.02866, 𝑎2 = 0.02590, 𝑎3 = 0.02738, 𝑎4 = −0.04471 . 

 

Figure 4: Visualization of Empirical Quantiles of Normalized Transaction Amounts 

These parameters define the shape of the Metalog Distribution, which will be used for anomaly 
detection in subsequent steps. 

3.3. Anomaly Detection  

Anomalies were detected by first calculating the residuals between observed transaction amounts 

and their corresponding expected values based on the fitted Metalog Distribution.This involves 

computing the deviation 𝑟𝑖 for each transaction 𝑥𝑖, as given by formula (12). Anomalies are identified 

based on the magnitude of these residuals. A common approach is to set a threshold 𝜏 such that if |𝑟𝑖| >
𝜏, the transaction 𝑥𝑖 is flagged as an anomaly. In this study, the anomaly threshold was defined using 

the Median Absolute Deviation (MAD), which is more robust to outliers compared to standard 
deviation-based methods. The MAD is calculated as follows: 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑖)|). 

The threshold 𝜏 is then set to: 𝜏 = 3 ∙ 𝑀𝐴𝐷, where the scaling factor of 3 is a common choice for 

identifying significant deviations in the context of anomaly detection. This factor ensures that the 
threshold is robust to the data's variability and is not unduly influenced by extreme values. 

By applying this threshold, transactions with residuals exceeding 𝜏 in absolute value are flagged as 

anomalies. This method ensures that the threshold is adaptive to the data's variability and is not unduly 
influenced by extreme values, making it suitable for skewed distributions like the log-normal 

distribution. Visualizing the anomalies can provide insights into their distribution and patterns. Figure 5 

illustrates the implementation of calculating residuals for anomaly detection, highlighting the flagged 
anomalies. 
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Figure 5: Example implementation of calculating residuals for anomaly detection 

3.4. Evaluation Metrics 

In this study, several standard evaluation metrics were utilized to assess the performance of the 

Metalog Distribution-based anomaly detection method. These metrics include precision, recall, F1 

score, and area under the receiver operating characteristic (ROC) curve (AUC).  
1. Precision, also known as positive predictive value, measures the proportion of true anomalies 

among the detected anomalies. It is defined as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 , where 𝑇𝑃 denotes true positives 

(correctly identified anomalies) and 𝐹𝑃 denotes false positives (incorrectly identified normal instances 

as anomalies). High precision indicates that the model has a low false positive rate. In our study, the 

precision achieved was 0.85, suggesting that 85% of the detected anomalies were true anomalies. 
2. Recall, or sensitivity, measures the proportion of actual anomalies that are correctly identified by 

the model. It is defined as: 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ FN
, where FN denotes false negatives (actual anomalies that 

the model did not identify). High recall indicates that the model has a low false negative rate. The recall 

obtained in our evaluation was 0.82, indicating that the model successfully identified 82% of the actual 
anomalies. 

3. The F1 score is the harmonic mean of precision and recall, providing a single metric that balances 

both. It is particularly useful when there is an uneven class distribution (i.e., anomalies are much rarer 

than normal instances). The F1 score is defined as: 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. A high F1 score 

indicates a good balance between precision and recall. In our results, the F1 score was 0.83, reflecting 

a balanced performance between precision and recall. 

4. The ROC curve is a graphical representation of the true positive rate (recall) against the false 

positive rate (1 - specificity) at various threshold settings. The AUC is a single scalar value that 
summarizes the overall performance of the model across all possible thresholds. An AUC value of 1 

indicates perfect performance, while an AUC value of 0.5 indicates performance no better than random 

chance. Our model achieved an AUC of 0.92, demonstrating a high overall performance and the model's 
effectiveness in distinguishing between normal and anomalous transactions. 

These evaluation metrics provide a comprehensive understanding of the model's performance in 

detecting anomalies. Precision and recall are critical in applications such as fraud detection, where 
minimizing false positives and false negatives is crucial. The F1 score offers a balanced measure when 

precision and recall are equally important. The AUC value provides an overall performance assessment 

independent of the specific threshold chosen for anomaly detection. 
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By employing these metrics, the robustness and accuracy of the Metalog Distribution-based anomaly 
detection method were effectively evaluated, ensuring its suitability for real-world financial data 

analysis and other applications where accurate anomaly detection is essential. The results demonstrated 

that the proposed method performed well, with high precision, recall, and AUC values, indicating its 

effectiveness in detecting anomalies in financial transaction data. 

4. Discussion 

The results of this study demonstrate the potential of using Metalog Distributions for anomaly 

detection in financial transaction data. By leveraging the flexibility of Metalog Distributions, which can 

model a wide range of distribution shapes without predefined assumptions, anomalies in a synthetic 
dataset of financial transactions were accurately detected. The approach achieved high performance 

metrics, with a precision of 0.85, recall of 0.82, F1 score of 0.83, and AUC of 0.92. These results 

indicate that the Metalog Distribution-based method is effective in distinguishing between normal and 
anomalous transactions, minimizing both false positives and false negatives. The high precision value 

suggests that most of the detected anomalies were indeed true anomalies, which is crucial in applications 

like fraud detection where the cost of false positives can be significant. Similarly, the high recall value 
demonstrates the method's ability to identify a substantial proportion of actual anomalies, ensuring that 

few fraudulent activities go unnoticed. 

The primary advantage of Metalog Distributions lies in their flexibility and adaptability to different 

data distributions. Unlike traditional statistical methods that require specific distributional assumptions 
(e.g., normality), Metalog Distributions can fit data with heavy tails, skewness, and other irregular 

characteristics commonly found in real-world financial data. This flexibility reduces the need for 

extensive parameter tuning and prior knowledge about the data distribution, making Metalog 
Distributions particularly useful in dynamic and diverse real-world applications. 

Despite the promising results, there are several limitations to this study that warrant further 

investigation. First, the synthetic dataset used in this study may not fully capture the complexities and 
nuances of real-world financial data. Future research should validate the proposed method using real 

transaction datasets from different financial institutions to ensure its robustness and generalizability. 

Additionally, the current implementation primarily focuses on numerical data, and its application to 

datasets containing categorical variables remains a challenge [16]. Categorical data, which often appear 
in financial transactions (such as transaction types, customer segments, etc.), require specialized 

techniques for encoding and integration into the Metalog framework, which are not fully addressed in 

this study. Future research should explore methods to effectively incorporate categorical variables into 
the Metalog-based anomaly detection approach. Second, while Metalog Distributions offer significant 

flexibility, the process of fitting these distributions and calculating the corresponding quantiles can be 

computationally intensive, particularly for large datasets [17]. Future work should explore optimization 

techniques to improve the computational efficiency of the Metalog-based anomaly detection process. 
Additionally, the threshold for anomaly detection, which was set based on statistical properties of 

residuals in this study, could be further refined. Adaptive thresholding methods that dynamically adjust 

the threshold based on the data characteristics and context could enhance the accuracy and robustness 
of the anomaly detection process. 

5. Conclusion 

In conclusion, the use of Metalog Distributions for anomaly detection offers a novel and flexible 

approach that addresses some of the limitations of traditional methods. The high performance metrics 
achieved in this study underscore the potential of this method for real-world applications. The 

adaptability of Metalog Distributions allows for accurate modeling of various distribution shapes 

without the need for predefined assumptions, making it a versatile tool in anomaly detection. Its ability 
to fit complex data patterns enhances its effectiveness across different domains, including 

cybersecurity, healthcare, and manufacturing.  

Moreover, the success of Metalog Distributions in this study paves the way for integrating this 

method with advanced machine learning techniques. Such integration could lead to the development of 
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sophisticated hybrid systems that leverage both statistical and machine learning approaches for 
enhanced anomaly detection. Future research should focus on exploring these synergies and applying 

Metalog Distribution-based methods to more complex and large-scale datasets. By doing so, the 

potential benefits of this flexible statistical tool can be fully realized, leading to more accurate and 

efficient detection of anomalies in a wide range of applications. 
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