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2 JOURNAL OF GRAPH THEORY

1. INTRODUCTION

In this article, all graphs are assumed to be finite, nonempty, simple and undirected.
The reader is referred to [2, 3, 1], respectively, for notation and terminology on graphs,
permutation groups and combinatorial designs.

Let I" be a regular graph with vertex set V(I'), edge set E(I') and valency val(I').
For an integer s> 1, an s-arc is an ordered (s+ 1)-tuple (g, o1, ..., o) of vertices in I
such that {o;, 041} € E(I') for 0<i<s—1, and a;_1 # ;41 for 1 <i<s—1. By Arcy(I')
we denote the set of s-arcs in I'. A 1-arc is called an arc, and Arci(I') is denoted by
Arc(I).

Let X be a group acting on V(I'). The induced action of X on V(I') x V(I') is given
by (o, ) =(a*, f*) for o, € V(I') and x € X. We say that X preserves the adjacency of
Iif Are(T'y* =Arc(') for all xe X. Note that X induces naturally an action on Arcy(I')
if X preserves the adjacency of I'. The graph T is said to be (X,s)-arc transitive if I'
has at least one s-arc, X preserves the adjacency of I and X acts transitively on both
V(') and Arcy(I'); and I' is said to be (X, s)-arc regular if in addition X acts regularly
on Arcg(I"). Further, I' is said to be (X, s)-transitive if I" is (X, s)-arc transitive but not
(X, s+ D)-arc transitive. An (X, 1)-arc transitive graph is usually called an X-symmetric
graph.

Let I be an X-symmetric graph admitting a nontrivial X-invariant partition 3 on
V(I), that is, 1<|B|<V(I') and B*:={o* |« € B} € B for Be€ B and x € X. Such a graph is
said to be an imprimitive X-symmetric graph. The quotient graph 1I'g of I" with respect
to B is defined to be the graph with vertex set B such that Be B and C € 3 are adjacent
in I'g if and only if there exist w € B and S € C adjacent in I'. It is easy to see that I'g
is X-symmetric. We always assume that I'z has at least one edge, which implies that
each Be B is an independent set of I

ForoaeV(I') and Be B, set I'(0) ={y [{a,y} € E(I)}, ['(B) = U[feB I'B), I'gB)={Ce
B|{B,C}eE(I'p)} and I'g(a)={C € B|aeT'(C)}. Since I' is X-symmetric, for xe B¢
B and CeI'g(B), it is easily shown that the parameters v:=|B|, k:=|I'(C)NB| and
r:=|I'g(«)| are independent of the choices of B, C and a. The graph I is said to be
a multicover of I'g if k=v. Noting that vr=val(I' )k (see [10], for example), I" is a
multicover of I'g if and only if r=val(I'g). Let D(B) denote the incidence structure
(B,I'p(B)) such that fe B is incident with some CeI'g(B) if and only if CeI'g(p).
Then D(B) is a flag-transitive 1-(v,k,r) design with val(I'g) blocks [12, Lemma 2.1],
which is independent of the choice of B up to isomorphism. For (B,C)e€Arc(I'p),
denote by I'[B, C] the bipartite subgraph of I" induced by (I'(C)NB)U(I'(B)NC). Then
I'[B,C] is independent of the choice of (B,C)€Arc(I'g) up to isomorphism.

It has been observed in the literature that the quotient graphs of (X,2)-arc transitive
graphs are usually not (X,2)-arc transitive, and that an X-symmetric graph with an
(X,2)-arc transitive quotient itself is not necessarily (X,2)-arc transitive. (For example,
several examples are given in [4, 5] for the first situation; and for the second situation,
it is shown in [12] that every connected (X, 3)-arc transitive graph is a quotient graph
of at least one X-symmetric graph which is not (X,2)-arc transitive.) This observation
gave rise to a series of intensive studies of the following questions [18, 9].

(Q1) When can I'g be (X,2)-arc transitive?
(Q2) What information of the structure of I' can we obtain from an (X,2)-arc
transitive quotient I'g of I'?
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A CLASS OF SYMMETRIC GRAPHS WITH 2-ARC TRANSITIVE QUOTIENTS 3

The triple (I'g, I'[B, C], D(B)) mirrors “global” and “local” information of the struc-
ture of I', which allows us to reconstruct I' in some cases. This approach to imprimitive
symmetric graphs has received considerable attention in the literature. Gardiner and
Praeger [6] first suggested such an approach, and they discussed the case when the
stabilizer X, of a vertex o€ V(I') in X acts primitively on I'(x); and in [7, 8], they
considered the case when I'g is a complete graph and Xp (the subgroup of X fixing
B set-wise) is 2-transitive on B. For the case where k=v—1>2, Li et al. [10] found
an elegant construction (called the 3-arc graph construction) for constructing certain
graphs. Iranmanesh et al. [9], and Lu and Zhou [12] studied the case where I's3 is
(X,2)-arc transitive and obtained a series of interesting results. In particular, Lu and
Zhou [12] found the second type 3-arc graph construction, which led to a classification
[19] of a family of symmetric graphs. The reader is referred to [14—18, 11] for further
developments in this topic.

In answering the above two questions, a relatively explicit classification of (I', X, B)
has been given in [18], when I'5 is connected and (X, 2)-arc transitive such that 2=k <
v—1. This motivated us to investigate the case where k=3. The following is a summary
of the main result of this article, and more details will be given in Theorem 4.1.

Theorem 1.1. Let I' be an X-symmetric graph which admits an X-invariant partition
B on V(I') such that val(I'g) > 2, I'g is connected and (X, 2)-arc transitive. If |B|>|BN
I'(C)|=3 for (B,C)eArc(I'B), then one of the following four cases occurs: (a) |B|=4
and val('g)=4; (b) |B|=06 and val(I'g)=4; (¢) |B|=7 and valI'g)=7; (d) |B|=
3val(I'p).

Notation: For a group X acting on'a set V and BCV, denote by X" the induced
permutation group on V, by Xp the set-wise stabilizer of B in X, and by X(p) the
point-wise stabilizer of B in X; for a positive integer m and a graph I', denote by mI
the vertex-disjoint union of m copies of T'.

2. GRAPHS CONSTRUCTED FROM GIVEN GRAPHS

In this section, we restate several graphs constructed from a given graph, as well as
some of their properties, which turn out to be useful in a further characterization of
(I', X, B) stated in Theorem 1.1.

Assume that X is an (X,2)-arc transitive graph with val(£)>3. Let A be a self-
paired X-orbit on Arc3(Z), where self-parity means that (¢3,02,01,00) €A whenever
(09,01,02,03) € A. Define two kinds of 3-arc graphs [10, 12] as follows:

Z(Z,A), the graph with vertex set Arc(X) such that two arcs (7,71) and (o,01) of
X are adjacent if and only if (t1,7,0,01) €A; J(Z,A), the graph with vertices the
2-paths (paths of length 2) in X such that two distinct paths ¢j00, and 71175 are
adjacent if and only if one of 0=1;, t=0; and (g},0,71,7)) € A for some i,j€{1,2}.

Let H(X) be the set of pairs (11t12,010072) of 2-paths with g€ X(1)\ {11,172}, T€
2(0)\{o1,02}. Let A be a self-paired X-orbit on H(X), where self-parity means that
(t1712,010072) € A whenever (61007,71772) € A. The 2-path graph H(Z, A) with respect
to A is the graph with vertices the 2-paths in Z such that two 2-paths are adjacent if
and only if they give a pair in A.

Journal of Graph Theory DOI 10.1002/jgt
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Proposition 2.1 (Li et al. [10], Lu and Zhou [12]). Z(X£,A), J(X,A) and H(EZ,A)
are X-symmetric.

Let A;={(1r,0)| g€ Z(1)} for te V(). Set A={A;|t€ V(2)}. By [10, Theorem 10],
it is easily shown that the following result holds.

Proposition 2.2. Let I'=7(Z,A). Then Z=T 4, val(l)=wal(X)—1)val(T'[A;,As])
for (t,0)€Arc(X), and each vertex of T is adjacent to exactly val(X)—1 blocks in A.

Let P, denote the set of 2-paths with a given mid vertex 6 € V(X). Set P={P;|c €
V(Z)}. Then, by [12], both J(X,A) and H(Z,A) admit an X-invariant partition P with
quotient graphs isomorphic to 2. The following lemma improves [12, Theorem 4.10].

Lemma 2.3. Let I be an X-symmetric graph admitting an X-invariant partition B
with val(T'p) >3 and |I'g(a)| =2 for a.€ V(). Set
(o, f) e Arc(I)

A=1{(C,B(a),B(f}),D) )
{ / Cel'p(@),Del'p(f),C#B(p),D#B(x)

where B(a) denotes the block in B containing . Suppose that |I'(D)NByNI'(C)|#£0 for
any 2-path DB C of ' with a given mid vertex By € B. Then I' is (X,2)-arc transitive,
A:=|T(D)NByNI'(C)| is independent of the choice of DByC, A is a self-paired X-orbit
on Arc3(I'g), and either

@ A=1and T=JTp,A);or
(b) A>2 and T admits a second nontrivial X-invariant partition

Q:={I[(P)NBNT(C)| PBC is a 2-path of T3}

on V(I'), which is a proper refinement of B such that I' g =7 (', A).

Proof. Note that val(I'g) > 3. Take three distinct blocks C,D,D’ € T g(By). Since
IT(D)NBoNT(C)|£0 and |T(D)NByNT(C)|#0, there exist o, feT(C)NBy with
ae'(D) and BeT (D). Let o, f € C be such that (a, o), (B, B) €Arc(I). Then (o, o) =
(B,B) for some xeX as I' is X-symmetric. So, «*=p and «*=p". Then Bi=B,
and C*=C, hence xe€Xp,NXc. Further C,D*,D'eI'g(p), it follows that D*=D’
as |I'p(f)|=2. Thus Xp,NXc is transitive on I'p(Bg)\{C}, it follows that Xp, is
2-transitive on I'p(Bp). Therefore, I'5 is (X,2)-arc transitive. Then, by [12], A>1 is a
constant number; and if =1, A is a self-paired X-orbit on Arc3(I'g) and I' = 7 (I3, A).
In the following we assume 4> 2.

We first show that Q is an X-invariant partition of V(I'). Take two arbitrary
2-paths DB Cy and D>B,C; of I'g. Suppose that there exists some o € V(I') such that
ae(TD)NBNI(C))YNT(D2)NB,NI(Cy)). Then Bj=B, and C;,D;eI'g(a) for
i=1,2. Since [I'g()| =2, we have that {C;,D1}={C»,D»}, thus D1B1C1=D>B>C>.
It follows that Q is a partition of V(I'). For any 2-path DBC and x€X, we have
TM)NBNI(C)Y*=T(D)YNB*NI'(C*)e Q. Thus Q is X-invariant. Since I" is not a
multicover of I'g, we know |B|>|I"(D)NBNI(C)|=1>2, so Q is a proper refinement
of B. Then (B,Q) gives an X-invariant partition B:={B|Be€B} of V(I'g), where
B={T(D)NBNT'(C)|C,D eT'5(B),C+#B).

Journal of Graph Theory DOI 10.1002/jgt
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A CLASS OF SYMMETRIC GRAPHS WITH 2-ARC TRANSITIVE QUOTIENTS 5

We denote a vertex I'(D)NBNI(C) of I'g by a if ae I'(D)NBNI(C). Consider
the quotient graph (I'g)z of I'g with respect to B. For any 2-path DBC of (I'g)z
and any ae€V(I'g), we have |(I'g)z(@)|=2 and |[I'g(D)NBNT'g(C)|=1. It follows
from (a) that FQ%j((FQ)B,A), where A={(C,B(%),B(f),D)|(C,B(x),B(f), D)€ A}.
Moreover, it is easily shown that B— B, B~ B is an isomorphism from (I'g); to I's.

Therefore, o= J7((T'0)5, A= T (T, A). [ |

3. DOUBLE STAR GRAPHS

Let I" be an X-symmetric graph that admits an X-invariant partition B such that I'z
is (X,2)-arc transitive. If r=1, 2, b—2 or b—1 then, by [12], I" or its a quotient
is isomorphic to |[E(I'B)|K3, J(I'n,A), H(I',A) or Z(I'g,A). This motivates us to
consider the general case where 1 <r<b—1, and introduce stars and generalized 2-path
graphs, called double star graphs.

In this section, we always assume that 2 is an X-symmetric graph of valency v > 2.
For te V(X) and a l-subset S of X(7), the pair (z,S) is called a k-star of Z. Let
St”‘(Z) denote the set of k-stars of . An X-orbit S on Stk(Z) is symmetric if X; NXg
acts transitively on S for some (7,5)€S. Let L and R be k-subsets of Z(7) and X(0),
respectively, an ordered pair ((t,L),(0,R)) of k-stars is called a double k-star of
if €L and t€R. Denote by DS%(X) the set of double k-stars of X. Let ® be an
X-orbit on DS%(Z) and set St(®)={(z,L),(a,R)|((z,L),(0,R)) € ®}. Then O is said
to be symmetric if SH(®) is a symmetric X-orbit on St*(Z) and O is self-paired, that
is, ((o,R),(t,L)) € ® whenever ((t,L),(0,R)) € 0.

Let S be a symmetric X-orbit on Stk(Z). For 1€ V(X), set S;={(1,9)|(z,S) e S}.
Define an incidence structure D(7):=(Z(7),S;) in which o€ X(7) is incident with
(1,8)€ S, if and only if ¢ €S. Then it is easy to see that D(r) is an X;-flag-transitive
1-design, and D(7) is independent of the choice of € V() up to isomorphism.

Let e V(Z) and D(1) be an X,-flag-transitive 1-(v, k,r) design with vertex set (7).
It may happen that- distinct blocks of D(t) have the-same: trace.-Since D(7) is flag-
transitive, the number of blocks with the same trace is‘a constant, say m(D(1)), called
the multiplicity of D(t). Let D'(1) be the design with vertex set X(t) and blocks being
the traces of blocks of ©(t). Then D'(t) is an X;-flag-transitive 1-(v,k,r/m(D(1)))
design.

Theorem 3.1. Let 1€ V(). If there exists some X.-flag-transitive 1-(v,lk,r) design
D(1) on Z(1) for 1 <k <v—1 such that vr/m(D(1)) is odd, then there exists a symmetric
X-orbit on DS1*(Z).

Proof. Set S={(t*,5%)|xeX,Se D (1)}. It is easily shown that D'(r)=D(r) and
S is a symmetric X-orbit. Let (1,0) € Arc(X). Since X is X-symmetric, (t,0)” =(0,7)
for some yeX. Set Sy o={(1.5)eS;|o€S}. Then v/m(D(1))=|Sq| is odd,
S(yf’ o =S and S(yj 5 =S Let O be a (y*)-orbit on S5 with odd length
I. Then, for (t,5)e O, the stabilizer of (1,5) in (y*) is (y*). Let z=y'. Then
((1,9),(0,5%)) =((0,5%,(z,5)), and hence ®:={((z,5)",(0,5%)") | x€ X} is a symmetric
X-orbit on DSH(Z) with SH(@)=S. |

Journal of Graph Theory DOI 10.1002/jgt
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Let 1 <k<wv—1 and © be a symmetric X-orbit on DSt“(X). The double star graph
II(Z, ®) of  with respect to ® is the graph with vertex set S#(®) such that two k-stars
(t,L) and (o, R) are adjacent if and only if they give a pair in ®.

Theorem 3.2. Let I':=11(Z,0) be as above. Set S=8t(®) and B={S;|t€V(Z)}.
Then I' is X-symmetric, B is a nontrivial X-invariant partition on V(I') such that
I'p=Z, T is not a multicover of I'g, and D(S;) = D*(1) for 1€ V(X), where D*(1) is
the dual design of D(7).

Proof. 1t is easily shown that I' is X-symmetric, 3 is an X-invariant partition
of V(I), and V(£)— V(I'p), 1 S; gives an isomorphism from X to I'g. For any
(1,8)eS;eB,as 1 <k=|S|<v—1,take g€ S and 6 € (1) \ S. Since X is X-symmetric,
there exists x € X; such that 0 =¢*. Then (z,S)#(1,5%)€S;, so v:=|5;|>2 and B is
nontrivial. Since (7,d) € Arc(X) and ® is a symmetric X-orbit, there exists (d,R) € Sy
with ((,5%),(0,R)) € ©, hence S5 I'5(S;). If ((1,5),(6,R')) € ® for some (J,R) € S;,
then 0 €S, a contradiction. Thus (z,5)€S;NT(Ss), so |S;NI'(Ss)|<v and T is not a
multicover of I'z.

Let teV(X). Define 7n:S5.UI'g(S;)— S;UZ(7); (1,8 (1,5), Sgr—~>0a. If S;e
I's(B), then there exist (t,L)€S; and (o,R)€S,; such that ((t,L),(c,R))€®; in
particular, 0 € L C X(7), so 7 is well-defined. It is easily shown that 7 is a bijection. By
the definition of D(S;), we know that (7,5) € B is incident with S; € I'g(B) if and only
if there is some (o, T) € C with ((1,S),(0,T)) €®, that is, e T and ¢ € S; it follows that
g is incident with (z,S) in D(7).

Assume that ¢’ € X(7) is incident with (r,8’) in D(r). Then ¢’ €S’. Take some
(', T with ((z,5),(',T"))€®. Then 7' €S§'. Since S is a symmetric X-orbit, there
is some xeX;NXgy with " =¢’. Thus (7,5) =(z,5), (¢',T) =(¢',T*)eS, and
(7,8, ", TY)=((z,5),(*',T))" €O. Hence (r,5') is incident with Sy in D(S;).
The above argument says that 7 is an isomorphism from D(S;) to D*(r). So
D(S) =D*(n). |

In the following, we assume that I" is an X-symmetric graph admitting a nontrivial X-
invariant partition 3 such that val(I'g) >2 and I' is not a multicover of I'5. Fora e B€ B,
define B, =BN ([ CeT'sia) I'(C)). Then |B,|, denoted by m*(I', B), is independent of the
choices of B and «. Since I' is not a multicover of I'5, we have m*(I', B) <k:=|BNIT(C)|
for C e I'g(B). In fact, m*(I', B) is the multiplicity of the dual design D*(B) of D(B). Set
B={B,|BeB,ocB}. Then B is an X-invariant partition of V(I'). Let B={B, |« €B}.
Then I'p is an X-symmetric graph with an X-invariant partition B:={B|BeB)} such
that (Ig)z =TI’ and m* (T, B)=1.

Theorem 3.3. Ser S={(B,I'g(2))|BeB,aeB}. Then S is a symmetric X-orbit on
St"(I'g), where r=|I'g(a0)| is a constant. Let @ ={((B,I' g(a)),(C,IT'g(p))) |ce€BeB, e
CeB,(a,p)eArc(I)}. Then O is a symmetric X-orbit on DSt'(I'g) with SH®)=S and
I'p=II'E,0), and X acts faithfully on B if and only X acts faithfully on B.

Proof. 1t is easily shown that ® is a symmetric X-orbit on DSt (I'g) with SH®)=
S. Assume m*(I', B)=1. Then B, ={a} and Cg={p} for two distinct vertices a€B¢€
B and feCeB, it implies that I'g(a)#I'g(p), hence (B,I'g(a))#(C,I's(f)). Thus
V() — VII(I'B)), ar— (B,I'r()) is a bijection, which gives an isomorphism between
I' and I1(I', ©®).

Journal of Graph Theory DOI 10.1002/jgt
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Now assume m*(I',B)>1. Recall that m*(I',B)<k:=|BNI'(C)| for CeI'g(B).
Then B is a proper refinement of B. Consider the pair (I's, B). Then m*(I'g, B)=1.
A similar argument as above leads to I'g=II(Z, ®), where T=(T B)p and 0=
{((B,2(By)),(C,2(Cp))) | By BeB,Cpe CeB,(B,,Cp) €Arc(I'p)}. Noting that B,=
By for any o €B,, it follows that (B,X(By))— (B,T'5(x)) gives a bijection between
VII(Z,®)) and V(II(I',®)), which is in fact an isomorphism between I1(Z, ®) and
II(I'z, ®). Hence I'g =1I(I', ©).

Let K and H be the kernels of X acting on B and on B, respectively. Noting that B
is a refinement of 3, we have H <K. Let x€ K and B, GBEE. Since m*(I's, B): 1, we
have {BM}ZBm(ﬂée(FB)B(Ba) IB(C)=BN(\cergm I B(C)), yielding B) =By. The
above argument gives x€H. Hence K <H, and so H=K. Therefore, X acts faithfully
on B (that is, K=1) if and only if X acts faithfully on B (that is, H=1). |

Finally, we list a simple fact which will be used in the following sections.
Theorem 3.4. If m*(T,B)=1=m(D(B)), then X3=X,5® for BeB.

Proof. 1If xeX fixes B set-wise, then it also fixes the neighborhood I's(B) of B
in I'g. Now consider the action of Xp on I'p(B), and let K be the kernel of this
action. For any « € B, since m*(I', B)=1, we have {o} =Bﬂ(ﬂC€rB(a) I'(0)). It follows
that K fixes o. Thus K <X(p). On the other hand, x fixes BNI'(C) point-wise for any
xeXp) and any CeI'g(B); in particular, BNI'(C*)=(BNI'(C)y* =BNI'(C). It follows
from m(D(B))=1 that C=C". Therefore, x€ K. Thus X(5) <K, and so X(z)=K. Then
XB=Xp/Xp)=Xp/K=XyEP. ]

4. THE MAIN RESULT

A near n-gonal graph [13] is a connected graph X of girth at least 4 together with
a set £ of n-cycles of X such that each 2-arc. of X is contained in a unique member
of £. Let Arc3(€) be the set of 3-arcs appearing on cycles in €. For a cycle C in an
X-symmetric graph, denote by X¢ the subgroup of X which preserves the adjacency of
C, and set Xg =Xc/Xw(cy)-

Theorem 4.1. Let I' be an X-symmetric graph admitting a nontrivial X-invariant
partition B such that val(I'g)>2, I'g is connected and X is faithful on V(I'). Assume
that |B|>|I'(C)NB|=3 for (B,C)€Arc(I'p). Set e=|E(I'p)|. If further I' is (X,2)-arc
transitive, then

(a) |B|=4, val(I'p)=4 and Xg’:vA4 or Sy; or
(b) |B|=6, val(Tg)=4 and XB= A4 or S4; or
(c) |B|=1,val(I'g)="T and Xg%PSL(S,Z); or
(d) |B|=3val(I'p) and T'=3eK3, eCg or eK33.

Further, each of (a), (b) and (c) implies that I'g is (X,2)-arc transitive with X faithful

on B, I is connected provided T'[B, C1%£ 3Ky, and T is isomorphic to one of Z(I'g,A),
J(@'B,A) and TI(I' B, ®), respectively, where A is a self-paired X-orbit on Arc3(I'g)
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and O is a symmetric X-orbit on DSH (T RB); moreover, one of (a) and (b) yields (1) or
(2), and (c) yields (3).

(1) Either T g=Kj5 or I'g is near n-gonal with respect to an X-orbit £ of n-cycles
of I'g such that |E|>6,n>4, n|E|=3e=06|8| and Xg =Dy, (the dihedral group
of order 2n) for Ce&; and either
(1.1) T'[B,C1=3K,, Xg=Ay4 or S4, A=Arc3(E), val(I')=3 if (a) holds or T'=
|E1C,, if (b) holds; or

(1.2) T'[B,C1=C¢, Xg=S4, I is (X, 1)-arc regular, val(I')=06 if (a) holds or
val(I')=4 if (b) holds, and Arc3(I'g)\A=Arc3(€) is a self-paired X-orbit
on Arc3(I'g).

(2) T'[B,C1=K33, I'p is (X,3)-arc transitive, and val(I')=9 or 6 for (a) or (b)
respectively.

(3) val(I)=3,6 or 9 depending on I'[B,C]=3K,, C¢ or Kz 3, respectively; and if
val(I")=3 then I is (X,2)-arc transitive.

5. SELF-PAIRED ORBITS OF 3-ARCS

The following lemma is formulated from [10, Remark 4(c)(ii)] by noting that it is
available to symmetric graphs.

Lemma 5.1. Every X-symmetric graph X with even valency contains a self-paired
X-orbit on Arc3(X).

Let X be an X-symmetric graph with valency v>2 and A be a self-paired X-orbit
on Arc3(Z). For (11,7,0,01) € A, consider the action of X7, r.s) on 2(¢)\{z}, and use
£(A) to denote the length of the orbit containing ;. Then ¢(A) is independent of the
choice of (11,7,0,01) EA.

Theorem 5.2. Let X be a connected (X, 2)-arc transitive graph with valency v >3 and
A be a self-paired X-orbit on Arc3(Z) such that L(Ny=1.If X is faithful on V(Z), then
X is faithful on X(7) for 1€ V(X). Set f =|V(Z)| and e=|E(X)|. Then J(X,A)=mC,
such that

(1) m=v(v—=1)/2, n>girth(¥) and mn=fv(v—1)/2=e(v—1);

2) A=Arc3(E) for an X-orbit £ of n-cycles of ¥ with |E|=m and Xg%Dgn for
Ce&, where Dy, is the dihedral group of order 2n;

(3) each 2-path of X is contained in a unique member of £, and either T=Ky 41 or
n>4 and X is a near n-gonal graph with respect to £.

Proof. Since X is (X,2)-arc transitive, each 2-arc of X lies in a member of A.
Let (t,0) be an arbitrary arc of X. Since £(A)=1 and A is a self-paired X-orbit,
we conclude that, for any t;€X(1)\{0}, there is a unique o;€X(0)\{r} such
that (t1,7,0,01) €A, X, 1.0)=X(,0,0,) and (t],7,0,01)€A yielding 1) =1;. Then
X)) =y e\ (o) X110 =g ex0)\ (1) Xwo.01) = Xo)(2(e))- It follows from the
connectedness of X that (X;)(x(;)) fixes every vertex of X. Thus, if X is faithful on
V(2), then (X;)(z(r))=1 and X; is faithful on 2(1).
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Let '=7(%,A). By [12, Theorem 4.4], I is X-symmetric and admits an X-invariant
partition P:={P;| g € V(X)} such that X=1"p, where Py is the set of 2-paths of X with
mid vertex o. It follows from [12] that r:=|I'p(a)| =2 and A:=|PsNT(P;)NT'(Ps)|=1
for any vertex o (a 2-path of X) in V(I') and Ps with o€ Ps and I'p(o) ={P:, Ps}.
Since £(A)=1 and A is self-paired, for any 2-path 7170 of X, there exist exactly two
2-paths 100 and 7717 such that (t1,7,0,01) €A and (12,71,7,0) € A. Tt follows that
val(I')=2, so ' =mC,, for some m and n. Then mn is the number of 2-paths of X, hence
mn=fv(v—1)/2=e(v—1). Noting that val(I')=2 and each P, is an independent set
of I', it follows that different vertices in P, appear in different n-cycles of I'. Thus
m>|Ps|=v(v—1)/2.

Let C=oq07...0,01 be an arbitrary n-cycle of I', where o; =1;0;0; are n distinct
2-paths of I' with mid vertices a;, respectively. Without loss of generality, we assume
0;=0i+1=T1iy for 1 <i<n, where the subscripts are reduced modulo n. Since o; is
a 2-path of X, g;#9;, hence g;# git+1. Then (0;,0i41) €Arc(X). Since {o;, %41} is an
edge of I', we have (O'l'_l,O',',O'H_],O'i+2)=(‘[[,0'i,5i,5[+1)EA.

Now we show that C:=0a10;...0,0] is an n-cycle of Z; in particular, n> girth(X).
Note that C is a component of I". Then C is Xg-symmetric; in particular, Xg%Dzn.
Thus there exist x,yeXg such that of =041 and ocf =a,—it+1, hence o7 =041 and
o*ly =0,_it1 for 1 <i<n with the subscripts modulo n. Assume that ¢;=o0; for some
i and j. Then o;11=0; =0‘]’.‘ =01 and oipp =0, = (f]’.‘Jrl =0j+2. Thus Py, =Pg;,
Ps s =PU].Jrl and P0i+2=P0j+2' It yields (o, %ti1), (0, %j+-1) €Arc(I'[Pg;, Pg,, 1) and
(0it1,%+2), (OC]'_;,_],OC]'_;_Q)EAVC(F[PO—HI ’P0'i+2])' It follows that o4, 041 EPO'iH N
I'(Ps)NI'(Pg,,,). Since 1=A= [Ps: ﬂF(Pai)ﬂF(PJi+2)|, we have ;11 =ajy1. Thus
i=j. Then all o; are distinct, and so C is an. (x, y)-symmetric n-cycle. Hence Xg =Dy,.

Set £={C"|xe X}. Then & is an X-orbit of n-cycles of 2. Since C is Xc-symmetric,
C is (Xc,3)-arc transitive. Recall that the 3-arc (671,07, 0i+1,0i4+2) of C is contained
in A. It follows that A=Arc3(E).

It is easily shown that X¢ is a subgroup of X¢. Suppose that X is a proper subgroup
of Xc. Then there is some z€Xc with C2=C but C*#C, so V(C)NV(C¥)=¢ as C
and C? are distinct connected components of I". Since C?=C, there exist i, j and [
with o1 =07, g2= sz_ and 03 =g;. Then of =15010; € Py, oc; =2 1;625; €Pgy, and o=
170305 € Pg,. Since (1,02,03) is a 2-arc of C, we know that (d;,0;,0)) is also a 2-
arc of C. It follows that i—j=j—I/=+1(mod n). Then o;o;0; is a 2-path of C, and
so ofofer is a 2-path of C%. Thus oy, of € Po, NT(Pg, )N (Pg;). Since V(C)NV(CH) =
@, we have ocz;éocjz., which contradicts A=1. Then Xz=Xc and so |£|=|X:Xc|=
|X:Xa|=m.

Recall that the number of 2-paths of X is equal to mn. Since X is (X, 2)-arc transitive,
every 2-path is contained in some n-cycle in £. Noting each of the m cycles in £ has
exactly n paths of length 2, it follows that each 2-path of X is contained in a unique
member of £. Thus either X=K4, or n>girth(¥) >4 and X is a near n-gonal graph
with respect to £. |

The following result follows from Lemmas 5.1 and 5.2.

Corollary 5.3.  Every connected (X,2)-arc regular graph with even valency and girth
no less than 4 is a near n-gonal graph for some integer n>4.
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Remark. We would like to mention a recent result on near polygonal graphs of odd
valency. Zhou [20] gave a necessary and sufficient condition for a trivalent 2-arc
transitive to be near polygonal.

6. TETRAVALENT 2-ARC TRANSITIVE GRAPHS

The main aim of this section is to give a characterization of tetravalent 2-arc transitive
graphs. The following simple lemma is useful.

Lemma 6.1. Let I' be an X-symmetric graph admitting an X-invariant partition B
with connected (X,2)-arc transitive quotient I'g. Assume that |I'g(y)|>1 and I'[B, C]
are connected for ye V(') and (B,C)€Arc(I'g(B)). Then T is connected.

Proof. 1t suffices to show that any two distinct vertices o and f are joined by a
path in I'. Since [I'g(y)|>1 and ' is (X, 2)-arc transitive, 4:=|[((C)NBNIT(D)|#0 is
a constant for B € B and distinct C, D € I'g(B).

Assume that o, € B. Without loss of generality, we assume o€ ['(C)NBNI'(D). If
peT(C)NB, then there is a path between o and f§ as I'[B,C] is connected. Assume
P& (C)NB. Take D' e I'g(B). Then D' eI'p(B), f€ BN (D) and |T'(C)NBNT'(D)| =
2>0. Let ye T(C)NBNT(D'). Then either o=y or there is a path between o and 7, and
there is a path between y and . Thus there is a path between o and f.

Now let «€B and € B’ with B#B'. Since I's is connected, there is a path B=
BiB,...Bj=B'. Let f;€B; and B,_;€B;_; such that {#;,_;,;} € E(T). Thus there is a
path between f;_; and f5. Then induction on/ implies that there is a path between o
and f. |

Let X be an (X,2)-arc transitive graph with val(X)=4. Recall that H(X) is the set
of pairs (7't7”,6’g0”) of 2-paths in T such that o€ X()\{/,7"}, 1€ Z(0)\{0’,0"}.
For ACArc3(X), define H(A)={(ty113,002003)|(11,7,0,01) €Arc3(2),{0,11,72,73} =
>(1),{1,01,02,03} =Z(0)}. Then H(A) C H(Z). It is easily shown that A is a self-paired
X-orbit on Arcz(X) if and only if H(A) is a symmetric X-orbit on H(X).

Lemma 6.2. Let X be a connected (X,2)-arc transitive graph of valency 4. If A is a
self-paired X-orbit on Arc3(X), then J(X,A)=H(Z, H(A)).

Proof. Define ¢:[11,7,72] > [13,7,74], Where {t3,74} =Z(7)\ {71, 72}. It is easy to
check that ¢ is an isomorphism from 7 (Z,A) to H(Z, H(A)). [ |

Theorem 6.3. Let X be a connected (X,2)-arc transitive graph with valency 4 and
X acting faithfully on V(X). Then X has a self-paired X-orbit A of 3-arcs. Let I' =
JZ,A) and T'=I(Z,A). Then T'[P;,P;1=T"[Ar,A,] for (t,0) € Arc(X), and one of
the following cases occurs.

(1) Either X=Ks or X is a near n-gonal graph with respect to an X-orbit £ of
n-cycles of X with |E]|>6, n>girth(Y), n|E| =3|E(X)|=6|V(Z)| and Xg%Dgn
for Ce&; and either.

(1.1) I[P, Ps1=3Ka, I'E=mC,, val(I")=3, A=Arc3(E), Xp, =Xa, =X =A4
or Syu; or
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(1.2) T[P;,Ps1=Cq, val(l)=4, val(T")=6, Xp, =Xs, =X; =S4, both T and
I are connected and (X,1)-arc regular, and Arc3(£)=Arc3(X)\A is a
self-paired X-orbit on Arc3(X).
(2) TP, Ps1=K33, val(I)=6, val(T")=9, both T and T are connected, and X is
(X, 3)-arc transitive.

Proof. By LemmaS5.1, X has a self-paired X-orbit A on Arcz(Z). Let £(A) be defined
as in Section 5. Then £(A) <3 as val(X)=4. By [12, Theorem 4.4], ' =7 (Z,A) is X-
symmetric and admits an X-invariant partition P={P,|o € V(X)}. By Proposition 2.2,
I"=Z(Z,A) is X-symmetric and admits an X-invariant partition A= {A;|c € V(Z)}.

Let (t,0)€Arc(X). Then there is a 3-arc (11,7,0,01)€A as X is X-symmetric. It
follows that {t170,7001} is an edge of I'[P;,P,], and that {(t,71),(0,01)} is an edge
of I"[A;,A;]. It is easily shown that X(1,0) =X:NXs=Xp NXp, acts transitively on
the edges of I'[P;,P;]. It implies that X(, ;4 acts transitively on the neighborhood
of 1170 in I'[Pr,Ps]. Then val(I'[P;,Ps]) = |X(t; r,0) : X(11 5,00 | =£(A). Since X is
(X,2)-arc transitive, X(¢,q) is transitive on both X(17)\ {c} :={11,72,73} and X(0)\ {1} :=
{o1,02,03}. Thus V(I'[P,Ps))={tit0|i=1,2,3}U{t00;|i=1,2,3}. A similar argu-
ment leads to V(I'[A;,Aq]) ={(1, 7)) |i= 1,2,3}U{(0,07) | i=1,2,3}. It is easy to check
that t;t0+> (1,7;), T60;+ (0,0;) gives an isomorphism from I'[P;,P,] to I'[A;,As].
Further, I'[P;, Ps] = 3K, Cg or K33 according to £(A)=1, 2 or 3, respectively. By [12,
Theorem 4.3], 2=|I"p(t1t0)| for 71to€ V(). Then val(I') =£(A)|T p(t170)| =2L(A).
By Lemma 2.2, val(I")=3¢(A). Further, by Lemma 6.1, both I" and I'"” are connected
provided I'[P, Ps;] % 3K;.

If ¢(A)=3, then val(I')=2¢(A)=6, val(I")=34(A)=9, ['[P;,P;]1=K33, and (2)
follows from [10, Theorem 2]. Thus we assume that £(A) <2 in the following.

It is easy to see X; =Xp, =X4., (X1)(z(1)) =X(p,) =X(4,) and hence Xy = P: =X2;.

Since X is (X, 2)-arc transitive, X" = A4 or S4. Further, if £(A)=2 then [X>”|>12 as
¥ is not (X, 2)-arc regular in this case. Let A=A or Arc3(Z)\ A depending on £(A)=1
or 2, respectively. It is easily shown that £(A’)=1 and A’ is a self-paired X-orbit on
Arc3(X). Then (1) follows from Theorem 5.2 and the above argument. |

Corollary 6.4. Let X be a connected tetravalent (X,2)-transitive graph. Then either
Y =Ks, or X is a near n-gonal graph for some integer n>4.

7. HEPTAVALENT GRAPHS WITH X="'=PSL(3,2)

Theorem 7.1. Let X be an (X,2)-arc transitive graph of valency T with XTZ(T)%

PSL(3,2) for 1€ V(X). Then there exists a symmetric X-orbit ® on DS (Z). Let
I'=T1(%,0) and S =S1(®). Then, for o € X(t), one of the following cases occurs.

(1) T'[S;,8,1=3Ky, and T is a trivalent (X,2)-arc transitive graph;
) T'[S:,5;1=Cg, valI')=6 and T is connected,
(3) I'(S:, S61=Ks3, val(1)=9 and T is connected.

Proof. LetteV(X). Since XTz 0~ PSL(3,2), we may identify X(t) with the point set
of the seven-point plane PG(2,2), which is an X;-flag-transitive 1-(7,3,3) design with
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multiplicity 1. By Theorem 3.1, there exists a symmetric X-orbit ® on DS#3(X). Let S =
St(®) and I'=TI(X, ®). Then, by Theorem 3.2, I is X-symmetric and '3 =X, where
B={S;|teV(X)} and S; ={(7,9) | (t,S) € S}. Further, for S; € B, we have X; =Xg, and
D(S;) = D*(7) =PG(2,2). In particular, |S;NT(S;)|=3 for o€ X(7); thus T'[S;,Ss]1=
3K, C¢ or K3 3. Noting that two distinct lines of PG(2,2) intersect a unique point and
two distinct points determine a unique line, it follows that 1:=|I'(S;)NS;NI'(Ss)| =1
for g,0 € (1) with 6#6. By Lemma 6.1, I is connected if I'[S;,S;]1#3K,. Note that
each point of D(S;) is incident with three blocks. Then val(I') =3val(I'[S;,Ss]). Thus
(2) or (3) holds if T'[S;,Ss]1# 3Ko.

Assume that I'[S;,S;]=3K,. Then val(I')=3. Let a€S;, and I'(a)={o, 0,23}
with o; € Sy, for i=1,2,3. Then 11, 72 and 73 are distinct vertices of 2. Recall D(S;)=

D*(t)=ZPG(2,2). Then we may identify o with a line of PG(2,2), and S;; with the

points on this line. Then (XTZ (T))a =S4 acts 2-transitively on {S;; |i=1,2,3}. It implies

that (X;), =X, acts 2-transitively (and unfaithfully) on {o,0p,03}. Thus I' is (X,2)-arc
transitive, and (1) holds. |

8. PROOF OF THEOREM 4.1

Let I' be an X-symmetric graph admitting an X-invariant partition 53 such that I'z
is connected and X is faithful on V(I'). Set b=val(I'), v=|B|, r=|I"g(2)| and k=
|IBNI'(C)| for ae V(I') and (B,C)€Arc(I'g). Assume that b>2 and v>k=3. Recall
that D(B) is a 1-(v,b,r)-design.

We first show that each of Theorem 4.1(a)—(c) implies that 'z is (X, 2)-arc transitive.
Assume that one of (a), (b) and (c) occurs. Since vr=>bk, we have (v,b,r) is one of
4,4,3), (6,4,2) and (7,7,3).

Consider the multiplicity m(D(B)) of D(B). Suppose that m(D(B))# 1. Then I's(B)
admits an Xp-invariant partition M :={Mc|CeI'g(B)}, where Mc is a set of blocks
of D(B) with the same trace BNI'(C) of C. Thus m(D(B))=|Mc| is a divisor of b.
For o€ B, it is easy to see that CeI'g(a) yields Del'g(a) for any De M. This
observation says that m(D(B)) is also a divisor of r. It follows that (v,b,r)=(6,4,2),
m(D(B))=2=r and |[M|=2. Set M={M¢c,Mp}. Then T:={BNI'(C),BNT'(D)} is
an Xp-invariant partition of B. Let K be the kernel of Xp acting on 7. Then |Xg:K|=2
and X(p) <K. It follows that Xg =S4 and K/X(p)=A4. Note that K is in fact the set-
wise stabilizer of BNI'(C), and also of BNI'(D), in Xg. Then K is transitive on both
BNI'(C) and BNI'(D). Let H and H; be the kernels of K acting on BNI'(C) and
on BNI'(D), respectively. Then K/H and K/H; are permutation groups of degree 3.
Noting that Xy <H and X(g)<H, it follows that H/X(g) and H;/X(p) are normal
subgroups of K/Xg) with index 3 in K/X(g). Hence H|/Xgy=H/X(p) as A4 has only
one normal subgroup of order 4. Thus H;=H fixes B point-wise, and so H <Xp),
which contradicts |H/Xg)| =4. Thus m(D(B))=1.

Recall that m*(I', B) is the multiplicity of the dual design D*(B) of D(B) and
m*(I',B)=|B,| for « € B€ B and B“:Bm(mCerg(a) I'(C)). It is easily shown that {B, |
o€ B} is an Xp-invariant partition of B; in particular, m*(I', B)=|B,| is a divisor of
|B|=v. Noting that B, CBNI'(C) for e B and CeI'g(x), it follows that m*(I", B) is
also a divisor of k= |BNI'(C)|. If m*(I", B)# 1, then (v, k,r)=(6,3,2) and m*(I', B) =k,
so m(D(B)) > |I'g(a)| =2, a contradiction. Thus m*(I', B)=1.
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Therefore, m(D(B))=1=m*(T,B), and X5® = xB by Theorem 3.4. Thus, if one

X};B(B) is 2-transitive on I'g(B), and hence I'g is

of cases (a), (b) and (c¢) occurs then
(X,2)-arc transitive.

Now assume that I'g is (X,2)-arc transitive. Then A:=|I'(C)NBNI'(D)| is inde-
pendent of the choice of 2-path CBD of I'p, and m(D(B))=1 by [12, Lemma 2.4].
By [12, Corollary 3.3], vr=3b and A(b—1)=3(r—1), thus (9—v)r=3(3—1). Since
v>k=3, we have A<k—1=2.1If A=0, then r=1 and v=3b. Let A>1. Then, by [12,
Theorem 3.2], the dual design D*(B) of D(B) is a 2-(b,r,A) design with v blocks.
The well-known Fisher’s Inequality applied to D*(B) gives b <v, and so r<k=3. If
A=2,then A(b—1)=3(r—1), (9—2v)r=3 yields (v,b,r)=(4,4,3). If =1, then r <k,
vr=3b and (9—v)r==6 yield (v,b,r)=(6,4,2) or (7,7,3).

Note that m*(I', B) < A if 1£0. Suppose that m*(I', B)# 1 for some A£0. Then 1=
2=m*(T", B). Since r=3, there are C,D €I'g(x) with C#D and BNI'(C)=BNI'(D).
Thus C and D has the same trace, so m(D(B)) > 2, a contradiction. Therefore, if 1£0
then m*(I', B)=1 and, by Theorem 3.3 and 3.4, X};B(B)’:VXg and X is faithful on B.

Assume that (v,b,r,1)=(4,4,3,2) or (6,4,2,1). Then val(I'g)=4, and XB§A4 or
S4 as Xp acts 2-transitively on I'g(B). Thus (a) or (b) holds, so either ' =Z(I',A) by
[10, Theorem 2] or I'= 7(I'g,A) by Lemma 2.3, where A is a self-paired X-orbit on
Arc3(I'g). Then, by Theorem 6.3, one of Theorem 4.1 (1) and (2) occurs.

Assume that (v,b,r, 2)=(7,7,3,1). Then D(B) =PG(2,2) is Xp-flag-transitive, and so
XgB ® s isomorphic to a subgroup of PSL(3,2), the automorphism group of PG(2,2).

Since I'g is (X,2)-arc transitive, ng(B) is 2-transitive on I'g(B), and hence |X£B(B) | >

42. Tt follows that X5 %® =PSL(3,2): Thus X2 = x,5®) ~PSL(3,2) by Theorem 3.4.
Hence (c) holds. Since m*(I', B)=1, by Theorem 3.3, I =TI(I', ®) for a symmetric
X-orbit ® on DSH (T B)- Then, by Theorem 7.1, Theorem 4.1(3) holds.

Assume that A=0, r=1 and v=3b. Then I"=eI'[B,C] for {B,C}e€E(I'g). Since
[BNI'(C)|=3, we have I'[B, C]=3K;, C¢ or K33. Thus (d) occurs.
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