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Abstract
Accurate network simulations are critical for replicating real-world performance and guiding design decisions.

Parameter calibration is needed to improve simulation accuracy, particularly with regards to End-to-End delay.

Network simulation tools typically simplify or ignore processing delay, resulting in inaccurate results when

considering this factor. We use a linear optimization approach to enhance simulation accuracy by incorporating

processing delay as a key parameter. This adjustment reduces the discrepancy between simulation outcomes

and real-world network behavior. However, even after calibration, certain models may still fail to fully capture

the complexity of real-world networking devices. In such cases, developing a new model is necessary to better

reflect device-specific characteristics. To demonstrate this, we present a case study highlighting the limitations of

existing simulation models and validate the effectiveness of our proposed model in accurately replicating real

network conditions, particularly in terms of End-to-End delay.
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1. Introduction

1.1. Context

Network simulations are essential tools for researchers and engineers to test, analyze, and validate

network protocols and designs before real-world implementation. The construction and testing of real

networks is costly and time-consuming, while simulations provide a cost-effective alternative. Accurate

simulations are crucial for reliable, real-world-like results, helping fine-tune network parameters,

diagnose issues, and plan upgrades by predicting performance impacts of changes. [1, 2]

Inaccurate simulations can lead to flawed predictions of network performance, particularly for metrics

like delay, bandwidth utilization, jitter, and packet loss. Underestimating or overestimating these metrics

can cause network designers to make poor decisions [3]. Real-world networks are complex due to

traffic patterns, protocol interactions, and hardware constraints, which inaccurate simulations may

fail to capture, especially in critical areas like congestion control and packet loss [4]. This can result

in protocols or configurations that perform well in simulations but fail in real deployments [3, 5].

Inaccurate simulations also undermine the credibility of research, slowing progress in networking

studies [5]. Simplified models may overlook real-world effects, leading to overly optimistic results. One

such overlooked factor is processing delay, which can have a significant impact on network performance

but is frequently simplified in simulations [6].

In simulation accuracy validation, comparing key metrics such as End-to-End delay is essential for

capturing a comprehensive understanding of the network’s behavior. End-to-End delay is a critical

metric for ensuring that latency-sensitive applications meet quality of service (QoS) requirements [7, 8].
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Figure 1: Comparison of End-to-End delays across RouteNet Fermi, BNNet, and OMNeT++ simulations against
the testbed results by varying data rates

1.2. Motivation

End-to-End delay is the sum of four distinct delays: transmission delay, queuing delay, propagation

delay and processing delay, summed up over all routers and links a packet traverses. Transmission delay

is the time it takes to push all the bits of a packet onto the link. Queueing delay is the time a packet

spends waiting in a queue before it can be transmitted. Propagation delay is the time it takes for the

signal to travel from the sender to the receiver. Processing delay refers to the time a router or network

device spends handling a packet. Processing delay is influenced by factors such as the hardware of the

router, the complexity of routing decisions, and the type of operations required, such as encryption or

traffic filtering [9, 10, 11].

In many network simulations, processing delay is often ignored or simplified because it was histori-

cally considered negligible[12]. It is essential for realistic network simulations to incorporate processing

delay, especially in modern high-speed networks where such delays are becoming more pronounced

[13].

We conducted a case study using a real network provided by Ciena, with the objective of building

a simulation model that accurately replicates the real network. We only take two routers that are

directly connected together. End-to-End delay was measured across multiple simulation tools, including

RouteNet Fermi [14], BNNet [15], and OMNeT++ [16]. Consistent configurations were maintained,

such as a 100 Mbps link bandwidth, 1,600,000-bit buffer size, and a uniform traffic setup with 200-byte

message lengths. Data rate variations are illustrated in Figure 1. RouteNet Fermi, which requires

training on real network data, exhibited notable performance gaps compared to the testbed, particularly

under high-load scenarios. In contrast, BNNet and OMNeT++ produced more accurate delay predictions.

These results are shown in Figure 1.

Ultimately, OMNeT++/INET was selected as the primary simulation tool for its flexibility in handling

packet sizes and its reliability without the need for additional training. The remainder of this paper

focuses on improving the accuracy of OMNeT++/INET simulations to minimize the gap between model

and real network performance.

1.3. Contribution

In this paper, we improve the accuracy of network simulations, specifically with respect to End-to-End

latency, by incorporating processing delay as a key factor in the calibration process. While calibration

helps reduce discrepancies, we recognize that sometimes simulation models may still fall short in

capturing the full complexity of real-world networking devices, highlighting the need for developing

new models. To address this, we introduce a refined model that better represents device-specific

characteristics and validate its effectiveness through a case study.



In other words, we answer the following question in this paper:

1. Can the simulation model closely replicate the real network?

2. What is the effect of integrating processing delay on simulation accuracy?

2. Related Work

In network simulation evaluation, many studies focus on the accuracy assessment of simulation models.

For instance, [5] compares the results of two widely used simulators, OPNET Modeler and NS-2, against

data from a real network testbed to validate their accuracy. Similarly, [8] examines the performance and

scalability of several network simulators, including NS-2, OMNeT++, NS-3, SimPy, and JiST/SWANS, by

implementing identical simulation settings across these tools. Both studies highlight the importance of

ensuring that simulation results align closely with real-world network behavior.

Model calibration ensures the correct representation of a system the simulation model is supposed to

simulate. Paper [17] presents model calibration as tuning model parameters to match the input-output

behavior of the reference system and highlights the inherent complexity of model calibration. The

paper shows model calibration can be NP-complete and therefore, heuristic or approximate solutions

are recommended. Paper [18] presents an optimization method for tuning parameters of middleware

services in wireless sensor networks to improve Quality of Service (QoS) metrics like accuracy, response

time, and power consumption. Also, paper [19] investigates the automated calibration methods for

parallel and distributed computing simulators and proves that algorithms like Grid Search, Random

Search, and Gradient Descent are efficient in improving accuracy.

In all the referred papers, the authors relied on the simulation models to replicate the behavior of real

networking devices. However, due to specific configurations, available simulations may be unable to

accurately reflect the behaviour of such devices like routers, and therefore calibration can be insufficient,

see[20, 21]. The proposed model aims to enhance these tools by integrating dynamic routing and

performance analysis during congestion to improve simulation accuracy.

While these studies provide valuable insights into simulation validation and calibration, they do

not consider the role of processing delay as a key parameter. Our work directly addresses this gap

by integrating processing delay into simulation models through a calibration process. However, we

recognize that even with this improved calibration, sometimes, simulation models may still fail to

capture the complexities of real-world networking devices. To address this limitation, we propose a

refined model that better reflects device-specific characteristics and validate its effectiveness through a

case study.

3. Model Evaluation and Calibration

Building on the insights from previous studies and addressing the gaps identified in the Related Work

section, we propose an approach to improve the accuracy of network simulations by incorporating

processing delay. Our approach is structured around two main tasks: Validating the Simulation Model

and Calibrating the Simulation Model.

We begin by evaluating the accuracy of the simulation model. If a significant gap is identified between

the simulation results and the real network data, we proceed with calibrating the model by incorporating

processing delay as a key parameter. After the calibration, we re-evaluate the model to determine if the

discrepancies have been minimized. However, if a significant gap persists, we question whether the

simulation model accurately replicates the behavior of the actual network device. In such cases, a new

model may need to be developed, tailored specifically to the device’s behavior to improve simulation

accuracy.



3.1. Validating the Simulation Model

Our evaluation process begins with hypothesis testing to identify any statistically significant differences

between the simulation model and real-world data. We set the null hypothesis to state that no significant

difference exists between the data sets; if this cannot be rejected, we conclude that the results are good
enough. Additionally, we calculate an error function to quantify the discrepancy between observed and

simulated values, which is essential for calibrating and optimizing the simulation.

3.2. Calibrating the Simulation Model

To enhance the accuracy of our simulation, we introduce the simulation model 𝑀 , defined as a triple

(𝑋𝑀 , 𝑃𝑀 , 𝑌𝑀 ), where 𝑋𝑀 is the input, 𝑃𝑀 is the set of parameters, and 𝑌𝑀 denotes the output metrics.

Our reference system, the Testbed, has specific input values 𝑋𝑆 and corresponding output values 𝑌𝑆 .

The objective is to adjust the model parameters 𝑃𝑀 so that the model’s output 𝑌𝑀 matches the reference

system’s output 𝑌𝑆 for given inputs.

The inputs, 𝑋𝑀 , include detailed network configuration, such as nodes, links, queues, and flows,

while the outputs 𝑌𝑀 measure key network performance metrics, including loss, throughput, and End-

to-End delay. If the model outputs 𝑌𝑀 differ significantly from 𝑌𝑆 , particularly in terms of End-to-End

delay, we perform a calibration by adjusting 𝑃𝑀 , specifically incorporating processing delay as a critical

factor.

3.2.1. Input Definition 𝑋𝑀

The inputs, 𝑋𝑘, include the network configuration, such as a set of nodes 𝑁𝑘, a set of links 𝐿𝑘, a set

of queues 𝑄𝑘, and a set of flows 𝐹𝑘. These inputs collectively define the environment in which the

network operates and manage traffic, determining performance metrics. Further, each 𝑙𝑖 in 𝐿 can be

defined as a tuple:

𝑙𝑖 = (𝑠𝑟𝑐𝑖, 𝑑𝑒𝑠𝑡𝑖, 𝑏𝑖, length𝑖) ; ∀𝑙𝑖 ∈ 𝐿 (1)

Where,

• 𝑠𝑟𝑐𝑖 is the source node of the link 𝑙𝑖.

• 𝑑𝑒𝑠𝑡𝑖 is the destination node of the link 𝑙𝑖.

• 𝑏𝑖 is the bandwidth of the link 𝑙𝑖.

• length𝑖 is the length of the link 𝑙𝑖.

Similarly, we have a set of output queues:

𝑄 = {𝑞𝑖 : 𝑖 ∈ (1, . . . , |𝐿|)} (2)

where each queue can be defined as:

𝑞𝑖 = (𝑙𝑖, 𝑠𝑞𝑖 , 𝑝𝑞𝑖) (3)

where

• 𝑙𝑖 is the link associated with this outgoing queue.

• 𝑠𝑞𝑖 is the size of the i-th queue.

• 𝑝𝑞𝑖 is the policy of the i-th queue such as FIFO, WFQ, RED.

Flows follow a source-destination path. Hence, we define flows as sequences with tuples of the

queues and links they traverse along with the message length and packet rate of the flow:

𝑓𝑖 = {(𝑞𝐹𝑞(𝑓𝑖,0), 𝑙𝐹𝑙(𝑓𝑖,0),𝑚𝑖, 𝑠𝑖, 𝑡𝑖), . . . , (𝑞𝐹𝑞(𝑓𝑖,𝑛𝑞), 𝑙𝐹𝑙(𝑓𝑖,𝑛𝑙),𝑚𝑖, 𝑠𝑖, 𝑡𝑖)} (4)



To summarize, we can define 𝑓𝑖 as below:

𝑓𝑖 = (𝑄𝑓𝑖 , 𝐿𝑓𝑖 ,𝑚𝑖, 𝑠𝑖, 𝑡𝑖) (5)

This can be further expanded as:

𝐹 = {(𝑄𝑓𝑖 , 𝐿𝑓𝑖 ,𝑚𝑖, 𝑠𝑖, 𝑡𝑖) : 𝑖 ∈ (1, . . . , 𝑛𝑓 )} (6)

Where:

• 𝐹𝑞(𝑓𝑖, 𝑗) returns the index of the 𝑗-th queue in the network that is part of the path taken by flow

𝑓𝑖 .

• 𝐹𝑙(𝑓𝑖, 𝑗) returns the index of the 𝑗-th link in the network that is part of the path taken by flow 𝑓𝑖 .

• 𝐿𝑓𝑖 represents all the links that the 𝑖-th flow is taking.

• 𝑄𝑓𝑖 represents all the queues that the 𝑖-th flow is taking.

• 𝑚𝑖 represents the message length of the 𝑖-th flow.

• 𝑠𝑖 is the packet rate of the 𝑖-th flow.

• 𝑡𝑖 is the shape of the traffic for the 𝑖-th flow.

• 𝑛𝑞 is the number of queues in the path.

• 𝑛𝑙 is the number of links in the path.

• 𝑛𝑓 is the number of flows in 𝑋𝑖.

Therefore, our input 𝑋 is a set of 𝑋𝑘:

𝑋 = {𝑋𝑘 : 𝑘 ∈ (0, . . . , 𝑛)} (7)

𝑋𝑘 = (𝑁𝑘, 𝐿𝑘, 𝑄𝑘, 𝐹𝑘)

3.2.2. Output Metrics 𝑌𝑀

Our output 𝑌𝑀 is the set of metrics for all flows that can be represented as:

𝑌 = {𝑌𝑘 : 𝑘 ∈ (1, . . . , 𝑛)}

Where each output 𝑌𝑘 includes metrics such as loss, throughput, and End-to-End delay:

𝑌𝑘 = {(𝑓𝑗𝑙 , 𝑓𝑗𝑑 , 𝑓𝑗𝑡) : ∀𝑓𝑗 , 𝑗 ∈ (1, . . . , 𝑛𝑓 )}

where,

• 𝑓𝑗𝑙 is the packet loss for flow 𝑓𝑗
• 𝑓𝑗𝑡 is the throughput for flow 𝑓𝑗
• 𝑓𝑗𝑑 is the End-to-End delay for flow 𝑓𝑗
• 𝑛𝑓 is the number of flows.

Each metric in our output captures different aspects of network performance. Throughput measures

the efficiency of data transfer, indicating the network’s capacity to handle traffic. Loss measures the

reliability of data transfer, showing how often packets are lost due to congestion or errors. Together,

they provide a complete picture of network behavior making our simulation reliable and robust. The

End-to-End delay is influenced by the intricate relationship between traffic demand, network topology,

and network performance [22]. The total End-to-End delay is given by:

𝐷𝑡𝑜𝑡𝑎𝑙 = 𝐷𝑡𝑟𝑎𝑛𝑠𝑗 +𝐷𝑝𝑟𝑜𝑝𝑗 +𝐷𝑝𝑟𝑜𝑐𝑗 +𝐷𝑞𝑢𝑒𝑢𝑒𝑗

where,



• 𝐷𝑡𝑜𝑡𝑎𝑙 represents the total delay for a flow, which is the End-to-End delay.

• 𝐷𝑡𝑟𝑎𝑛𝑠𝑗 is the total transmission delay over each link on the path of flow j.

• 𝐷𝑝𝑟𝑜𝑝𝑗 is the total propagation delay over each link on the path of flow j.

• 𝐷𝑝𝑟𝑜𝑐𝑗 is the total processing delay for each node on the path of flow j.

• 𝐷𝑞𝑢𝑒𝑢𝑒𝑗 is the total queuing delay for each outgoing interface on the path of flow j.

Transmission delay for a flow refers to the time it takes to push all the bits of a packet onto the links

that the flow traverses. For flow 𝑗, the total transmission delay is the sum of the transmission delays

for all links 𝑙𝑖 on the path of flow 𝑗. The transmission delay for each link is a function of the message

length 𝑚𝑗 and the transmission rate 𝑏𝑖 of the link.

We define the total transmission delay for flow 𝑗 as:

𝐷𝑡𝑟𝑎𝑛𝑠𝑗 =
∑︁

𝑖∈path(𝑗)

𝑚𝑗

𝑏𝑖

Where:

• 𝐷𝑡𝑟𝑎𝑛𝑠𝑗 is the total transmission delay for flow 𝑗.

• 𝑚𝑗 is the message length for flow 𝑗.

• 𝑏𝑖 is the transmission rate of link 𝑙𝑖 on the path of flow 𝑗.

Propagation delay refers to the time it takes for a signal to travel from the sender to the receiver along

each link in the path of the flow. For flow 𝑗, the total propagation delay is the sum of the propagation

delays for all links 𝑙𝑖 in the path of the flow. Propagation delay depends on the distance, which we

previously defined as 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 in Equation 1, between the sender and receiver on link 𝑙𝑖 and the speed

of the signal 𝑠𝑖, which is typically close to the speed of light (commonly approximated for propagation

delay as 2× 108 m/s).

We define the total propagation delay for flow 𝑗 as:

𝐷𝑝𝑟𝑜𝑝𝑗 =
∑︁

𝑖∈path(𝑗)

𝑙𝑒𝑛𝑔𝑡ℎ𝑖
𝑠𝑖

Where:

• 𝐷𝑝𝑟𝑜𝑝𝑗 is the total propagation delay for flow 𝑗.

• 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 is the distance between the sender and receiver on link 𝑙𝑖.

• 𝑠𝑖 is the signal speed on link 𝑙𝑖.

3.2.3. Calibration Parameters 𝑃𝑀

𝑃𝑀 plays a fundamental role in aligning the simulation model with the real-world testbed. Our goal

is to minimize the gap between the simulation and the testbed by considering processing delay for

each router. Although transmission and propagation delays can be easily measured or estimated, and

queuing delay is typically calculated by simulation tools, processing delay is often overlooked in the

overall delay calculation within these tools. However, it plays a significant role in the behavior of

modern routers, especially under high-load traffic conditions. Therefore, we define 𝑃𝑀 as the set of

processing delays per node:

𝑃 = {𝑑𝑝𝑟𝑜𝑐𝑖 : 𝑖 ∈ (0, . . . , |𝑁 |)}



3.2.4. Objective Function

Our objective function is to minimize the delay gap between simulation results and the Testbed by

calibrating the processing delay. So, we define our function as below for every input 𝑋𝑖:

min(

|𝐹 |∑︁
𝑗=1

(𝑑𝑡𝑒𝑠𝑡𝑏𝑒𝑑𝑓𝑗 − (𝑑𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑓𝑗
+

|𝑁 |∑︁
𝑛=1

𝜔𝑓𝑗 (𝑑𝑝𝑟𝑜𝑐𝑛)))), (8)

∀𝑓𝑗 ∈ 𝐹𝑖

where:

• 𝐹𝑖 is the set of flows defined as part of the input 𝑋𝑖.

• 𝑓𝑗 is a flow from 𝐹𝑖.

• 𝑑𝑡𝑒𝑠𝑡𝑏𝑒𝑑 is the End-to-End delay per flow in the testbed.

• 𝑑𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is the End-to-End delay per flow in the simulation.

• 𝜔 is the selection function which represents the existence of node 𝑛 in the flow 𝑓𝑗 . It returns 0 if

node 𝑖 is not in the path taken by flow 𝑗, otherwise it returns 1.

• 𝑑𝑝𝑟𝑜𝑐𝑛 is the processing delay of node n.

Our constraints are:

• processing delay must be non-negative: 0 ≤ 𝑑𝑝𝑟𝑜𝑐.

• If there is no flow passing by node 𝑘, 𝑑𝑝𝑟𝑜𝑐𝑘 is 0.

• We define the maximum gap between the testbed and the simulation as:

Θ = max(𝑑
testbed

− 𝑑
simulation

).

This defines an upper bound on the total processing delay across all nodes along the path,

constrained by:

0 ≤
∑︁

𝑑proc ≤ Θ.

In other words, the cumulative processing delay assigned to each node in the path of a flow

should not exceed the maximum observed delay gap between the testbed and the simulation.

Building on the work of [10, 11, 12], a linear model for processing delay was proposed to account for

both a constant base cost per packet and an additional cost that scales with packet size. This approach

reflects the observation that larger packets require more processing time due to tasks such as inspection,

memory management, and checksum computations. The processing delay for packets belonging to a

specific flow 𝑓𝑘 at router 𝑖, denoted as 𝑑proc𝑖
(𝑓𝑘), is formalized as:

𝑑𝑝𝑟𝑖(𝑓𝑘) = 𝛼𝑖 + 𝛽𝑖 · 𝑙𝑘 (9)

Where:

• 𝑑𝑝𝑟 represents the processing delay for a single packet in the router.

• 𝛼 is the constant processing delay per packet. This cost accounts for operations that are required

for every packet, such as reading the header, performing routing table lookups, and basic error

checking. These operations are fixed and apply equally to all packets, irrespective of their length

[10, 11, 12].

• 𝛽 is the delay per byte. This component reflects the increased complexity and time required for

processing larger packets, which involve tasks such as memory handling, payload inspection,

encryption, and checksum calculations. Since these tasks become more resource-intensive as

packet size increases, 𝛽 is a proportional factor that adjusts the processing delay based on the

message length [10, 11, 12].



• 𝑙𝑘 represents the size of packets in flow 𝑓𝑘.

In the linear problem define by the objective function in Equation 8 and the constraints listed above,

we establish the total processing delay for each router in the network. Our goal is to introduce processing

delays that accurately reflect the behavior of each router. Using the model in Equation 9, we identify

the optimal values of 𝛼 and 𝛽 for each router. Therefore, in Equation 10, the total processing delay for

a router is calculated as the sum of the processing times for each packet in every flow passing through

the router.

𝑑𝑝𝑟𝑜𝑐𝑛 =

|𝐹 |∑︁
𝑗=1

𝑃𝑗∑︁
𝑖=1

(𝛼+ 𝛽 · 𝑙𝑗,𝑖) (10)

Where:

• |𝐹 | represents the total number of flows passing through the router.

• 𝑃𝑗 is the number of packets in flow 𝑗.

• 𝑙𝑗,𝑖 represents the length of the 𝑖-th packet in flow 𝑗.

4. Experiment

To validate our approach and minimize the gap between the testbed and simulation results, we conducted

a series of experiments using a physical testbed provided by Ciena. The testbed, represented in Figure

2, consists of four routers from three different series mentioned in the figure, with a traffic generator

(IXIA) to create data flows across the network. We aim to calibrate processing delay by comparing

the testbed results with our OMNeT++/INET simulations. The primary objective of the experiments

is to adjust the simulation to more accurately reflect real-world behavior by tuning processing delay

parameters.

4.1. Setup and Configuration

For our experiments, we used Cisco routers with 100 Mbps links across the network, except for the

links connected to IXIA, which were set to 1 Gbps. This configuration allowed us to introduce various

traffic scenarios and examine the impact of processing delay under different conditions. The overall

topology of the testbed is illustrated in Figure 2. The run time for each experiment in the testbed and

OMNeT++/INET environments is 12 seconds, and we repeat each experiment multiple times to ensure

the reliability of the results. Using varying data rates, the network is tested under different loads—before,

during, and after the queue reaches its capacity. For experiments with varying message lengths, the

data rate is high enough that, by 12 seconds, the network reaches a steady state.

We set up flows with varying message lengths to observe the behavior of each router under different

traffic conditions. Our focus was on Router R2 to measure End-to-End delay and identify potential

discrepancies between testbed and simulation results.

4.2. Processing Delay Calibration

The main objective of the calibration process is to determine the optimal values for the processing delay

parameters, 𝛼 and 𝛽, for each router. We began by evaluating router R2 through a series of experiments

involving a single traffic flow with a message length of 300 bytes, adjusting the data rate to between 50

Mbps and 150 Mbps to simulate different network loads. The queue capacity was set to 500 packets,

and each experiment was run for 12 seconds in both the testbed and simulation environments.

We conducted 14 experiments on this router to determine its optimal parameters. The mean absolute

error (MAE) between the End-to-End delay in the testbed and OMNeT++/INET, shown in Figure 3

(highlighted in blue), indicates that, as expected, there is no significant difference in delay between the

testbed and the simulation when traffic levels are low, as confirmed by our hypothesis test.



Figure 2: Network topology of the physical testbed consisting of four Cisco routers and an IXIA traffic generator.

Figure 3: MAE comparison between the testbed, the initial OMNeT++/INET simulation, and the optimized
OMNeT++/INET model for Router R2

Table 1
Calibrated values of processing delay parameters 𝛼 and 𝛽 for Router R2 and R3.

Parameter 𝛼 𝛽

R2 Values 5 (ns) 0.85 (ns / byte)

R3 Values 10 (ns) 1.3 (ns / byte)

However, as traffic load increases and router R2 becomes congested, we observe a noticeable delay gap

between the testbed and simulation results. In Figure 3, this delay gap widens with higher traffic loads,

leading us to reject the null hypothesis, indicating a significant difference in delay under congestion.

This behavior aligns with findings in previous studies [9, 23], which emphasize the impact of congestion

on processing delay. When the queue reaches its capacity, the value of End-to-End delay and the delay

gap become stable because once the queue is full, packets are dropped while the remaining packets

take almost the same processing delay.

The calibrated values for 𝛼 and 𝛽 derived from this experiment are listed in Table 1. Figure 3

(highlighted in green) demonstrates a significant reduction in the delay gap for the calibrated model.

According to our statistical tests, we fail to reject the null hypothesis, concluding that these values

produce results that are good enough.

To validate the calibration and verify the values obtained in the previous step, we conducted further

experiments using a range of message lengths from 100 to 1500 bytes. Each experiment ran for 12

seconds in both the simulation and real testbed environments, with a fixed data rate of 150 Mbps to

evaluate the model’s performance under high traffic conditions. Figure 4 illustrates the End-to-End



Figure 4: Comparison of End-to-End delays for various message lengths between testbed, OMNeT++, and the
calibrated OMNeT++ model for Router R2.

Figure 5: End-to-End delay and packet loss behavior of Router R1 under a single traffic flow with 1500-byte
packets and varying packet rates, compared against OMNeT++ simulation results.

delay results, showing that the calibrated model (optimized) significantly reduced the delay gap between

OMNeT++ and the testbed and the End-to-End delay from OMNeT++/INET closely matches the testbed

results, showing no significant differences.

We then conducted the same experiments on Router R3. The results for this router showed slight

variations compared to the previous experiments, which is consistent with findings from prior studies

[12, 10, 11]. These studies highlight that processing delay is influenced by the specific design and

architecture of each router, meaning different types of routers can exhibit varying processing delays.

The values obtained for Router R3 are provided in Table 1. Additionally, we ran the same experiments

conducted on Router R2 to validate the values obtained for this router. Again, our calibrated model

effectively reduces the delay gap, similar to Router R2 (results not shown due to space limitation).

Up to this point, we have successfully calibrated the simulation model for routers in the C9200 and

C7200 series. Now, the focus shifts to calibrating Router R1 and Router R4 from the C1111 family. We

sent traffic with 1500-byte messages, and the packet rates are shown on the x-axis in Figure 5 and each

experiment is run for 12s. With a 100 Mbps link, the network can handle 8333 packets per second. The

queue size was set to 12,000,000 bits, resulting in an expected queuing delay of 0.12 seconds. The green
line is representing the expected behaviour once the queue is full with End-to-End delay 0.12s. The red
line shows packet loss corresponding to OMNeT++/INET.

The measured delay of this router is shown by the blue line. For packet rates below 8333 packets



Figure 6: Observed End-to-End delay behavior of Router R1 for different message lengths, showing a linear
relationship between packet size and delay.

per second, the delay matched simulation results. However, when the rate exceeded 8333 packets per

second, the queue starts to fill up, causing higher delays and packet loss. Contrary to expectations,

the delay rose linearly, stabilizing at 0.78 seconds, indicating potential issues with the router under

congestion. Clearly this router was not operating as expected, i.e., as modelled in the OMNeT++/INET

router model, given the configuration parameters., So we needed a modified delay model, as discussed

below, to ensure that our simulation closely matches the results from the testbed.

4.3. A New Model for Replicating Router Behavior

To accurately model the router’s behavior, we need a refined model of the delay introduced by that

router. For example, Figure 6 illustrates how delay changes with varying packet sizes. The data rate

was set to a high value to observe the delay behavior when the queue reaches full capacity. The figure

demonstrates an almost linear relationship between packet size and delay, which can be formalized by

the equation below.

𝐸2𝐸𝐷𝑒𝑙𝑎𝑦(𝜇𝑠) = 𝜅 *𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ(𝑏𝑦𝑡𝑒𝑠) + 𝛿 (11)

We can replace the numbers based on the router behaviour, for example for router R1 we have:

𝐸2𝐸𝐷𝑒𝑙𝑎𝑦(𝜇𝑠) = 510(𝜇𝑠/𝑏𝑦𝑡𝑒𝑠) *𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ(𝑏𝑦𝑡𝑒𝑠) + 8850(𝜇𝑠)

To accurately model the linearity observed before reaching the maximum delay, it is important to

understand how the slope changes based on different packet sizes. We introduce the term packet rate
threshold (PRT) to represent the maximum number of packets of a given size that can be sent through

the link without experiencing any loss.

To identify the appropriate range of packet rates where the delay begins to increase linearly until

it reaches its maximum value, we conducted a series of experiments for each packet size. From these

experiments, we observed that for nearly all packet sizes, the delay starts to grow in a linear fashion as

the packet rate increases. This linear behavior occurs within a specific range of packet rates, defined

by [PRT, PRT + 𝛾]. The Packet Rate Threshold (PRT) represents the point at which this linear increase

begins, and 𝛾 denotes the range where the delay continues to rise linearly until it stabilizes. We refer to

this range as the linear threshold, captured by 𝛾.

Our objective is to develop a model that accurately captures the behavior of the router, particularly

in terms of delay. The model represents a list of flows, each characterized by a pair consisting of a

packet rate and message length. If the total traffic load exceeds the available bandwidth of the link, the

network will experience congestion, resulting in packet loss and delays. Based on our observations



from Router R1, we noted that the total packet loss is distributed equally among all flows, meaning each

flow experiences the same percentage of loss. For example, with two flows defined by (message length,

packet rate) pairs, [(1500 bytes, 5000 packets/second), (1000 bytes, 8000 packets/second)], the combined

traffic rate amounts to 15,500,000 bytes per second, exceeding the link’s capacity by 3,000,000 bytes

per second. As a result, we would expect an overall packet loss of approximately 19.3%, and each flow

would experience this same percentage of loss. This behavior has been consistently observed across

multiple experiments, confirming that it is not a scenario-specific occurrence.

To model the delay, we introduce Algorithm 1. This algorithm replicates the behavior of Router R1 by

predicting the End-to-End delay for any combination of flows. Our observations indicate that the delay

is influenced by the flows traversing the same link, so the algorithm focuses on calculating the delay

based on these flow characteristics.

The first step is to determine if the given set of flows causes congestion in the link. If congestion is

detected (line 1), we then need to calculate the actual packet rate for each packet, i.e., the number of

packets successfully transmitted per second for each flow. This is done by computing the total packet

loss and loss portion (lines 4 and 5), as described in the previous section on loss behavior. Once the

total packet loss is known, we calculate the number of packets lost per second for each flow (line

7). By subtracting this value from the original packet rate, we can determine the number of packets

successfully transmitted per second for each flow (line 8).

If the packet rate for a flow lies within the range [PRT, PRT + 𝛾], or if the experiment duration is too

short for the delay to fully stabilize (lines 8, 9, and 10), we calculate the delay by determining how much

of the input packet rate falls within the linear threshold. This value is then multiplied by Equation 11 to

compute the delay (line 11).

If the packet rate exceeds the linear threshold (LT), or if the experiment runs long enough for the

delay to stabilize, the maximum delay is reached.The delay remains stable and does not exhibit a sharp

increase until the Packet Rate Threshold (PRT) for each flow is reached. For example, if only the first

flow [(1500, 5000)] is present, there would be no delay or packet loss since the total traffic rate remains

below the available bandwidth.

However, once a second flow is introduced, delays arise. One limitation of Equation 11 is that it

assumes the entire link bandwidth is dedicated to a single flow. In reality, each flow uses only a portion

of the bandwidth, so the actual delay for a flow is less than what would occur if the flow were utilizing

the full bandwidth. Therefore, we adjust the delay by calculating the fraction of bandwidth used by

each flow (lines 12, 14). Given that each experiment lasts for 12 seconds, we divide the calculated delay

by the total experiment duration (𝜃) to account for the running time of the traffic in the network.

Here:

• PRT is Packet Rate Threshold(packet/second).

• BW is bandwidth (Mbps).

• ml is message length(Bytes).

• pr is the original packet rate(packet/second).

• Delay is the End-to-End delay.

• t is the total run time(s).

• 𝛾 is the packet rate range during which the delay diagram has a linear shape, reaching its

maximum value beyond that range.

• 𝜅 and 𝛿 are the slope and intercept in Equation 11

To validate our proposed delay model for router R1, we conducted experiments. We began with a

single flow to ensure the model’s accuracy in simple scenarios before progressing to more complex ones.

The link bandwidth is 100 Mbps, and the message size is 1500 bytes. The model accurately predicts

the delay in this router. Before the packet rate reaches 8333 packets per second, there is no congestion,

so the delay remains low. However, during congestion, our linear model calculates the delay for each

packet rate, and once it reaches the PRT, the delay remains constant at its maximum value.



Algorithm 1
1: procedureModelDelay

2: flows = [(𝑝𝑟0,𝑚𝑙0), ..., (𝑝𝑟𝑖,𝑚𝑙𝑖)]
3: if 𝑠𝑢𝑚(𝑝𝑟𝑖 *𝑚𝑙𝑖) > 𝐵𝑊 : then
4: 𝑡𝑜𝑡𝑎𝑙𝐵𝑦𝑡𝑒𝐿𝑜𝑠𝑠 = 𝑠𝑢𝑚(𝑝𝑟𝑖 *𝑚𝑙𝑖)−𝐵𝑊
5: 𝑡𝑜𝑡𝑎𝑙𝐵𝑦𝑡𝑒𝐿𝑜𝑠𝑠𝑃𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑡𝑜𝑡𝑎𝑙𝐵𝑦𝑡𝑒𝐿𝑜𝑠𝑠/𝑠𝑢𝑚(𝑝𝑟𝑖 *𝑚𝑙𝑖)
6: for i in flows do
7: 𝑝𝑒𝑟𝐹 𝑙𝑜𝑤𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠 = 𝑡𝑜𝑡𝑎𝑙𝐵𝑦𝑡𝑒𝐿𝑜𝑠𝑠𝑃𝑜𝑟𝑡𝑖𝑜𝑛 * 𝑝𝑟𝑖
8: 𝑃𝑅𝑇 = 𝑝𝑟𝑖 − 𝑝𝑒𝑟𝐹 𝑙𝑜𝑤𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠
9: 𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝛾/𝑝𝑒𝑟𝐹 𝑙𝑜𝑤𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠

10: if 𝑝𝑟𝑖 < 𝑃𝑅𝑇 + 𝛾 and 𝑡 < 𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
11: 𝐷𝑒𝑙𝑎𝑦 = [(𝑝𝑟𝑖 − 𝑃𝑅𝑇 )/𝛾 * [𝛽 *𝑚𝑙𝑖 + 𝛼]]
12: 𝐷𝑒𝑙𝑎𝑦 = 𝐷𝑒𝑙𝑎𝑦 * [𝑃𝑅𝑇 *𝑚𝑙𝑖/𝐵𝑊 ]
13: else
14: 𝐷𝑒𝑙𝑎𝑦 = [𝜅 *𝑚𝑙𝑖 + 𝛿] * 𝑃𝑅𝑇 *𝑚𝑙𝑖/𝐵𝑊
15: end if
16: 𝐷𝑒𝑙𝑎𝑦 = 𝐷𝑒𝑙𝑎𝑦 * 𝑡/𝜃
17: end for
18: end if
19: end procedure

Table 2
Details of five experiments with varying flow configurations used to validate the delay model for Router
R1. The pairs represents as (Message Length (bytes), Packet Rate (packet / second)).

experiment 𝑓𝑙𝑜𝑤1 𝑓𝑙𝑜𝑤2

1 (1500,5000) (1000, 9000)

2 (1000,9000) (500,12000)

3 (1300,6000) (900,9000)

4 (1200,7000) (400,13000)

5 (300,20000) (200,40000)

Next, we need to validate our model with more complex scenarios involving flows with varying

packet sizes and packet rates. To advance this validation, we introduce scenarios that are slightly

more complex by including two flows with different packet rates and packet sizes. We conducted

five different experiments, with the details of each provided in Table 2. The source of all flows is R1,

and the destinations are R2 and R3. Individually, each flow is insufficient to cause link congestion, so

the observed delay and loss result from the combined effect of these two flows. The delay model is

represented in Fig 7. The y-axis is the delay we observed from router R1 and the x-axis is the delay we

calculate based on our model. As the diagram depicts, the linear relation between y-axis and x-axis

indicates that our model can perfectly observe the behaviour of this router.

We conducted the same experiments on Router R4, which belongs to the same family as Router R1.

The results were almost identical to those of Router R1, further confirming the efficiency and accuracy

of the introduced model for routers in this family. These findings demonstrate that the model is capable

of accurately predicting End-to-End delay and congestion behavior across multiple routers from the

C1111 series.



Figure 7: End-to-End delay comparison between model predictions and testbed measurements for Router R1.
The line represents how closely the model’s predicted delays align with the actual delays measured in the testbed
under different packet sizes and rates.

5. Conclusion and Future Work

In this paper, we introduced a novel approach for improving the accuracy of network simulations by

incorporating processing delay as a key factor in the calibration process. By integrating this parameter

into the simulation model, we were able to better align the simulated performance with real-world

behavior, particularly in terms of End-to-End delay. Our experiments demonstrated that the processing

delay can significantly impact network performance and that neglecting it in simulations can lead to

inaccurate predictions, especially for modern, high-speed networks.

We successfully calibrated our model for routers from the C9200 and C7200 series, showing improved

accuracy in capturing their behavior. However, the case study involving the C1111 series highlighted

the limitations of existing simulation models when dealing with specific router behaviors. To address

this, we proposed a new delay and loss model that more accurately reflects the behavior of routers of

that family under complex traffic conditions.
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