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Abstract
Service compositions à la Roman model consist of realizing a virtual service by orchestrating suitably a set of
already available services, where all services are described procedurally as (possibly nondeterministic) transition
systems. In this paper, we study a goal-oriented variant of the service composition à la Roman Model, where
the goal specifies the allowed traces declaratively via Linear Temporal Logic on finite traces (ltl𝑓 ). Specifically,
we want to synthesize a controller to orchestrate the available services to produce together a trace satisfying
a specification in ltl𝑓 . To do so, we combine techniques from reactive synthesis, FOND Planning, and the
Roman Model for service composition. This framework has several interesting applications, including Smart
Manufacturing and Digital Twins.
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1. Introduction

Service composition, a well-established topic in the field of Web services, refers to the ability to combine
Web services into a business process. More properly, it involves managing and sequencing interactions
between Web services, orchestrating them into a larger transaction. This approach enhances the
flexibility and adaptability of business processes by enabling them to be constructed from reusable
services, allowing organizations to quickly adjust their processes in response to changing business
requirements or technological advancements. For example, a transaction involving the addition of a
customer to a bank account service could concurrently initiate the creation of multiple accounts while
updating the customer information within the customer service. All of these requests are managed in
the context of a larger business process flow that either succeeds or fails as a whole [1]. The problem of
service composition has been considered in the literature for over two decades. Particularly interesting
in this context is the so-called Roman Model [2, 3, 4] where services are conversational, i.e., have an
internal state and are procedurally described as finite transition systems (TS), where at each state the
service offers a certain set of actions, and each action changes the state of the service in some way.
The designer is interested in generating a new service, called target, which is described as the other
service; however, it is virtual in the sense that no code is associated with its actions. Therefore, to
execute the target, one has to delegate each of its actions to some of the available services by suitably
orchestrating them, taking into consideration the state of the target and the available services are in.
Service composition amounts to synthesizing a controller that can suitably orchestrate the executions
of the available services so as to guarantee that the target actions are always delegated to some service
that can actually execute them in its current state. The original paper on the Roman Model [2] has
been the inspiration for a line of work in AI on behaviour composition where nondeterminism, in
the sense of partial controllability as in Fully-Observable Non-Deterministic (FOND) strong planning
[5, 6]) has played a prominent role [7]. Recently a renewed interest in service composition à la Roman
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Model is stemming out of applications in smart manufacturing, where, through digital twins technology,
manufacturing devices can export their behaviour as transition systems and hence being orchestrated
very much in the same way as service did back in the early 2000’s, see e.g., [8, 9, 10].

Interestingly, these new applications are also promoting to move from a procedural specification of
the target to a declarative one, as advocated by the declarative business processes literature, through
the so-called declare paradigm [11, 12, 13]. In other words, the target would ideally be specified in
declare, and so, in Linear Temporal Logic on finite and process traces (ltl𝑓 ) [14], with the assumption
that specifications are about the possible sequence of actions (vs sequences of fluent values of the
domain as in planning for ltl𝑓 goals [15, 16]), and the simplification that only one action can be selected
at each point in time [11, 17].

In fact, ltl𝑓 as a specification of the target can be utilized to write two different kinds of target
specification, namely process-oriented target specification or goal-oriented target specification. In the first
case, very much like in the declare paradigm, one uses the ltl𝑓 specification to specify the process
itself consisting of all the traces satisfying the ltl𝑓 formula, which in turn corresponds to implicitly
specifying the transition system consisting of the deterministic finite automaton (DFA) equivalent
to the ltl𝑓 formula [14]. In this case, after a preprocessing of the ltl𝑓 specification to obtain the
target transition system (i.e., the DFA corresponding to the formula) as in [14], the composition can be
performed as with the techniques used for the standard Roman Model [7].

In this paper, we study the case where ltl𝑓 is used as a goal-oriented specification. This is a novel
variant of the composition problem, where we are given a ltl𝑓 goal, and we want to synthesize an
orchestrator that, on the one hand, reactively chooses actions to form a sequence that satisfies the goal
and, on the other hand, delegates each action to an available service in such a way that at any point the
delegated action can be executed by the delegated service and at the end of the sequence satisfying
the ltl𝑓 formula, all services are in their final states. Specifically, we consider the available services as
nondeterministic, i.e., partially controllable (similarly to FOND strong planning) as in [3, 7].

Note that this problem is different from other goal-oriented service composition frameworks. In [18]
Hierarchical Task Network (HTN) planning is used for service composition. HTN planning is based
on the notion of composite tasks that can be refined to atomic tasks using predefined methods. While
based on high-level specification of services, their approach does not support nondeterministic services.
The work [19] allows the modeling of nondeterministic behaviors but not of stateful services nor
high-level temporal goal specification. Authors in [20] describe services as atomic actions where only
I/O behaviour is modelled, and the ontology is constituted by propositions and actions; hence services
are not stateful as ours. De Giacomo et al. [21] study a stochastic version in a goal-oriented setting in
which the optimization of the cost utilization is subordinated to the maximal probability of satisfaction
of the goal by means of lexicographic optimization. Here instead we assume nondeterministic services.

To provide a solution technique in this case, from the ltl𝑓 specification, we compute in linear time
a symbolic representation of the corresponding Nondeterministic Finite Automaton (NFA), we do so
by essentially adopting the Alternating Automaton (AFA) associated to the formula as the symbolic
representation of the NFA. Then we adapt the interleaving procedure introduced in [22] to encode
the symbolic NFA corresponding to ltl𝑓 temporally extended goals into special planning actions
domains. However, while in [22] considers these symbolic NFAs in deterministic planning domains, we
use the technique in a nondeterministic (adversarial) planning domain that encodes all the possible
service actions at each point of the computation. Notably, this is possible in our case because the target
specification is an ltl𝑓 specification of the desired sequence of target actions and not of fluent evaluation
as in standard planning. Note that, the possibility of exploiting symbolic NFAs contrasts with the need
of adopting DFAs required for the process-oriented target specification, which are exponentially larger
than corresponding NFAs in the worst case. We implemented our approach and evaluated different
heuristics and Torres and Baier’s encodings to show the feasibility of our solution technique.

Although this paper has a foundational nature, our paper gives the foundations and solution tech-
niques of goal-oriented compositions, which are indeed envisioned in the current literature on smart man-
ufacturing where the notion of goal-oriented target specification is increasingly championed [23, 8, 9].
The appendix with the proofs and experimental results can be found at this link: https://bit.ly/3x5lXre.

https://bit.ly/3x5lXre


2. Preliminaries

Automata theory. A deterministic finite automaton (dfa) is a tuple 𝒜 = ⟨𝒫, 𝑄, 𝑞0, 𝐹, 𝛿⟩ where: (i) 𝒫 is
the alphabet, (ii)𝑄 is a finite set of states, (iii) 𝑞0 is the initial state, (iv)𝐹 ⊆ 𝑄 is the set of accepting states
and (v) 𝛿 : 𝑄×𝒫 → 𝑄 is a total transition function. A nondeterministic finite automaton (nfa) is defined
similarly to dfa except that 𝛿 is defined as a relation, i.e. 𝛿 ⊆ 𝑄×𝒫×𝑄. An alternating finite automaton
(afa) [24, 25] is a generalization of dfa and nfa, where 𝛿 is defined as 𝛿 : 𝑄 × Σ → 𝐵+(𝑄), where
𝐵+(𝑄) is a set of positive boolean formulas whose atoms are states of 𝑄. By ℒ(𝒜), we mean the set of
all traces over Σ accepted by an automaton 𝒜. An afa 𝒜𝐴 = ⟨𝒫, 𝑄𝐴, 𝑞0, 𝐹𝐴, 𝛿𝐴⟩ can be transformed
into an equivalent nfa 𝒜𝑁 = ⟨𝒫, 2𝑄𝐴 , {𝑞0}, 2𝐹𝐴 , 𝛿𝑁 ⟩, where 𝛿𝑁 = {(�̄�, 𝑎, �̄�′) | �̄�′ |=

⋀︀
𝑞∈�̄� 𝛿𝐴(𝑞, 𝑎)}.

Note that 𝒜𝑁 can be constructed on-the-fly, see [22].
LTL𝑓 is a variant of Linear Temporal Logic (ltl) interpreted over finite traces [14]. Given a set 𝒫
of atomic propositions, ltl𝑓 formulas 𝜙 are defined by 𝜙 ::= 𝑎 | ¬𝜙 | 𝜙 ∧ 𝜙 | ∘𝜙 | 𝜙𝒰 𝜙, where
𝑎 denotes an atomic proposition in 𝒫 , ∘ is the next operator, and 𝒰 is the until operator. We use
abbreviations for other Boolean connectives, as well as the following: eventually as ◇𝜙 ≡ 𝑡𝑟𝑢𝑒𝒰 𝜙;
always as □𝜙 ≡ ¬◇¬𝜙; weak next as ∙𝜙 ≡ ¬∘¬𝜙 (note that, on finite traces, ¬∘𝜙 is not equivalent
to∘¬𝜙); and weak until as 𝜙1𝒲 𝜙2 ≡ (𝜙1 𝒰 𝜙2∨2𝜙1), i.e. 𝜙1 holds until 𝜙2 or forever. ltl𝑓 formulas
are interpreted on finite (possibly empty) traces 𝑎 = 𝑎0 . . . 𝑎𝑛−1 where 𝑎𝑖 at instant 𝑖 is a propositional
interpretation over the alphabet 2𝒫 , and 𝑛 is the length of the trace. An ltl𝑓 formula can be transformed
into an equivalent afa in linear time in the size of the formula, in a nfa in at most EXPTIME and into an
equivalent and in a dfa in at most 2EXPTIME [14]. ltl𝑓 is used in declarative process specification in
BPM, through the so called DECLARE paradigm [11]. In this case it is assumed that only one proposition
(corresponding to an action) is true at every time point: 𝜉𝒫 = 2(

⋁︀
𝑎∈𝒫 𝑎)∧2(

⋀︀
𝑎,𝑏∈𝒫,𝑎 ̸=𝑏 𝑎→¬𝑏). We

call this the declare assumption, and we do adopt it in this paper.
FOND Planning. A Fully-Observable Non-Deterministic (FOND) domain model can be formalized as
a tuple 𝒟 = ⟨ℱ , 𝐴, pre, eff ⟩ where ℱ is a set of positive literals, 𝐴 is a set of action labels, pre and
eff are two functions that define the preconditions and effects of each action 𝑎 ∈ 𝐴. A planning state
𝑠 is a subset of ℱ , and a positive literal 𝑓 holds true in 𝑠 if 𝑓 ∈ 𝑠; otherwise, 𝑓 is false in 𝑠. Both
functions pre and eff take an action label 𝑎 ∈ 𝐴 as an input and return a propositional formula over
ℱ and a set {eff 1, . . . , eff 𝑛} of effects, respectively. Each effect eff 𝑖 ∈ eff (𝑎) is a set of conditional
effects each of the form 𝑐 ◁ 𝑒, where 𝑐 is a propositional formula over ℱ and 𝑒 ⊆ ℱ ∪ {¬𝑓 | 𝑓 ∈ ℱ} is
a set of literals from ℱ . Sometimes we write 𝑒 as a shorthand for the unconditional effect ∅ ◁ 𝑒. An
action 𝑎 can be applied in a state 𝑠 if pre(𝑎) holds true in 𝑠 (i.e., 𝑠 |= pre(𝑎)). A conditional effect 𝑐 ◁ 𝑒
is triggered in a state 𝑠 if 𝑐 is true in 𝑠. Applying 𝑎 in 𝑠 yields a successor state 𝑠′ determined by an
outcome nondeterministically drawn from eff (𝑎). Let eff 𝑖 ∈ eff (𝑎) be the chosen nondeterministic
effect, the new state 𝑠′ is such that ∀𝑓 ∈ ℱ , 𝑓 holds true in 𝑠′ if and only if either (i) 𝑓 was true in 𝑠 and
no conditional effect 𝑐 ◁ 𝑒 ∈ eff 𝑖 triggered in 𝑠 deletes it (¬𝑓 ∈ 𝑒) or (ii) there is a conditional effect
𝑐 ◁ 𝑒 ∈ eff 𝑖 triggered in 𝑠 that adds it (𝑓 ∈ 𝑒). In case of conflicting effects, similarly to other works [26],
we assume delete-before-adding semantics. We use 𝛿(𝑠, 𝑎) to denote the set of possible successor states
{𝑠′1, . . . , 𝑠′𝑛} obtained by executing 𝑎 in 𝑠. Note that if 𝑠 ̸|= pre(𝑎) then 𝛿(𝑠, 𝑎) = ∅. A FOND planning
problem is a tuple Γ = ⟨𝒟, 𝑠0, 𝐺⟩, where 𝒟 is a domain model, 𝑠0 ⊆ ℱ is the initial state, and 𝐺 is a
formula over ℱ , also called the reachability goal. We now define what it means to solve a planning
problem on 𝒟. A FOND planning problem is a tuple Γ = ⟨𝒟, 𝑠0, 𝐺⟩, where 𝒟 is a domain model, 𝑠0 ⊆ ℱ
is the initial state, and 𝐺 is a formula over ℱ specifying the goal states. A trace of Γ is a finite or infinite
sequence 𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . where 𝑠0 is the initial state, and 𝑠𝑖 |= pre(𝑎𝑖) and 𝑠𝑖+1 = 𝛿(𝑠𝑖, 𝑎𝑖) for each
𝑠𝑖, 𝑎𝑖 in the trace. A strategy (or plan) is a partial function 𝜋 : (2ℱ )+ → 𝐴 such that for every 𝑢 ∈ (2ℱ )+,
if 𝜋(𝑢) is defined then last(𝑢) |= pre(𝜋(𝑢)), i.e., it selects applicable actions. If 𝜋(𝑢) is undefined, we
write 𝜋(𝑢) = ⊥. A trace 𝜏 is generated by 𝜋, or simply an 𝜋-trace, if (i) if 𝑠0, 𝑎0, . . . , 𝑠𝑖, 𝑎𝑖 is a prefix of
𝜏 then 𝜋(𝑠0𝑠1 . . . 𝑠𝑖) = 𝑎𝑖, and (ii) if 𝜏 is finite, say 𝜏 = 𝑠0, 𝑎0, . . . , 𝑎𝑛−1, 𝑠𝑛, then 𝜋(𝑠0𝑠1 . . . 𝑠𝑛) = ⊥.
A strategy 𝜋 is a (strong) solution to Γ if every 𝜋-trace is a finite trace 𝜏 such that 𝑠𝑛 |= 𝐺.



3. Goal-oriented ltl𝑓 Service Composition

Our composition framework follows the Roman model in the case the available services are non-
deterministic. Unlike the Roman model, we have a high-level specification of a goal to accomplish
expressed as an ltl𝑓 formula. We want to accomplish such a goal despite the available services having
nondeterministic behaviour. We detail our framework below.

Following the Roman Model [2, 3, 7], each (available) service is defined as a tuple 𝒮 = ⟨Σ, 𝐴, 𝜎0, 𝐹, 𝛿⟩
where: (i) Σ is the finite set of service states, (ii) 𝐴 is the finite set of services’ actions, (iii) 𝜎0 ∈ Σ is the
initial state, (iv) 𝐹 ⊆ Σ is the set of final states (i.e., states in which the computation may stop but does
not necessarily have to), and (v) 𝛿 ⊆ Σ×𝐴× Σ is the service transition relation. For convenience, we
define 𝛿(𝜎, 𝑎) = {𝜎′ | (𝜎, 𝑎, 𝜎′) ∈ 𝛿}, and we assume that for each state 𝜎 ∈ Σ and each action 𝑎 ∈ 𝐴,
there exist 𝜎′ ∈ Σ such that (𝜎, 𝑎, 𝜎′) ∈ 𝛿 (possibly 𝜎′ is an error state 𝜎𝑢 that will never reach a final
state). Actions in 𝐴 denote interactions between service and clients. The behavior of each available
service is described in terms of a finite transition system that uses only actions from 𝐴.

Our target specification consists of a goal specification 𝜙 expressed in ltl𝑓 over the set of propositions
𝐴. Given a community of 𝑛 services 𝒞 = {𝒮1, . . . ,𝒮𝑛}, where each set of actions 𝐴𝑖 ⊆ 𝐴, a trace of 𝒞 is
a finite or infinite alternating sequence of the form 𝑡 = (𝜎10 . . . 𝜎𝑛0), (𝑎0, 𝑜0), (𝜎11 . . . 𝜎𝑛1), (𝑎1, 𝑜1) . . . ,
where 𝜎𝑖0 is the initial state of every service 𝒮𝑖 and, for every 0 ≤ 𝑘, we have (i) 𝜎𝑖𝑘 ∈ Σ𝑖 for all
𝑖 ∈ {1, . . . , 𝑛}, (ii) 𝑜𝑘 ∈ {1, . . . , 𝑛}, (iii) 𝑎𝑘 ∈ 𝐴, and (iv) for all 𝑖, 𝜎𝑖,𝑘+1 = 𝛿𝑖(𝜎𝑖𝑘, 𝑎𝑘) if 𝑜𝑘 = 𝑖,
otherwise 𝜎𝑖,𝑘+1 = 𝜎𝑖𝑘. Given a trace 𝑡, we call states(𝑡) the sequence of states of 𝑡, i.e. states(𝑡) =
(𝜎10 . . . 𝜎𝑛0), (𝜎11 . . . 𝜎𝑛1), · · · . The choices of a trace 𝑡, denoted with choices(𝑡), is the sequence of
actions in 𝑡, i.e. choices(𝑡) = (𝑎0, 𝑜0), (𝑎1, 𝑜1), . . . . Note that, due to nondeterminism, there might be
many traces of 𝒞 associated with the same sequence of choices. Moreover, we define the action run of a
trace 𝑡, denoted with actions(𝑡), the projection of choices(𝑡) only to the components in 𝐴. Note that
both choices(𝑡) and actions(𝑡) are empty if 𝑡 = (𝜎10 . . . 𝜎𝑛0). A finite trace 𝑡 is successful, denoted with
successful(𝑡), if (1) actions(𝑡) |= 𝜙, and (2) all service states 𝜎𝑖 ∈ last(states(𝑡)) are such that 𝜎𝑖 ∈ 𝐹𝑖.

An orchestrator is a partial function 𝛾 : (Σ1 × · · · × Σ𝑛)
+ → (𝐴× {1 . . . 𝑛}) ∪ {⊥} that, if defined

given a sequence of states �̄� = (𝜎10 . . . 𝜎𝑛0) . . . (𝜎1𝑚 . . . 𝜎𝑛𝑚), returns the action to perform 𝑎 ∈ 𝐴,
and the service (actually the service index) that will perform it; otherwise we write 𝛾(�̄�) = ⊥. Next, we
define when an orchestrator is a composition that satisfies 𝜙. A trace 𝑡 is an execution of an orchestrator
𝛾 with 𝒞 if for all 𝑘 ≥ 0, we have (𝑎𝑘, 𝑜𝑘) = 𝛾((𝜎10 . . . 𝜎𝑛0) . . . (𝜎1𝑘 . . . 𝜎𝑛𝑘)) and, if 𝑡 is finite, say of
length 𝑚, then 𝛾((𝜎10 . . . 𝜎𝑛0) . . . (𝜎1,𝑚−1 . . . 𝜎𝑛,𝑚−1)) = ⊥. Note that due to the nondeterminism of
the services, we can have many executions for the same orchestrator, despite the orchestrator being
a deterministic function. We say that some finite execution 𝑡 of 𝛾 is successful, if successful(𝑡) and
𝛾(states(𝑡)) = ⊥. Finally, we say that an orchestrator 𝛾 realizes the ltl𝑓 goal specification 𝜙 with 𝒞 if
all its executions are finite traces 𝑡 that are successful. Note that the orchestrator, at every step, chooses
the action and the service to which the action is delegated. In doing so, it guarantees that the sequence
of actions satisfies the ltl𝑓 goal specification and that at each step the action is delegated to a service
that can actually carry out the action, despite the nondeterminism of the services. Moreover, when the
orchestrator stops, all services are left in their final states. The composition problem is:

Problem 1 (Composition for ltl𝑓 Goal Specifications). Given the pair (𝒞, 𝜙), where 𝜙 is an ltl𝑓 goal
specification over the set of propositions 𝐴, and 𝒞 is a community of 𝑛 services 𝒞 = {𝒮1, . . . ,𝒮𝑛}, compute,
if it exists, an orchestrator 𝛾 that realizes 𝜙.
Example 1. We present an example of using our framework, inspired by the “garden bots system”
example [27]. The goal is to clean the garden by picking fallen leaves and removing dirt, water
the plants, and pluck the ripe fruits and flowers. The action clean must be performed at least once,
followed by water and pluck in any order. In declare ltl𝑓 , the goal can be expressed as 𝜙 =
clean ∧ ∘(clean 𝒰((water ∧ ∘pluck) ∨ (pluck ∧ ∘water))). We assume there are three available
garden bots, each with different capabilities and rewards. In Figure 1 the three services specifications
and the automaton 𝒜𝜙 of the ltl𝑓 goal 𝜙 are shown. Such an automaton 𝒜𝜙 is a dfa in this simple
case, instead of a (proper) nfa.
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Figure 1: From left to right: the three available bots
of the garden bot systems, and the automa-
ton 𝒜𝜙 of the ltl𝑓 goal.

We are interested in a composition of the
bots to satisfy the goal 𝜙. Bot 1 will be used
to perform clean . Although both bot 2 and 3
can be used for pluck , a strong solution cannot
choose bot 2 because the action pluck can lead
to the failure state 𝑏2; therefore, pluck will be
requested to bot 3. Bot 2 will be used forwater .
The order in which water and pluck are exe-
cuted is irrelevant since both alternatives lead
to the accepting state. Both bot 1 and bot 2
might need to be emptied to return to the initial accepting states 𝑎0 and 𝑐0, respectively, and the solution
must handle this.

4. Solution Technique

To synthesize the orchestrator, we rely on a game-theoretic technique: i.e.: (i) we build a game arena
where the controller (roughly speaking the orchestrator) and the environment (the service community)
play as adversaries; (ii) we synthesize a strategy for the controller to win the game whatever the
environment does; (iii) from this strategy we will build the actual orchestrator.

Specifically, we proceed as follows: (1) first, from the ltl𝑓 goal specification we compute the
equivalent nfa; (2) in this nfa, we can give the control of the transition to the controller, constructing
from the nfa a dfa 𝒜act over an extended alphabet; (3) compute a product of such dfa 𝒜act with the
services, obtaining a new dfa 𝒜𝜙,𝒞 ; (4) the latter dfa can be seen as an arena over which we play is the
so-called dfa game [28]; (5) if a solution of such dfa game is found, from that solution, we can derive
an orchestrator that realizes 𝜙. We now detail each step.
Step 1. The nfa 𝒜𝜙 = (𝐴,𝑄, 𝑞0, 𝐹, 𝛿) of an ltl𝑓 formula, which can be exponentially larger than
the size of the formula, can be computed by exploiting a well-known correspondence between ltl𝑓
formulas and finite-word automata [14]. Note that we can build 𝒜𝜙 in such a way that its alphabet is 𝐴
and not 2𝐴 since, by the DECLARE assumption, only one action is executed at each time instant.
Step 2. From the nfa of the formula 𝜙, 𝒜𝜙, which is on the alphabet 𝐴, we define a controllable dfa
𝒜act = (𝐴×𝑄,𝑄, 𝑞0, 𝐹, 𝛿act) on the alphabet 𝐴×𝑄, with the same states, initial state and final state
of 𝒜𝜙 but with 𝛿act defined as follows: 𝛿act(𝑞, (𝑎, 𝑞′)) = 𝑞′ iff (𝑞, 𝑎, 𝑞′) ∈ 𝛿. Note that the “angelic”
nondeterminism of 𝒜𝜙 is cancelled by moving the choice of the next nfa state and the next system
service state in the alphabet 𝒜×𝑄 of the dfa 𝒜act. Intuitively, with the dfa 𝒜act, we are giving to the
controller not only the choice of actions but also the choice of transitions of the original nfa𝒜𝜙, so that
those chosen transitions lead to the satisfaction of the formula. In other words, for every sequence of
actions 𝑎0, . . . , 𝑎𝑚−1 accepted by the nfa𝒜𝜙, i.e. satisfying the formula 𝜙, there exists a corresponding
alternating sequence 𝑞0, 𝑎0, . . . , 𝑞𝑚 accepted by the dfa 𝒜act, and viceversa.
Step 3. Then, given 𝒜act and 𝒞, we build the composition dfa 𝒜𝜙,𝒞 = (𝐴′, 𝑄′, 𝑞′0, 𝐹

′, 𝛿′) as fol-
lows: 𝐴′ = {(𝑎, 𝑞, 𝑖, 𝜎𝑗) | (𝑎, 𝑞, 𝑖, 𝜎𝑗) ∈ 𝐴 × 𝑄 × {1, . . . , 𝑛} ×

(︀⋃︀
𝑖Σ𝑖

)︀
and 𝜎𝑗 ∈ Σ𝑖}; 𝑄′ =

𝑄 × Σ1 × · · ·Σ𝑛; 𝑞′0 = (𝑞0, 𝜎10 . . . 𝜎𝑛0); 𝐹 ′ = 𝐹 × 𝐹1 × · · · × 𝐹𝑛; 𝛿′((𝑞, 𝜎1 . . . 𝜎𝑖 . . . 𝜎𝑛), (𝑎, 𝑞′, 𝑖,
𝜎′
𝑖)) = (𝑞′, 𝜎1 . . . 𝜎

′
𝑖 . . . 𝜎𝑛) iff 𝛿𝑖(𝜎𝑖, 𝑎) = 𝜎′

𝑖, and 𝛿act(𝑞, (𝑎, 𝑞
′)) = 𝑞′. Intuitively, the dfa 𝒜𝜙,𝒞

is a synchronous cartesian product between the nfa 𝒜𝜙 and the service 𝒮𝑖 chosen by the cur-
rent symbol (𝑎, 𝑞, 𝑖, 𝜎) ∈ 𝐴′. It can be shown that there is a relationship between the accept-
ing runs of the dfa 𝒜𝜙,𝒞 and the set of successful executions of some orchestrator 𝛾 with com-
munity 𝒞 for the specification 𝜙. Given a word (𝑎0, 𝑞1, 𝑜0, 𝜎𝑜0) . . . (𝑎𝑚−1, 𝑞𝑚, 𝑜𝑚−1, 𝜎𝑜𝑚−1) ∈ 𝐴′*,
which induces the run 𝑟 = (𝑞0, 𝜎10 . . . 𝜎𝑛0), . . . , (𝑞𝑚, 𝜎1𝑚 . . . 𝜎𝑛𝑚) over 𝒜𝜙,𝒞 , we define the history
ℎ = 𝜏𝜙,𝒞(𝑤) = (𝜎10 . . . 𝜎𝑛0), (𝑎0, 𝑜0), . . . , (𝜎1𝑚 . . . 𝜎𝑛𝑚). We consider the dfa 𝒜𝜙,𝒞 as a dfa game.
Step 4. dfa games are games between two players, here called respectively the environment and the
controller, that are specified by a dfa. We have a set 𝒳 of uncontrollable symbols, which are under
the control of the environment, and a set 𝒴 of controllable symbols, which are under the control of
the controller. A round of the game consists of both the controller and the environment choosing



the symbols they control. A (complete) play is a word in 𝒳 × 𝒴 describing how the controller and
environment set their propositions at each round till the game stops. A play is winning for the controller
if such a play leads from the initial to a final state. A strategy for the controller is a function 𝑓 : 𝒳 * → 𝒴
that, given a history of choices from the environment, decides which symbols 𝒴 to pick next. In this
context, a history has the form 𝑤 = (𝑋0, 𝑌0) · · · (𝑋𝑚−1, 𝑌𝑚−1). Let us denote by 𝑤𝒳 |𝑘 the sequence
projected only on 𝒳 and truncated at the 𝑘-th element (included), i.e., 𝑤𝒳 |𝑘 = 𝑋0 · · ·𝑋𝑘. A winning
strategy is a strategy 𝑓 : 𝒳 * → 𝒴 such that for all sequences 𝑤 = (𝑋0, 𝑌 0) · · · (𝑋𝑚−1, 𝑌𝑚−1) with
𝑌𝑖 = 𝑓(𝑤𝒳 |𝑘), we have that 𝑤 leads to a final state of our dfa game. The realizability problem
consists of checking whether there exists a winning strategy. The synthesis problem amounts to actually
computing such a strategy. A DFA game can be solved by backward least-fixpoint computation, by
computing the winning region Win(𝒢), that is, the states where the controller has a winning strategy
to reach a final state. First, we start with Win0(𝒢) = 𝐹 , and Win𝑖(𝒢) is the set of states for which the
controller can force the game to move in a state of Win𝑖−1(𝒢). Let Win(𝒢) ⊆ 𝑄 be the smallest set
that satisfies the winning condition. It can be shown that a DFA game 𝒢 admits a winning strategy
iff 𝑠0 ∈ Win(𝒢) [28]. The resulting strategy is a transducer 𝑇 = (𝒳 × 𝒴, 𝑄′, 𝑞′0, 𝛿𝑇 , 𝜃𝑇 ), defined as
follows: 𝒳 × 𝒴 is the input alphabet, 𝑄′ is the set of states, 𝑞′0 is the initial state, 𝛿𝑇 : 𝑄′ ×𝒳 → 𝑄′ is
the transition function such that 𝛿𝑇 (𝑞,𝑋) = 𝛿′(𝑞, (𝑋, 𝜃𝑇 (𝑞)), and 𝜃𝑇 : 𝑄 → 𝒴 is the output function
defined as 𝜃𝑇 (𝑞) = 𝑌 such that if 𝑞 ∈ Win𝑖+1(𝒢) ∖Win𝑖(𝒢) then ∀𝑋.𝛿′(𝑞, (𝑋,𝑌 )) ∈ Win𝑖(𝒢).
Step 5. Given a strategy in the form of a transducer 𝑇 , we can obtain an orchestrator that real-
izes the specification. Let the extended transition function 𝛿*𝑇 of 𝑇 is 𝛿*𝑇 (𝑞, 𝜖) = 𝑞 and 𝛿*𝑇 (𝑞, 𝑤𝑎) =
𝛿𝑇 (𝛿

*
𝑇 (𝑞, 𝑤), 𝑎). Then, for every sequence 𝑤 of length 𝑚 ≥ 0 𝑤 = (𝑋0, 𝑌0) . . . (𝑋𝑚, 𝑌𝑚), where

for each index 𝑘, 𝑌𝑘 and 𝑋𝑘 are of the form (𝑎𝑘, 𝑞𝑘+1, 𝑜𝑘) and 𝜎𝑜𝑘,𝑘 respectively, we define the
orchestrator 𝛾𝑇 ((𝜎10 . . . 𝜎𝑛0), (𝜎11 . . . 𝜎𝑜1,1 . . . 𝜎𝑛1), . . . (𝜎1𝑚 . . . 𝜎𝑜𝑘,𝑚 . . . 𝜎𝑛𝑚)) = (𝑎𝑚, 𝑜𝑚), where
(𝑎𝑚, 𝑞𝑚+1, 𝑜𝑚) = 𝜃𝑇 (𝛿

*
𝑇 (𝑞0, 𝑤)), and whenever the trace is successful, the next choice is ⊥. Hence, we

can reduce the problem of service composition for ltl𝑓 goal specifications to solving the dfa game
over 𝒜𝜙,𝒞 with uncontrollable symbols 𝒳 =

⋃︀
𝑖Σ𝑖 and controllable symbols 𝒴 = 𝐴×𝑄× {1, . . . , 𝑛}.

Proposition 2. 𝑎0 . . . 𝑎𝑚−1 ∈ ℒ(𝒜𝜙) iff (𝑎0, 𝑞1) . . . (𝑎𝑚−1, 𝑞𝑚) ∈ ℒ(𝒜act), for some 𝑞1 . . . 𝑞𝑚.
Proposition 3. Let ℎ be a history with 𝒞 and 𝜙 be a specification. Then, ℎ is successful iff there exist a
word 𝑤 ∈ 𝐴′* such that ℎ = 𝜏𝜙,𝒞(𝑤) and 𝑤 ∈ ℒ(𝒜𝜙,𝒞).
Proposition 3 shows that there is a tight relationship between accepting runs of 𝒜𝜙,𝒞 and successful
histories with 𝒞 for specification 𝜙.

Theorem 4. Realizability for ⟨𝜙, 𝒞⟩ can be solved by checking whether 𝑞′0 ∈ Win(𝒜𝜙,𝒞).
Proof sketch. Soundness can be proved by induction on the maximum number of steps 𝑖 for which
the controller wins the dfa game from 𝑞′0, building 𝛾 in a backward fashion such that it chooses
(𝑎𝑘, 𝑜𝑘) ∈ 𝐴′ that allows forcing the win in the dfa game (which exists by assumption). Completeness
can be shown by contradiction, assuming that there exists an orchestrator 𝛾 that realizes 𝜙 with
community 𝒞, but that 𝑞′0 ̸∈ Win(𝒜𝜙,𝒞), implying that we can build an arbitrarily long unsuccessful
history, by definition of winning region, contradicting that 𝛾 realizes 𝜙.

Theorem 5. Let the composition problem be ⟨𝜙, 𝒞⟩, and let the transducer 𝑇 be a winning strategy over
the game arena 𝒜𝜙,𝒞 . Let 𝛾𝑇 be the orchestrator extracted from 𝑇 , as defined above. Then, 𝛾𝑇 realizes 𝜙
with community 𝒞.
Considering the cost of each step above, we get the following upper bound for the worst-case computa-
tional cost (we conjecture this cost is the exact complexity characterization):

Theorem 6. Problem 1 can be solved in at most exponential time in the size of the formula, in at most
exponential time in the number of services, and in polynomial time in the size of the services.

5. Linear Encoding in FOND Planning

In this section, we refine the solution from the previous section, taking advantage of the possibility of
using FOND adversarial planning to handle the NFA corresponding to the goal symbolically in linear



time. Specifically, we show how we can compute a PDDL specification that is linear in the size of the
formula 𝜙, by exploiting a technique for planning for ltl𝑓 goals in [22]. Their construction is based on
representing the nfa of the goal by a symbolic representation directly stemming from the corresponding
afa, and then exploring (possibly partially) the nfa on-the-fly while planning. In contrast to [22], we
do this in a nondeterministic (adversarial) setting, which normally would require using dfas instead of
nfas, see [15]. This is possible in our case because the ltl𝑓 goal specifies the desired sequence of target
actions, whose actual choice is under the full control of the controller that we are synthesizing.

Encoding in Adversarial FOND Planning. The game-theoretic solution technique presented in the
previous section gives us the theoretical foundations for reasoning about the problem and is useful
for theoretical analysis regarding the correctness and worst-case computational cost. However, the
size of the game arena can be exponential in the size of the formula and exponential in the number
of services, meaning that computing the entire arena beforehand may be infeasible. However, this is
not required since we can build the arena on-the-fly while searching for a solution. We can do this by
leveraging on FOND adversarial planning (aka strong planning in FOND), where the agent controls the
actions and the environment controls the fluents [6]. In particular, we focus on planning for temporally
extended goals [29, 30], work on declarative and procedural constraints [31, 32, 33], temporal logics
with finite-trace semantics, such as ltl𝑓 [32, 33, 14, 22], and in FOND planning [28, 15, 16]. More
recently, [34] and [35] proposed, for classical and FOND planning, respectively, a polynomial-time
compilation in PDDL for goals in Pure-Past Linear Temporal Logic (ppltl) [36]. In our setting, the
orchestrator controls the actions to satisfy the ltl𝑓 goal, while the evolution of the selected services is
the uncontrollable part of the process. A forward search-based approach able to handle environment
nondeterminism is, therefore, particularly interesting for our case since it could possibly avoid the
exponential construction of the entire arena since the procedure stops as soon as a winning strategy is
found. While the services are already given in input, the nfa 𝒜𝜙 must be computed from the input
goal specification 𝜙. To avoid constructing the entire nfa in advance, we will rely on an on-the-fly
construction based on Torres and Baier’s work [22]; more details later in this section. Another crucial
feature of (FOND) planning is that the domain specification is assumed to be factorized, i.e., a state
in the arena is a propositional assignment of a set of fluents ℱ . This feature fits well in our setting
since a state of the game arena (i.e. of the composition dfa 𝒜𝜙,𝒞) is made of several state components:
one state component for each service, each keeping track of the current state for each service, and one
component from the nfa state 𝒜𝜙, which keeps track of the partial satisfaction of the goal formula 𝜙.
Regarding the latter, we consider the nfa states 𝑄𝑁 as assignments of the states of the afa 𝑄𝐴 viewed
as atomic propositions (i.e. 𝑄𝑁 ⊆ 2𝑄𝐴 ) [14, 22]. As for the services 𝒮𝑖, they also could be represented
in compact (i.e. logarithmic) form with fluents ℱ𝑖, i.e. Σ𝑖 = 2ℱ𝑖 . Indeed, one could always build a binary
encoding of the state space Σ𝑖 using log |Σ𝑖| bits.

Adapting Torres and Baier’s Construction Most of the techniques in FOND planning for temporal
goals specify a PDDL encoding that takes a domain and a problem in PDDL with a temporal goal
as input and generates new PDDL domain and problem files with a simple reachability goal. Such
files can then be given in input to a (non-temporal) FOND planning solver, and the correctness of
the encoding guarantees that, from a solution for the new version of the problem, we can compute
a solution for the original planning problem. In our case, we adopt the encoding proposed in [22]
for solving temporally-extended planning in deterministic domains. The interesting feature of their
technique is that it makes it possible to encode in PDDL the construction of the nfa on-the-fly, by
exploiting the relationship between afa 𝐴𝐴 of the ltl𝑓 formula 𝜙 and its equivalent nfa 𝐴𝑁 . Not
only is this a worst-case optimal construction in the size of the formula, but it could possibly avoid the
entire construction of the nfa. The other alternatives are either superseded, not easily applicable, or
worst-case non-optimal: [33]’s translation is worst-case exponential but builds the entire nfa explicitly
and only works for deterministic domains; and the encoding proposed in [16] requires the construction
of the entire dfa, which is not optimal since its size is doubly exponential in the size of the formula.
the encoding in [35] is designed for ppltl goals, and despite ppltl and ltl𝑓 are equally expressive,
translating one into the other (and vice versa) is generally prohibitive since the best-known algorithms



require 3EXPTIME [36]. Although Torres and Baier’s encoding was originally used for deterministic
planning domains, we observe that their construction works even in the case of nondeterministic
domains, with the restriction that the propositions 𝒫 in the ltl𝑓 goal specification are such that all are
controllable by the agents and, therefore, not controllable by the environment. In fact, this is the case in
our framework: we can rely on the nfa-based construction in the definition of the game arena since
the nondeterminism from the nfa and the nondeterminism from the services do not directly interfere
with each other. Note that if some of the propositions in the goal formula were not under the control of
the agent (as is typically the case in temporally extended goals, which talk about sequences of fluent
evaluations in the domain), we would end up mixing the angelic nondeterminism of the nfa with the
devilish nondeterminism of the environment, and to avoid it we need determinize the nfa getting a dfa
where the angelic nondeterminism has been removed. As a consequence, the complexity of planning in
this case becomes 2EXPTIME-complete [15].

There are two minor issues to cope with when using Torres and Baier’s encoding in our setting:
(i) first, the formulas can only be evaluated over state fluents and not over actions; (ii) second, the
compilation does not handle nondeterminism. In the next part, we describe how to solve these issues.
First, we define the service community domain 𝒟𝒞 = ⟨ℱ ′, 𝐴′, pre ′, eff ′⟩ and problem Γ𝒞 = ⟨𝒟𝐶 , 𝑠

′
0, 𝐺

′⟩,
where: (i) ℱ ′ = {start} ∪ 𝐴 ∪ Σ1 ∪ · · ·Σ𝑛; (ii) 𝐴′ = 𝐴 × {1 . . . 𝑛}; (iii) pre ′(⟨𝑎, 𝑖⟩) = true (since
𝛿𝑖 are total functions); (iv) eff ′(⟨𝑎, 𝑖⟩) = {eff ′

𝑎,𝑖(𝜎𝑖1, 𝜎𝑖2) | 𝜎𝑖2 ∈ 𝛿𝑖(𝜎𝑖1, 𝑎)} where eff ′
𝑎,𝑖(𝜎𝑖1, 𝜎𝑖2) =

{{𝜎𝑖1} ◁ {¬𝜎𝑖1, 𝜎𝑖2, 𝑎} ∪ �̄�(𝑎)}; (v) 𝑠′0 = {start} ∪ {𝜎𝑖0 | 𝜎𝑖0 is the initial state of 𝒮𝑖}; (vi) 𝐺′ =
{(𝜎1, . . . , 𝜎𝑛) | 𝜎𝑖 ∈ 𝐹𝑖 for all 𝑖 = 1, . . . 𝑛}. Intuitively, 𝒟𝒞 simulates executions of 𝒞. The state
induced by the fluents ℱ ′ is represented as tuples of the form (𝜎1, . . . , 𝜎𝑛, 𝑎), where 𝜎𝑖 ∈ Σ𝑖 and 𝑎 ∈ 𝐴.
The action space 𝐴′ is a set of pairs of the form (𝑎, 𝑖), where 𝑎 is the chosen action and 𝑖 is the index
of the chosen service that should execute it. The preconditions are not needed (though conditional
effects are) since we assumed the services’ transition functions are complete. The effect of action (𝑎, 𝑖)
are all the possible state pairs for which there is a transition via 𝑎, but only the effects from the same
current state 𝜎𝑖1 can be triggered (see the condition), and all the successor states 𝜎𝑖2 ∈ 𝛿𝑖(𝜎𝑖1, 𝑎) are
considered (see the set comprehension for terms eff ′

𝑎,𝑖(𝜎𝑖1, 𝜎𝑖2)). Crucially, the action (𝑎, 𝑖) also has
the effect of adding the fluent 𝑎 in the next state and removing all other action fluents; such negative
effects are denoted with �̄�(𝑎) = {¬𝑎′ | 𝑎′ ∈ 𝐴, 𝑎′ ̸= 𝑎}, hence forcing the declare assumption at
the semantic level. The initial state contains the auxiliary fluent start, which will be used to shift by
one step the evaluation of the formula; intuitively, this is because the state-based evaluation starts
from the initial state, where no action is taken yet. The auxiliary fluent start and the presence of
the last action taken in the state allow us to solve the first issue. Finally, the set of goal states 𝐺′

corresponds to the set of services’ configurations where all the states are final. The next step is to apply
the translation rules specified in [22]. Given a problem instance ⟨𝜙, 𝒞⟩, and given the domain 𝒟𝒞 and
problem Γ𝒞 as defined above, we get a new domain 𝒟𝜙,𝒞 and problem Γ𝜙,𝒞 by applying the translation
rules with the formula 𝜙′ = start ∧∘𝜙. Intuitively, the evaluation of 𝜙′ will read the initial state and,
from there on, will evaluate the chosen actions, which, by construction, are added to the subsequent
states. To support nondeterminism, and so to fix the second challenge, the only change we apply is
that, in “World Mode” (cfr. [22]), we consider all possible nondeterministic effects coming from 𝒟𝒞 , i.e.
eff (𝑎′) = {𝐸 ∪ {copy,¬world} | 𝐸 ∈ eff (𝑎′)}.

Theorem 7. Let ⟨𝜙, 𝒞⟩ be an instance of ltl𝑓 -goal oriented service composition. 𝜙 is realizable with 𝒞 iff
there exists a strong solution for the FOND adversarial problem Γ𝜙,𝒞 .
Proof sketch. By construction of Γ𝜙,𝒞 , and by correctness of Torres and Baier’s construction, there is
a one-to-one correspondence between traces of Γ𝜙,𝒞 and the game arena 𝒜𝜙,𝒞 (modulo deletion of
the first evaluation of start). In other words, the game arena induced by 𝒟𝜙,𝒞 and Γ𝜙,𝒞 is essentially
the same of the one induced by 𝒜𝜙,𝒞 . Therefore, there exist a strong solution for Γ𝜙,𝒞 iff there exist a
strong solution for 𝒜𝜙,𝒞 . The claim follows by Theorem 4.

Theorem 8. ltl𝑓 goal-oriented service composition can be solved in at most exponential time in the size
of the formula, in at most exponential time in the number of services, and in polynomial time in the size of
services (exponential if the service representation is in logarithmic form).



We observe that in the construction of 𝒟𝜙,𝒞 we introduce action fluents, hence increasing the size
of the state space. This could be avoided by modifying Torres and Baier’s encoding with PDDL3
action-trajectory constraints [37], and hence by evaluating the temporal goal over the action-trajectory
only. A detailed analysis of this option is left as future work.

6. Implementation and Applications

We implemented a software prototype to solve the composition problem, and we tested it on industrial
case studies taken from the literature. The code can be found at https://bit.ly/3XjJbEF.
The tool. Our tool takes in input a list of services (in explicit representation) and a ltl𝑓 goal specification
and computes a PDDL specification (i.e. domain and problem files) of the corresponding FOND planning
task, using the technique formalized in the previous section.

First, we construct 𝒟𝒞 and Γ𝒞 in PDDL form. The PDDL domain file represents the nondeterministic
behaviour of the services. One of the challenges we encountered was that some planning systems do
not support the when expression with complex effect types, such as oneof; this prevented us from
specifying the transitions as a list of when expressions, one for each possible starting state, each followed
by a oneof expression that includes all the possible successors. To workaround this issue, given an
action ⟨𝑎, 𝑖⟩ of 𝒟𝒞 , we defined a PDDL operator ⟨𝑎, 𝑖, 𝜎𝑖𝑗⟩, one for each possible starting state 𝜎𝑖𝑗 ∈ Σ𝑖

of service 𝑖; In this way, we can use the oneof effect without nesting it into a when expression.
Then, to include the on-the-fly evaluation of the ltl𝑓 goal specification 𝜙, we rely on the [22]’s

translator (in the following, denoted with TB), implemented in SWI-Prolog, to include the on-the-fly
evaluation of the ltl𝑓 goal in the planning domain. The encoding of the goal formula in PDDL follows
the syntax supported by the TB translator. The TB translator supports four modes: Simple, OSA, PG,
and OSA+PG, where Simple is the “naive” translation (cfr. [22], Section 4) and OSA, OSA+PG are two
optimizations called “Order for Synchronization Action” and “Positive Goals” (cfr. ibid., Section 4.3).
OSA+PG is the combination of OSA and PG.

The final (:goal) section includes, in conjunction: (i) the goal specified by the TB
encoding, and (ii) the formula that specifies the accepting configuration for all services.
Regardin (ii), the PDDL formula for the accepting service configuration has the form
(and (or (curstate_s1 𝜎11)(curstate_s1 𝜎12) . . . ) . . . (or (curstate_sn 𝜎𝑛1)
(curstate_sn 𝜎𝑛2) . . . )), for all services 𝒮𝑖 with 𝑖 = 1 . . . 𝑛, and 𝜎𝑖𝑗 ∈ 𝐹𝑖. Intuitively, the
formula captures the condition that for each service, it holds that in the current planning state each
service is in either one of its final states. Note that we could have encoded the final acceptance
condition by means of the formula ◇(𝜑 ∧ ∙true), where 𝜑 is a propositional formula, which is the
formula that is accepting whenever, in the current state of the trace, 𝜑 is true. However, this would
have burdened the TB translator with a larger ltl𝑓 formula, ending up in enlarging the overhead of the
encoding (i.e. more sync actions, more nfa states, etc.).

Case Studies. To test our tool, we considered case studies inspired by the literature on service
composition applied to the Smart Manufacturing and Digital Twins industry.

Electric Motor (EM). We consider a simplified version of the electric motor assembly, proposed
in the context of Digital Twins composition for Smart Manufacturing [38]. The main compo-
nents of an electric motor are the stator, the rotor, and, in the case of alternate current motors
with direct current power (e.g., in the case of electric cars), the inverter. These three compo-
nents are built or retrieved in any order, but the final assembly step must have all the previous
components available. Moreover, after the assembly step, it is required that at least one test
between an electric test and a full static test must be performed. This goal is captured by the
following ltl𝑓 constraints: ◇(assembleMotor) ∧ (¬assembleMotor 𝒰 buildStator) ∧
(¬assembleMotor 𝒰 buildRotor) ∧ (¬assembleMotor 𝒰 buildInverter) ∧ ◇(staticTest ∨
electricTest) ∧ (¬electricTest 𝒰 assembleMotor) ∧ (¬staticTest 𝒰 assembleMotor). The 𝒰-
clauses prevent the assembly step before all the components are available, while the reachability goal is
specified by ◇(assembleMotor) and ◇(staticTest ∨ electricTest). We consider two types of services:

https://bit.ly/3XjJbEF
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infallible and breakable (Figure 2). The former has only one accepting state and supports one operation
op; the latter, when executing the operation, can nondeterministically go into a “broken” state, from
which a repair action is required to make it available again. In our experiments, we will have exactly
one service for each process action, and scale on the number of breakable services.

𝑞0

op

𝑞0

op

𝑞1
op

repair

𝑞0

op

𝑞1
op

Figure 2: The infallible, breakable and irreparable
services templates, respectively.

Chip Production (CP). Here we consider a smart
factory scenario in which the goal is to pro-
duce chips [8]. In our simplified setting, the
goal specification consists of a sequence of
operations to be performed: cleaning the sil-
icon wafers, thin film deposition, resist coat-
ing, etc. We consider three variants of this sce-
nario, one for each service type. In particular,
in the first variant, all services are of type infallible; in the second variant, they are of type break-
able; and in the third variant, the services are all of type irreparable, i.e. they are like the break-
able services except that they cannot be repaired. The ltl𝑓 goal specification is a sequential goal
with the following actions: cleaning ,filmDeposition, resistCoating , exposure, development , etching ,
impuritiesImplantation, activation, resistStripping , assembly , testing , and packaging . Hence, the
formula has the following form: ◇(cleaning ∧¬filmDeposition ∧ · · · ∧ ¬filmDeposition ∧ . . . ). Note
that at each step we negate the presence of all the other. Moreover, for all variants, we will have exactly
one service for each process action. We use the number of actions as a scaling parameter.
Evaluation. We evaluated the MyND Planner [39], combined with the ℎff and ℎmax heuristics, over
the PDDL files produced by our tool and the 4 available encoding of the TB translator. The metrics we
considered are: pre-processing time, i.e., translation and SAS computation (TT), planning time (PT),
the number of nodes expanded during the search (EN), and the policy size (PS). As benchmarks, we
considered: 𝑒𝑖, with 𝑖 = 0, . . . , 6, are instances of the electric motor scenario with 𝑖 builder services
breakable and 6− 𝑖 infallible; 𝑐𝑖 are the instances on the chip production scenario, with 𝑖 = 1, . . . , 12
being the length of the sequence of operations, with all services infallible; 𝑐𝑛𝑖 as 𝑐𝑖 but with all services
breakable; and 𝑐𝑢𝑖 as 𝑐𝑖 but with all services irreparable. We set a timeout of 1000 seconds (≈ 15 minutes).
Due to lack of space we discuss only the PT metric. Other results can be found in the appendix.
Platform. The experiments have been run on an Ubuntu 22.04 machine, endowed with 12th Gen
Intel(R) Core(TM) i7-1260P, with 16 CPU threads (12 cores) and 64GB of RAM. The JVM version is 14
for compatibility with MyND. The maximum RAM for the JVM was 16GB.
Results. The results of our evaluation on all benchmarks, both using ℎmax and ℎff , are shown in the
plots for the PT metric for each scenario: Figure 3a, 3b, 3c, and 3d. For the EM scenario (Figure 3a), we
observe that the PT of the OSA encoding is generally lower than the others, and in particular ℎmax

is slightly better in PT than ℎff . The Simple encoding has comparable but slightly higher PT. The PG
encoding has the PT higher than the PT in the Simple and OSA case, for all instances, sometimes higher
by a factor of 4-5. The OSA+PG encoding was considerably worse than the other since the evaluation
on many instances reached the timeout. In the deterministic CP scenario (Figure 3b), we have that
the OSA encoding, with respect to the PT metric, is better than the others, with no strict dominance
between ℎmax and ℎff . The other encodings, from better to worse, were OSA+PG, PG and Simple



for the ℎff heuristic, and Simple, PG and OSA+PG for the ℎmax heuristic. In the nondeterministic CP
scenario (Figure 3c), the performances were quite worse than the deterministic case for all encodings
and heuristics; the executions from cn8 on timed out. We noticed a certain advantage of using ℎff with
the PG encoding, and ℎmax with the OSA encoding. In the unsolvable CP scenario (Figure 3d), the OSA
was considerably better than the other encodings, with comparable performances between ℎmax and
ℎff .

7. Discussion and Conclusion

In this paper, we have studied an advanced form of task-oriented compositions of nondeterministic
services. Our goal is to synthesize an orchestrator that, using the available services, produces a trace
that satisfies an ltl𝑓 specification. To underline the importance of the ever-increasing use of service
composition in smart manufacturing, we evaluate two valid case studies taken from the literature:
one concerning the production of an electric motor and the other concerning the production of chips.
The tool prototype we implemented shows the feasibility of our approach. It would be interesting to
test other encodings for temporal goals, such as [16] and [34, 35]. This work is highly motivated by a
renovated interest in service composition techniques with impactful applications in smart manufacturing
[40, 41, 42]. In particular, the use of service composition has been advocated in an industrial scenario [10],
where the composition of a target service (manufacturing goal) is managed by means of a community
of Digital Twins (manufacturing actors) modelled as stochastic services.
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