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This book is about representingknowledgein all its various forms. Yet, whatever phenomenon we aim
to represent, be it natural, computational, or abstract, itis unlikely to be static. The natural world is
always decaying or evolving. Thus, computational processes, by their nature, are dynamic, and most
abstract notions, if they are to be useful, are likely to incorporate change. Consequently, the notion of
representationschanging through timeis vital. And so, we need a clear way of representing both our
temporal basis, and the way in which entities change over time. This is exactly what this chapter is about.

We aim to provide the reader with an overview of many of the ways temporal phenomena can be
modelled, described, reasoned about, and applied. In this, we will often overlap with other chapters
in this collection. Some of these topics we will refer to verylittle, as they will be covered directly by
other chapters, for exampletemporal action logic[84], situation calculus[185], event calculus[209],
spatio-temporal reasoning[74], temporal constraint satisfaction[291], temporal planning[84, 271], and
qualitative temporal reasoning[102]. Other topics will be described in this chapter, but overlap with
descriptions in other chapters, in particular:

• automated reasoning, in Section 3.2 and in [290];

• description logics, in Section 4.6 and in [154]; and

• natural language, in Section 4.1 and in [250].

The topics in several other chapters, such asreasoning about knowledge and belief[203], query answering
[34] andmulti-agent systems[277], will only be referred to very briefly.

Although this chapter is not intended to be a comprehensive survey of all approaches to temporal
representation and reasoning, it does outline many of the most prominent ones, though necessarily at a high-
level. If more detail is required, many references are provided. Indeed, the first volume of theFoundations
of Artificial Intelligenceseries, in which this collection appears, contains much more detail on the use of
temporal reasoning in Artificial Intelligence [100] while [112, 56, 129, 114, 148] all provide an alternative
logic-based view of temporal logics. In addition, there aremany, more detailed, survey papers which we
refer to throughout.

The structure of this chapter is as follows. We begin, in Section 1, by considering structures for mod-
elling different aspects of time, aiming at providing an overview of many alternatives. In Section 2, we
discuss languages for talking about such temporal representations and their properties. Typically, these lan-
guages are forms oftemporal logic. Section 3 addresses the problem of reasoning about descriptions given
in these temporal languages and highlights a number of significant techniques. In order to provide further
context for this discussion, Section 4 outlines a selectionof application areas for temporal representation
and reasoning. Finally, in Section 5, concluding remarks are provided.

1 Temporal Structures

While we will not enter into a philosophical discussion aboutthe nature of time itself (see, for exam-
ple, [287, 119]), we will examine a variety of different structures that underlie representations of time.
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Where possible, we will provide mathematical descriptions in order to make the discussions more formal.
We are only able to describe temporal concepts if we are able to refer to a particular time and so relate

different times to this. Without prejudicing later decisions, we will describe such times asstatesand will
refer to each one via an unique index. Thus, at a particular time, sayt, we can describe facts such as “it is
sunny”, “the process is stopped”, and “X is bigger than Y”. For example, in Fig. 1 we have one such state,
t.

t
sunny X > Y

process stopped

Figure 1: State at timet.

Now, as soon as we go beyond this simple view, we face a number of choices, all of which can significantly
affect the complexity and applicability of the temporal representation.

1.1 Instants and Durations

It may seem as though the indext described above naturally represents an instant in time. Indeed, by
describingt as astate, we have already implied this. While this is a popular view, itis not the only one.
Another approach is to considert as ranging over a set of temporalintervals. An interval is a sequence of
time with duration. Thus, ift now refers to an interval, for example an hour, then Fig. 1 represents proper-
ties true during that hour: “it is sunny throughout that hour”, “the process is stopped in that hour”, and “X
is bigger than Y for an hour”. It is important to note that the language we use to describe properties is vital.
Thus, we have just used “throughout”, “in”, and “for” in describing properties holding over intervals. The
differences that such choices make will be considered in more detail in Section 2.5. We have also referred
to explicit times, such as one hour; again, the possibility of talking directly about real values of time will
be explored in Section 2.6.

Related to the question of whether points or intervals should be used as the basis for temporal represen-
tation is the question of whether temporal elements should be discrete. If we consider points as the basis
for a temporal representation, then it is important to describe the relationshipbetweenpoints. An obvious
approach is to have each point representing a discrete moment in time, i.e. distinguishably separate from
other points. This corresponds to our intuition of ‘ticks’ of a clock and is so appealing that the most popu-
lar propositional temporal logic is based upon this view. This logic, calledPropositional Temporal Logic
(PTL) [113, 223], views time as being isomorphic to the Natural Numbers, with:

• an identifiable start point, characterised by ‘0’;

• discrete time points, characterised by ‘0’, ‘ 1’, ‘ 2’, etc;

• an infinite future; and

• a simple operation for moving from one point (‘i’) to thenext(characterised by ‘i+ 1’).

There are a number of variations of the above properties thatwe will discuss soon, but let us consider a
model for PTL as simply〈N, π〉 with π being a function mapping each element of the Natural Numbers, N,
to the set of propositionstrue at that moment. We will see later that this is used for the semantics of PTL.
We can visualise this as in Fig. 2, whereπ captures the elements inside each temporal element (i.e. all the
truepropositions; those not mentioned are, by default,false).

1.2 From Discreteness to Density

We next consider some variations on the basic type of model given above. In Section 1.4, we re-examine
the above assumptions of having an identifiable start state and linearity. For the moment, however, we only
review the decision to have a set ofdiscretetime points between which we can move via a simple function.
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t
sunny X > Y

process stopped

−→
t+ 1

rainy . . .
. . .

−→
t+ 2

windy . . .
. . .

−→ . . .

Figure 2: Organising states asN.

Although this corresponds to the Natural Numbers (or Integers), what if we take the Rational Numbers as
a basis? Or the Real Numbers? Or, indeed, what if we take a structure that has no analogue in Number
Theory?

In general, the model for point-based temporal logic is〈S,R, π〉, whereS is the set of time points,π
again maps each point to those propositions true at that point, andR is an earlier-later relation between
points inS. In the case of discrete temporal logics, we can replace the general accessibility relation,R, by
a relation between adjacent points,N . Thisnext-timerelation applies over the set of all discrete moments
in time (S). Thus, for alls1 ands2 in S,N(s1, s2) is true ifs2 is thenextdiscrete moment afters1.

If we go further and use a standard arithmetical structure, we can replace the combination ofN andS
(orR andS) by the structure itself, e.g.R with the associated ordering.

Now, if we consider non-discrete structures, such asR, there is no clear notion of thenextpoint in time.
R is dense, and so if a temporal relation,R, is based on this domain, then if two time points are related,
there is always another point that occursbetweenthem:

∀i ∈ S. ∀k ∈ S. R(i, k) ⇒ [∃j ∈ S. R(i, j) ∧ R(j, k)] .

Consequently, the concept of anextpoint in time makes little sense in this context and so logicsbased
on dense models typically use specific operators relating tointervals over the underlying domain; see
Section 2.4. And so we have almost come full circle: dense temporal logics, such as those based onR,
require interval-like operators in their language. (Byinterval-like, we mean operators that refer to particular
sub-sequences of points.)

There is a further aspect that we want to mention and that willbecome important later once we consider
representing point-based temporal logics within classical first-order logic (see Section 3.2). As we have
seen, some constraints on the accessibility relation (for example, density, above) can be defined using a
first-order language over such relations. However, there are some restrictions (for example, finiteness) that
cannot be defined in this way [161, 274, 112].

There is much more work in this area, covering a wide variety of base domains for temporal logics.
However, we will just mention one further aspect of underlying models of time, namelygranularity, before
moving on to more general organisation within the temporal structure (in Section 1.4).

1.3 Granularity Hierarchies

The models of time we have seen so far are relatively simple. In mentioning the possibility of an underlying
dense domain above we can begin to see some of the complexity;between any two time points there are
an infinite number of other time points. Thus, time can be described at arbitrarygranularities. However,
it is often the case that a description is needed at a particular granularity, and only later do we need to
consider finer time distinctions. A simple example from practical reasoning concerns a discussion between
participants who agree to organise a meetingevery month. They must agree to either a date, e.g. the 25th, or
to a particular day, e.g. the last Tuesday in the month. Later, they will consider times within that day. Then
they might possibly consider more detailed times within themeeting itself, and so on. In the first case, the
participants wish to represent the possibilities without having to deal with minutes, or even hours. Later,
hours, minutes and seconds may be needed. In practical termssuch requirements have led to systems such
ascalendar logic[213]. More generally, significant work has been carried outon hierarchies of differing
granularities, for example in [202, 105, 59, 232], with a comprehensive descriptions being given in [93, 46].
Finally, the work on interval temporal logics described later has also led to alternative views of granularity
and projection [206, 130, 58, 131].
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1.4 Temporal Organisation

In general, the accessibility relation between temporal points is an arbitrary relation. However, as we have
seen above, many domains provide additional constraints onthis. Typically, the accessibility relation is
irreflexiveandtransitive. In addition, the use of arithmetical domains, such asN, Q, andR, ensures that
the temporal structure is both linear and infinite in the future. While a linear model of time is adopted within
the most popular approaches [223], there is significant use of the branching (in to the future) model [91,
281], particularly in model checking (see Section 4.4). Yetthere are many other ways of organising the
flow1 of time, including acircular view [239], apartial-order, or trace-based, view [163, 218, 139, 268],
or analternatingview [68, 17]. These last two varieties have been found to be very useful in specific
applications, particularly partial-order temporal logics for partial/trace-based requirements specifications,
such as Message Sequence Charts or concurrent systems, and alternating-time temporal logics for both the
logic of games and the verification of multi-process (and multi-agent, see [277]) systems [18, 14, 200].

All these considerations are closely related to finite automata over infinite strings (ω-automata). There
has been a considerable amount of research developing the link between forms ofω-automata (such as
Büchi automata) and both temporal and modal logics [254, 279,280]. It is beyond the scope of this article
to delve much into this, yet it is important to recognise thatmuch of the development of (point-based)
temporal representation and reasoning is closely related to automata-theoretic counterparts.

1.5 Moving in Real Time

So far we have considered therelative movement through time, where time is represented by abstract
entities organized in structures such as trees or sequences. Even in discrete temporal models, the idea of
the nextmoment in time is an abstract one. Each step does not directlycorrespond to explicit elements
of time, such as seconds, days or years. In this section, we will outline the addition of suchreal-time
aspects. These allow us to compare times, not just in terms ofbefore/after or earlier/later relations, but also
in quantitativeterms.

Since there are many useful articles on structures for representing real-time temporal properties, such as
the influential [12, 13], together with overviews of the work(particularly on timed automata) [15, 19, 44],
we will simply give an outline of thetimed automataapproach on discrete, linear models. (Note that a
collection of early, but influential, papers can be found in [79].)

Recall that discrete, linear models of time correspond to sequences of ‘moments’. These, in turn, can
be recognised as infinite words in specific finite automata over infinite strings called B̈uchi automata. The
only relationship between such moments is that each subsequent one is considered as thenextmoment in
time. In order to develop areal-timeversion of this approach, we can consider such sequences, but with
timing statements referring to particular clocks (in the case in Fig. 3, the clock ist) added between each
consecutive moment. See Fig. 3 for an example of a timed model(heret < 1 is a constraint stating that the
time, t, is less than1 on this transition, while the timet is at least8 on thet ≥ 8 transition).

sunny X > Y

process stopped

t < 1
−→

rainy . . .
. . .

t ≥ 8
−→

windy . . .
. . .

−→ . . .

Figure 3: Model with timing constraints.

Where only a finite number of different states exist, Büchi automata can also be extended to recognise
thesetimed sequences[12, 13]. In practical applications of such models (see Section 4.4) various automata-
theoretic operations, such as emptiness checking, are used. These tend to be complex [19], but vary greatly
depending on the type of clocks and constraints used.

As well as being developed further, for example withclocked transition systems[165], and extended
into hybrid automata[11], timed automata have led to many useful and practical verification tools, partic-
ularly UPPAAL (see Section 4.4).

1However, describing time asflowing might even be an assumption too far! Several authors have considered time withgapsin
it [112, 28].
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1.6 Intervals

As mentioned above, aninterval captures some duration of time over which certain properties hold. As
in the case of point-based approaches described earlier, there are many different possibilities concerning
how intervals are defined. Given a linear model of time, then questions such as whether the ‘moments’
within this linear order are represented as points or not, whether the order is infinite in either (or both)
future or past, etc, must still be decided upon. Additionally, we now have the notion of an interval. Simply,
this represents the period of time between two ‘moments’. But, of course, there aremanypossibilities
here [275]. Does the interval include the end points? Can we have intervals where the start point and end
point are the same? Can we have zero length intervals? And so on.

Assuming we have decided on the basic structure of intervals, then the key questions concerned with
reasoning in such models are those relating points to intervals, and relating intervals to other intervals. For
example, imagine that we have the simple model of time based on N, as described above. Then, let us
denote the interval between two time pointsa andb by [a, b]. Now, we might ask:

• does a particular time pointc occur within the interval[a, b]?

• is a particular time pointd adjacent to (i.e. immediately before or immediately after)the interval
[a, b] (and what interval do we get if we addd to [a, b])?

• does another interval,[e, f ], overlap[a, b]?

• is the interval[h, i] a strictsub-intervalof [a, b]?

• what interval represents the overlap of the intervals[j, k] and[a, b]?

And so on. As we can see, there aremanyquestions that can be formulated. Indeed, we have not even
addressed the question of whether intervals areopenor closed. This question really becomes relevant we
consider underlying sets such as the Rational or Real Numbers. Informally, an elementx in the temporal
domain are within theopeninterval (a, b) if a < x andx < b, and is within theclosedinterval [a, b] if
a ≤ x andx ≤ b.

Yet, that is not all. In the temporal models described earlier, we defined temporal properties. Such
properties, usually represented by propositions, were satisfied at particular times. Thus, with intervals, we
not only have these aspects, but can also ask questions such as:

• does the propositionϕ hold throughoutthe interval[a, b]?

• does the propositionϕ hold anywherewithin the interval[a, b]?

• does the propositionϕ hold by theendof interval[a, b]?

• does the propositionϕ hold immediatelybeforethe interval[a, b]?

And so on. Various connectives allow us to express even more:

• given an interval[a, b] whereϕ holds, is there another interval,[l,m], occurring in the future (i.e.
strictly after [a, b]), on whichϕ also holds?

• can we split up an interval[a, b] into two sub-intervals,[a, c1] and [c2, b] such thatϕ holds con-
tinuously throughout[a, c1] but not atc2 (and where joining[a, c1] and [c2, b] back together gives
[a, b])?

In general, there aremanyquestions that can be asked, even when only considering the underlying interval
representations. As we will see in Section 2.5, once we add specific languages to reason about intervals,
then the variation in linguistic constructs brings an even greater set of possibilities.

In a historical context, although work in Philosophy, Linguistics and Logic had earlier considered time
periods, for example [65], interval temporal representations came to prominence in Computer Science and
Artificial Intelligence via two important routes:
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1. the development, in the early 1980s, of interval temporallogics for the description of computer
systems, typically hardware and protocols [135, 204, 208, 252]; and

2. the development, by Allen, of interval representations within Artificial Intelligence, primarily for use
in planning systems [6, 9, 7].

We will consider the languages used to describe such phenomena in Section 2.5 and will outline some to
the applications of interval representations later.

Finally, in this section, we note that there are a number of excellent articles covering much more than we
can here: introductory articles, such as [287, 190]; surveys of interval problems in Artificial Intelligence,
such as [85, 121]; and the comprehensive survey of interval and duration calculi by Goranko, Montanari
and Sciavicco [127].

2 Temporal Language

Just as there are many models for representing temporal situations, there is an abundance of languages
for describing temporal properties. Again, many of these languages have evolved from earlier work on
modal [181, 61] or tense logics [107, 66]. Yet, with each new type of phenomenon, a different logical
approach is often introduced. Thus, there are so many different temporal logics, that we are only able to
introduce a few of the more common ones in the following.

2.1 Modal Temporal Logic

We will begin with a common language for describing temporalproperties, often termedmodal temporal
logic due to its obvious links with modal and tense logics [229, 238, 53, 37]. This is the type of language
originally applied by Pnueli [222] and is now widely used in Computer Science. Based on modal notions
of necessityandpossibility, the basic (modal) temporal operators are

ϕ — “ϕ is alwaystrue in the future”

♦ϕ — “ϕ is true atsome timein the future”

Thesealwaysandsometimeoperators form the basis for many logics operating over linear models of time.
Yet there are temporal aspects that are impossible to represent simply using ‘♦’ and ‘ ’ [161, 292, 53].
Thus, theuntil operator (‘U ’) together with its counterpart, theunlessoperator (‘W ’), are often imported
from tense logic [161, 64]:

ϕUψ — “there exists a moment whenψ holds andϕwill continuously hold from nowuntil this moment”

ϕW ψ — “ϕ will continuously hold from now on unlessψ occurs, in which caseϕ will cease”

(Note that there are several variations on the semantics of these operators, for example differing on whether
ϕ must be satisfied at the current moment.) The similarities between the above connectives means that the
unlessoperator is often termedweak until. This is generally enough to handle common situations, as both
sometimeandalwayscan be defined usinguntil. However, in the case of a discrete model of time, it is
often convenient to add thenext timeoperator, ‘ g’:

gϕ — “ϕ is true at thenextmoment in time”

The formal semantics for such temporal operators can be given, in the discrete case, using thenext-time
relation introduced earlier. Over modelsM = 〈S,N, π〉, example semantics can be given as follows.

〈M, s〉 |= gϕ if, and only if, ∀t ∈ S. if N(s, t) then 〈M, t〉 |= ϕ

Note that, depending on the semantics of the ‘U ’ operator, the ‘g’ operator may be able to be defined
directly using ‘U ’ [87].
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2.2 Back to the Future

Work on tense logics typically incorporated a notion ofpast-timeconnectives, such assince[161, 64].
Though such past-time connectives were omitted from the early temporal logics used in Computer Science,
researchers have found it convenient to re-introduce past-time into temporal logics [38, 182].

Thus, temporal logics can contain operators that are the past-time counterparts of , ♦, etc. Discrete
temporal logics also incorporate thepreviousoperator, ‘ w’, which is the past-time dual of the “next”
operator.

wϕ — “ϕ is true at thepreviousmoment in time”

In order to indicate some of the interesting interactions between these two operators, we provide more
general definitions that depend only on the discreteness of the underlying model, not on its linearity. For
this purpose, we again thenext-timerelation introduced earlier and define the semantics forw(over models
M = 〈S,N, π〉) as follows.

〈M, s〉 |= gϕ if, and only if, ∀t ∈ S. if N(s, t) then 〈M, t〉 |= ϕ
〈M, t〉 |= wϕ if, and only if, ∀s ∈ S. if N(s, t) then 〈M, s〉 |= ϕ

It is important to note the duality between the semantics of ‘w’ and ‘ g’ given earlier. This duality allows
us to describe some interesting properties. First of all, note that wfalse (or gfalse) is only satisfiable
at the first (or last) moments in the temporal model. Examining the definition above, the only way that
wfalse can be satisfied is if there arenoprevious moments in time. If there were any previous ones, then

false would have had to be satisfied at them! Similarly,gfalse corresponds closely to the ITL operator
fin describing the end of finite intervals (see Section 2.5).

An interesting aspect of the past/future combination is given by the possible interactions between the
previous and next operators. For example, the axiomϕ ⇔ w gϕ implies that, in models such as that
described below, either the states is disallowed, or if it is allowed, it is indistinguishable from the “now”
state by any temporal formula.
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As we can see, there is much scope for interesting combinations even with just thenext and previous
operators. A large range of interactions can be explored with thesometime in the futureand thesometime
in the pastoperators, or withuntil andsince[240, 112, 267]. In addition, questions of whether both past
and future operators are needed can also been considered [179].

2.3 Temporal Arguments and Reified Temporal Logics

While variations of modal temporal logics are widely used in Computer Science, there are alternative
approaches that have been developed within Artificial Intelligence. An obvious alternative to the modal-
temporal approach is to essentially use first-order logic statements, treating one of the arguments to each
predicate as a reference to time. To see this, let us give the semantics of PTL in classical logic by represent-
ing temporal propositions as classical predicates parameterised by the moment in time being considered.
Below we look at several temporal formulae and, assuming they are to be evaluated at the momenti, show
how these formulae can be represented in classical logic.

p ∧ gq → p(i) ∧ q(i+ 1)

♦r → ∃j. (j ≥ i) ∧ r(j)
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s → ∀k. (k ≥ i) ⇒ s(k)

This is often termed thetemporal argumentsapproach, because the temporal propositions are defined as
predicates taking times as arguments.

A further approach that became popular in Artificial Intelligence research is thereificationapproach.
Here, the idea is to have predicates such asholdsandoccursapplied to properties (often calledfluents) and
times (points or intervals) over which the properties hold (or occur).

Since Allen’s Interval Algebra, considered in Section 2.5,is of this form, we will not mention these
possibilities further. However, there are a great many publications in this area, beginning with initial
work on reified approaches, such as McDermott’s logic of plans [197], Allen’s Interval Algebra [7] (and
Section 2.5), Situation Calculus [237, 185] and the Event Calculus [169]. In addition, there are numerous
surveys and overviews concerning these approaches, including [117, 189, 236, 35].

2.4 Operators over Non-discrete Models

As we outlined in Section 2.2, various temporal operators have been devised, beginning withuntil and
sinceor, alternatively withsometime in the futureandsometime in the past. Indeed, these operators are
useful for general linear orders, not just discrete ones [161]. Consequently, if we move away from discrete
temporal models towards dense (and, generally, non-discrete) models, these temporal operators form the
basis of languages used to describe temporal properties.

Sometime in the futureandsometime in the past(often referred to asF andP ) have been used to analyse
a variety of non-discrete logics, for example those based onR [111, 112, 114]. Past and future operators,
such asuntil andsincehave been productively used in transforming arbitrary formulae into more useful
normal forms, for example separating past-time from future-time [108, 36, 97, 147].

Finally, it is informative to consider the approach taken inTLR [39, 164]. Here, the temporal model is
based onR anduntil is taken as the basic temporal operator (only the future timefragment is considered).
However, the difficulty of dealing with properties overR meant that the authors introduced an additional
constraint, termedfinite variability. Here, any property may only change value afinite number of times
between any two points in time. This avoids the problem of a temporal property, sayp, varying between
true andfalse infinitely over a finite period of time, for example between1 and2 on the Real Number
line. (This aspect has also been explored in [77, 118].)

2.5 Intervals

As mentioned earlier, the two strong influences for the use ofinterval temporal representations were from
Allen, in Artificial Intelligence, and Moszkowski et al., inComputer Science. We will give a brief flavour
of the two different approaches, before mentioning some more recent work.

2.5.1 Allen’s Interval Algebra

Allen was concerned with developing an appropriate formal representation for temporal aspects which
could be used in a variety of systems, particularly planningsystems. He developed a formal model of
intervals, or time periods, and provided syntax to describethe relationships between such intervals [6, 7].
Thus,I1 overlaps I2 is true if the intervalsI1 andI2 overlap,I3 during I4 is true if the intervalI3 is
completely contained withinI4, while I5 before I6 is true if I5 occurs beforeI6. This led on to 13 such
binary relations between intervals, giving the Allen Interval Algebra.

Further work on the formalisation and checking of Allen’s interval relations can be found in [8, 175,
183, 136, 184, 176] with the algebraic aspects being explored further in [144, 145]. In addition, the basic in-
terval algebra has been extended and improved in many different ways; see [121] for some of these aspects
and [85] for a thorough analysis of the computational problems associated with such interval reasoning.
These last two references also bring in the work on representing such problems as temporal constraint
networks [80, 251] and solving them via constraint satisfaction techniques [291].
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2.5.2 Moszkowksi’s ITL

The interval logic developed by Moszkowski et al. in the early 1980s was much closer in spirit to the
propositional (discrete) temporal logics being developedat that time [113]. Moszkowski’s logic is called
ITL and was originally developed in order to model digital circuits [135, 204]. Although the basic temporal
model is similar to that of PTL given earlier, ITL formulae are interpreted in a sub-sequence (defined by
σb, . . . , σe) of, rather than at a point within, the modelσ. Thus, basic propositions (such asP ) are
evaluated at thestart of an interval:

〈σb, . . . , σe〉 |= P if, and only if, P ∈ σb

Now, the semantics of two common PTL operators can be given asfollows.

〈σb, . . . , σe〉 |= ϕ if, and only if, for all i, if b ≤ i ≤ e then 〈σi, . . . , σe〉 |= ϕ

〈σb, . . . , σe〉 |= gϕ if, and only if, e > b and 〈σb+1, . . . , σe〉 |= ϕ

A key aspect of ITL is that it contains the basic temporal operators of PTL, together with thechopoperator,
‘;’, which is used to fuse intervals together (see also [245,283]). Thus:

〈σb, . . . , σe〉 |= ϕ;ψ if, and only if, there exists i such that b ≤ i ≤ e and both
〈σb, . . . , σi〉 |= ϕ and 〈σi, . . . , σe〉 |= ψ

This powerful operator is both useful and problematic (in that the operator ensures a high complexity logic).
Useful in that it allows intervals to be split based on their properties; for example ‘♦’ can be derived in
terms of ‘;’, i.e.

♦ϕ ≡ true;ϕ

meaning that there is some (finite) sub-interval in whichtrue is satisfied that is followed (immediately) by
a sub-interval in whichϕ is satisfied.

To explain further, simple examples of formulae in ITL are given below, together with English expla-
nations.

• p persists through the current interval: p

• The following defines steps within an interval:

up ∧ gdown ∧ g gup ∧ g g gdown

• The following allows sequences of intervals to be constructed:

january ; g february ; g march; . . .

• p enjoys a period of beingfalse followed by a period of beingtrue, i.e. it becomes positive:

¬p; g p .

As mentioned earlier, there has also been work on granularity within ITL, particularly via thetemporal
projectionoperation [206, 130, 58, 131].

In [136], Halpern and Shoham provide a powerful logic (HS) over intervals (not just of linear orders). This
logic has been very influential as it subsumes Allen’s algebra. Indeed, the HS language with unary modal
operators captures entirely Allen’s algebra; binary operators are needed to capture the ‘chop’ operator
within ITL [127], reflecting its additional complexity.

Finally, we note that, there are natural extensions of the above interval approaches. One is to consider
intervals, not just over linear orders, but also over arbitrary relations. This moves towards spatial and spatio-
temporal logics, see [115] or [74]. Another extension is to bring real-time aspects into interval temporal
logics. This has been developed within the work onduration calculi[296, 69]. Pointers to such applications
of interval temporal logics are provided in Section 4. Finally, an interesting extension to interval temporal
logic is to add operators that allow endpoints to be moved, thus givingcompass logic[193].
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2.6 Real-Time and Hybrid Temporal Languages

In describing real-time aspects, a number of languages can be developed [15]. For instance, standard
modal-temporal logic can be extended with annotations expressing real-time constraints [170]. Thus, “I
will finish reading this section within 8 time units” might berepresented by:

♦≤8finish .

Another approach is to usefreeze quantification. This is similar to the approach taken with hybrid logics
(see Section 2.8) where a moment in time can be recorded by a variable and then referred to (and used in
calculations) later. In addition, there is the possibilityof explicitly relating to clocks (and clock variables)
within a temporal logic [216]. Consequently, there are a great many different real-time temporal logics
(and axiomatisations [249]). There are several excellent surveys of work in this area, including those by
Alur and Henzinger [15, 16], Ostroff [217], and Henzinger [140].

In a different direction, theduration calculus[78, 69] was introduced in [296], and can be seen as a
combination of an interval temporal representation with real-time aspects. It has been applied to many
applications in real-time systems, with behaviours mapping on to the dense underlying temporal model.

In developing temporal logics for real-time systems, it became clear that many (hard) practical prob-
lems, for example in complex control systems, required evenmore expressive power. And sohybrid systems
were analysed and formalisms for these developed. Hybrid systems combine the standard discrete steps
from the automata approach with more complex mathematical techniques related to continuous systems
(e.g. differential equations). While we will not delve into this complex area further, we direct the inter-
ested reader to the HyTech system [141, 157], the RED system [235] and to work onhybrid automata[11].

2.7 Quantification

So far we have examined essentiallypropositionallanguages, most often over discrete, linear models of
time. In this section, we will consider the addition of various forms of quantification2. Again, we will not
provide a comprehensive survey, but will examine a variety of different linguistic extensions that allow us
to describe more interesting temporal properties.

2.7.1 Quantification Over Paths

Although quantification in classical first-order logic is typically used to quantify over a particular data do-
main, the additional aspect of an underlying temporal structure provides a further possibility in temporal
logics, namely the ability to quantify over some aspects of the structure. As we have seen, temporal opera-
tors such as ‘ ’ typically quantify over moments of time. Yet, there are other possibilities for quantifica-
tion, the most common of which is to quantify over possiblepaths. If we consider a linear sequence of time
points as a path, then many temporal structures (most obviously, trees) comprise multiple paths [248, 246].
Temporal logics over such branching time structures allow for the possibility ofquantifyingover the paths
within the branching structure.

Although branching structures in tense logic were previously studied by Prior (see also [132]), we will
exemplify the branching approach by considering two popular temporal logics over branching structures
from Computer Science. Computation Tree Logic (CTL) was introduced in [88, 89] and basically used
Pnueli’s modal temporal logic for describing properties along paths (sequences). However, to deal with the
possibility of multiple paths through a tree-like temporalstructure, two new logicalpath operatorswere
introduced:

A – ‘on all future paths starting here’

E – ‘on some future path starting here’

The CTL approach, however, is to restrict the combinations of temporal/path operators that can occur.
Thus, each temporal operatormustbe prefixed by a path operator.

2As one might expect, quantification in temporal logics is related quite closely to quantification in modal logics, though quantified
modal logics are not without difficulties [120, 195].
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The CTL logic has been popular in specifying properties of reactive systems, for example

A safe E gactive A♦terminate

Here, ‘A ’ effectively considers all future moments, while ‘E g’ must find at least one path such that the
required property is true at the next moment in the path, while ‘A♦’ is useful for describing the fact that,
whichever future path is considered, the property will holdat some point on that path.

Although restricted in its syntax, CTL has found important uses in verification throughmodel checking
(see Section 4.4) since the complexity of this technique forCTL is relatively low [72].

Just as CTL puts a restriction on the combination of temporaland path quantifiers, the need for more
complex temporal formulae, such as ‘♦’, over paths in branching structures led to various other branch-
ing logics [86, 92, 91, 72], most notablyFull Computation Tree Logic(CTL∗). With CTL∗ there is no
restriction on the combinations of path and temporal operators allowed. Thus, formulae such as

A ♦EAp

can be given. However, there is a price to pay for this increased expressiveness [201], as the decision
problem for CTL∗ is quite complex [92], and so this logic is less often used in practical verification tools.

A further significant development of logics over branching structures was the introduction ofalternating-
time temporal logics. To quote from the abstract of [17]:

“Temporal logic comes in two varieties: linear-time temporal logic assumes implicit universal
quantification over all paths that are generated by the execution of a system; branching-time
temporal logic allows explicit existential and universal quantification over all paths. We in-
troduce a third, more general variety of temporal logic: alternating-time temporal logic offers
selective quantification over those paths that are possibleoutcomes of games, such as the game
in which the system and the environment alternate moves. While linear-time and branching-
time logics are natural specification languages for closed systems, alternating-time logics are
natural specification languages for open systems. For example, by preceding the temporal op-
erator ‘eventually’ with a selective path quantifier, we canspecify that in the game between the
system and the environment, the system has a strategy to reach a certain state. The problems of
receptiveness, realizability, and controllability can beformulated as model-checking problems
for alternating-time formulae. Depending on whether or notwe admit arbitrary nesting of se-
lective path quantifiers and temporal operators, we obtain the two alternating-time temporal
logics ATL and ATL∗.”

Given a set (acoalition) of agents,A, ATL allows operators such as〈〈A〉〉ϕ, meaning that the set of agents
have a collective strategy that will achieveϕ. This approach has been very influential, not only on the
specification and verification of open, distributed systems, but also on the modelling of the behaviour of
groups of intelligent agents [277, 276].

Finally, we note that the development of themodalµ-calculus[171] provided a language that subsumed
CTL, CTL∗, and many other branching (and linear) logics [76], and there are even timedµ-calculi [142].

2.7.2 Quantification Over Propositions

In extending from a propositional temporal logic, a small (but significant) step to take is to allowquan-
tification over propositions. Thus, the usual first-order quantifier symbols, ‘∀’ and ‘∃’, can be used, but
only over Boolean valued variables, namely propositions ofthe language. Thus, using such a logic, called
quantified propositional temporal logic(QPTL) [254], it is possible to write formulae such as

∃p. p ∧ g gp ∧♦ ¬p

It is important to note that the particular form of quantification provided here, termed thesubstitutional
interpretation[133], can be defined as:

〈M, s〉 |= ∃p. ϕ if, and only if, there exists a model M ′ such that

〈M ′, s〉 |= ϕ and M ′ differs from M
in at most the valuation given to p
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This style of quantification is used in QPTL and in other extensions of PTL we mention below, such as
fixpoint extensions. Note that Haack [133] engages in a thorough discussion of the philosophical arguments
between the proponents of the above and the, more standard inclassical logic,objectual interpretationof
quantification:

〈M, s〉 |= ∃p. ϕ if, and only if, there exists a proposition q ∈ PROP
such that 〈M, s〉 |= ϕ(p/q)

whereϕ(p/q) is the formulaϕ with p replaced byq throughout
QPTL gives an extension of PTL (though still representable using Büchi automata) that allows regular

properties to be defined. It was inspired by Wolper’s work on extending PTL with grammar operators
(termed ETL) [292]. Another approach that followed on from Wolper’s work was the development of
fixpointextensions [55] of PTL [32, 33, 278, 109], extending PTL withleast (‘µ’) and greatest (‘ν’) fixpoint
operators. In such fixpoint languages, one could write more complex expressions. For a simple example,
though, consider:

ϕ ≡ νξ. ϕ ∧ gξ .

Here, ϕ is defined as the maximal (with respect to implication) fixpoint (ξ) of the formulaξ ⇒ (ϕ∧ gξ).
Thus, the maximal fixpoint above definesϕ as the ‘infinite’ formula

ϕ ∧ gϕ ∧ g gϕ ∧ g g gϕ ∧ . . .

Finally, it is important to note that all these extensions QPTL, ETL, and fixpoint extensions can be shown
to be expressively equivalent under certain circumstances[292, 32, 254, 282].

2.7.3 First-Order TL

Adding standard first-order (and, in the sense above, objectual) quantification to temporal logic, for ex-
ample PTL, is appealing yet fraught with danger. Such a logicis very convenient for describing many
scenarios, but is so powerful that we can write down formulaethat capture a form of arithmetical induc-
tion, from which it is but a short step to being able to represent full arithmetic [262, 263, 1]. Consequently,
full first-order temporal logic is incomplete; in other words the set of valid formulae isnot recursively
enumerable (or finitely axiomatisable) when considered over models such as the Natural Numbers.

While some work was carried out on methods for handling, wherepossible, such specifications [191],
first-order temporal logic was generally avoided. Even “small” fragments of first-order temporal logic,
such as thetwo-variable monadicfragment, are not recursively enumerable [199, 149].

However, a breakthrough by Hodkinsonet al. [149] showed thatmonodicfragments of first-order tem-
poral logics could have complete axiomatisations and even be decidable. A monodic temporal formula is
one whose temporal subformulae have, at most, one free variable. Thus,∀x. p(x) ⇒ gq(x) is monodic,
while ∀x.∀y. p(x, y) ⇒ gq(x, y) is not. Wolter and Zakharyaschev showed that any set of validmonodic
formulae is finitely axiomatisable [295] over a temporal model based on the Natural Numbers. Intuitively,
the monodic fragment restricts the amount of information transferred between temporal states so that, ef-
fectively, only individual elements of information are passed between temporal states. This avoids the
possibility of describing the evolution through time of more complex items, such as relations, and so re-
tains desirable properties of the logic. In spite of this, the addition of equality or function symbols can
again lead to the loss of recursive enumerability from thesemonodic fragments [295, 82], though recovery
of this property is sometimes possible [146].

2.8 Hybrid Temporal Logic and the Concept of “now”

The termhybrid logic is here used to refer to logical systems comprising a hybrid of modal/temporal
and classical aspects [156]. Basically, hybrid modal logics provide a language for referring to specific
points in a model. This approach is widely used indescription logics, with nominals typically referring to
individuals [27]. In the case of temporal logics, such a possibility was suggested by Prior [229] in tense
logics, but did not become popular until the 1990s, for example with [52, 54].
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The ability to refer to specific time points, for examplenow, has been found to be very useful in a
number of applications. Consequently, operators such as ‘↓’ are used to bind a variable to the current
point [125]. This allows the specifier to describe a temporalsituation, record the point at which it occurs,
then use a reference to this point in later formulae. This usefulness, has led to work on both reasoning
techniques and complexity for such logics [83, 20].

3 Temporal Reasoning

Having considered the underlying temporal representations, together with languages that are used to de-
scribe such situations, we now take a brief look at a few of thereasoning methodsdeveloped for these
languages.

3.1 Proof Systems

There are a wide variety of axiom systems for temporal logicsand, consequently, proof methods based
upon them. For PTL, the most popular modal-temporal logic, an axiomatisation was provided in [113], and
revisited in [243]:

⊢ ¬ gϕ⇔ g¬ϕ
⊢ g(ϕ⇒ ψ) ⇒ ( gϕ⇒ gψ)
⊢ (ϕ⇒ ψ) ⇒ ( ϕ⇒ ψ)
⊢ ϕ⇒ (ϕ ∧ g ϕ)
⊢ (ϕ⇒ gϕ) ⇒ (ϕ⇒ ϕ)
⊢ (ϕU ψ) ⇒ ♦ψ
⊢ (ϕU ψ) ⇔ (ψ ∨ (ϕ ∧ g(ϕU ψ)))

In addition, all propositional tautologies are theorems and the inference rules used aremodus ponensto-
gether withtemporal generalization:

⊢ ϕ

⊢ ϕ

However, several other proof systems, even for this logic have been given [172, 191, 87, 260]. Many proof
systems for temporal logics are based on their tense logic predecessors, such as those systems developed
by van Benthem [275] and Goldblatt [123].

As to other varieties of temporal logic, perhaps the most widely studied are variants of branching-time
logics. Thus, there are proof systems for CTL [225] and, recently, CTL∗ [241, 242].

Concerning quantifier extensions, proof systems have been developed for QPTL [106, 166]. For full
first-order temporal logics, an arithmetical axiomatisation has been given in [262]. Recently, complete
(monodic) fragments of both linear and branching temporal logics have been provided [295, 150] while
proof systems have been developed for alternative fragments of first-order temporal logics [221].

3.2 Automated Deduction

Given the utility of temporal formalisms, it is not surprising that many computational tools for establishing
the truth of temporal statements have been developed. In some approaches, such as model checking (see
Section 4.4), temporal conditions are often replaced by finite automata over infinite words. The close link
between temporal logics and such finite automata [254, 279, 280] means that decisions about the truth
of temporal statements can often be reduced to automata-theoretic questions. Rather than discussing this
further, we will consider more traditional automated approaches, such astableauandresolutionsystems.
However, before doing this, we note that thetemporal argumentsview of temporal representations given
earlier points to an obvious way to automate temporal reasoning, namely to translate statements in temporal
logic to corresponding statements in classical logic, adding an extra argument. Thus the implication

(p ∧ gq) ⇒ r
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might become, if we consider the simple Natural Number basisfor temporal logic, the following formula

∀t. (p(t) ∧ q(t+ 1)) ⇒ (∀u. (u ≥ t) ⇒ r(u)) .

This is an appealing approach, and has been successfully applied to the translation of modal logics [212].
However, the translation approach has been used relativelylittle [210], possibly because the fragment of
logic translated to often has high complexity; see [143, 124].

Probably the most popular approach to deciding the truth of temporal formulae is thetableaumethod.
The basis of the tableau approach is to recursively take the formula apart, until atomic formulae are dealt
with, then assess the truth of the formula in light of the truth constraints imposed by these atomic liter-
als [75]. In classical logic, this typically generates atree of subformulae. However, in temporal logics,
as in many modal logics [101], either an infinite tree or, morecommonly, a graph structure is generated.
The main work in this area was carried out by Wolper [292, 293], who developed a tableau system for
discrete, propositional, linear temporal logic. Several other tableau approaches have been reported, both
for the above logic [128, 253], and for other varieties of temporal logic [90, 194, 126, 220, 168]. However,
the structures built using the tableau method are very closeto theω-automata representing the formulae.
Thus, particularly in the case of logics such as CTL∗, automata theoretic approaches are often used [92].

In recent years,resolutionbased approaches [244, 30] have been developed. These have consisted of
bothnon-clausalresolution, where the formulae in question do not have to be translated to a specific clausal
form [3, 5], andclausalresolution, where such a form is required [67, 284, 95, 99]. Again, resolution tech-
niques have been extended beyond the basic propositional, discrete, linear temporal logics [57, 81, 167],
leading to some practical systems (see Section 4.3). For further details on such approaches, particularly for
discrete temporal logics, the article [243] is recommended.

Automated deduction for interval temporal logics has oftenbeen subsumed by work on temporal plan-
ning or temporal constraint satisfaction (see Section 4.3), though some work has been carried out on SAT-
like procedures for interval temporal problems [269] and tableau methods for interval logics [126, 58].

4 Applications

In this section we will provide an outline of some of the ways in which the concepts described in the
previous sections can be used to describe and reason about different temporal phenomena. This is not
intended to be a comprehensive survey and, again, there are anumber of excellent publications covering
these topics in detail. However, we aim, through the descriptions below, to provide a sense of the breadth
of representational capabilities of temporal logics.

4.1 Natural Language

The representation of elements of natural language, particularly tense, is not only an intuitively appealing
use of temporal logic but provides the starting point for much of the work on temporal logics described in
this chapter. The main reason for this is the work of Prior [138] on the formal representation of tense [229].
The sentence:

“I am writing this section, willwrite the next section later, and eventually will havewritten the
whole chapter”

naturally contains the verb “to write” under different tenses. The tenses used depend upon the moment in
time referred to, relative to the person describing it. Prior carried out a logical analysis of such uses of
tense, developingtense logic, and captured a variety of temporal connectives that have subsequently been
used in many temporal logics, for exampleuntil, since, before, after, andduring.

Subsequent work by Kamp [161] related tense operators, suchassinceanduntil, to first-order languages
of linear order. This work has been very influential, leadingto deeper analysis of tense logic [107, 64, 65],
and then to work on temporal logics. An excellent summary of such work on tense logic is given in [66].

The representation of natural language using various temporal representations has also moved on, for
example through the work of van Benthem [275], Galton [116],Kamp and Reyle [162], Steedman [257,

14



258], ter Meulen [265] and Pratt-Hartmann [228]. A more detailed overview of temporal representation in
natural language can be found in [266].

Finally, work in this area naturally impacts upon practicalapplications, such as the use of temporal
representation inlegal reasoning[288].

4.2 Reactive System Specification

It is in the description of complex (interacting, concurrent or distributed) systems that temporal representa-
tions have been so widely used. While it is clearly impossibleto give a thorough survey of all the ways that
temporal notations have been used, particularly as formal specifications, we will give some initial pointers
to this area below.

Probably the best known style of temporal specification, which has been used in the specification and
verification of programs, is that instigated by Pnueli [222,113, 223] and continued by Manna and Pnueli
through a series of books [191, 192] and papers. In such an approach, the expressive power of modal
temporal languages is used in order to specify properties such assafety:

(temperature < 500)

ensuring, in this case, that in any current or future situation, the temperature must be less than500, liveness:

♦(terminate ∧ successful)

where, for example, some process is guaranteed to eventually terminate successfully, andfairness:

♦request ⇒ ♦respond

guaranteeing that if a request is made often enough (‘♦’ implies “infinitely often”) then, eventually, a
response will be given.

In parallel with the Manna/Pnueli line of work, Lamport developed aTemporal Logic of Actions
(TLA) [177]. This has also been successful, leading to a large body of work on temporal specifications
of a variety of systems [178]. Finally, it should be noted that descriptions of many real-world applica-
tions have been given using other varieties of temporal language, such as real-time temporal logics (see
Section 2.6), interval temporal logics (see Section 2.5.2), partial-order temporal logics [268], etc.

Once a system has been specified, for example using the logical approach above, a number of tech-
niques may be used. These include:refinement, in order to develop a modified specification [2];execution,
where the specification is treated like a program and executed directly [205, 36, 98];deductive verification,
whereby the relationship between two logical specifications is proved (see Sections 3.2 and 4.3);algorith-
mic verification, where the match between the specification and a finite-statedescription (for example, a
program) is established (see Section 4.4); andsynthesis, whereby such a finite-state description (program)
is generated (semi-) automatically from the specification [226].

4.3 Theorem-Proving

Several of the reasoning techniques described in Section 3 have been developed into powerful proving tools.
In the case of modal-temporal logic, the best known is theStanford Temporal Prover (STeP)developed over
a number of years by Manna and colleagues [259, 51, 50]. STeP supports the “the computer-aided formal
verification of reactive, real-time and hybrid systems based on their temporal specification”. It incorporates
both model checking and proof procedures and is therefore able to tackle more complex, even infinite state,
verification problems.

For modal-temporal logics, several other systems have beendeveloped, notably TeMP [155], based on
the clausal temporal resolution approach [167], TLPVS [270, 224], built on top of PVS [233], and the
Logics Workbench [188, 253].

In terms of interval temporal logics, many of the reasoning techniques and uses of interval algebras have
been incorporated in temporal planning [104, 271] and temporal constraint satisfaction systems [85, 291].
These topics are covered in depth elsewhere, but we here justcite some of the relevant work on tem-
poral planning, notably that by Bacchus and Kabanza on usingtemporal logics to control the planning
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process [29], by Fox and Long on describing complex temporaldomains [103], by Geffner and Vidal on
constraint-based temporal planning [286], by Mayer et al. on planning using first-order temporal log-
ics [196], by Gerevini et al. on developing the LPG planning system [187], and by Doherty on planning in
temporal action logic [84].

There has been less development and implementation of Moszkowski’s ITL, but see [159] for sev-
eral tools based on this approach. However, the direct execution of ITL statements is the basis for the
Tempuraprogramming language [205, 134] which is important in the development of compositional rea-
soning [207]. Just as Tempura is based on forward-chaining execution of ITL statements, the METATEM
approach forward-chains through PTL formulae, though in a specific normal form [36, 98]. Alternative ap-
proaches to the execution of temporal statements are based on the extension of logic programming to modal
temporal logic, giving Templog [4, 40] or Chronolog [215, 186] or the addition of interval constructs to
logic programming, giving the temporal event calculus [169, 35, 209, 34]. For introductions to the ideas
behind executable temporal logic, see [214, 96]

4.4 Model Checking

Undoubtedly the most practical use of temporal logic is inmodel checking. This is simply based on the idea
of satisfiability checking. Thus, given a model,M , and a property,ϕ, is it the case thatϕ is true throughout
M? If M represents all the possible paths through a hardware design, or all the possible executions of
a program, then answering this question corresponds to checking whether all the executions/paths satisfy
the property. Consequently, this is used extensively in theformal verification of hardware descriptions,
network protocols and complex software [151, 73].

That model checking has become so popular is due mainly to improvements in theengineeringof
model checking algorithms and model checkers. Simply enumerating all the paths through the modelM
and checking whetherϕ is satisfied on that path can clearly be slow. However, an automata-theoretic view
of the approach helped suggest improvements [254]. Here, the idea is that a B̈uchi automaton,AM , can be
developed to represent all the paths throughM , while another B̈uchi automaton,A¬ϕ, can be developed to
capture all paths thatdo notsatisfyϕ. Thus,A¬ϕ represents all thebad paths. Now, once we have these
two automata, we simply take the product,AM ×A¬ϕ, which produces a new automaton whose paths are
those that satisfybothautomata. Thus, a path throughAM × A¬ϕ would be a path throughAM that also
did not satisfyϕ. Now, the question of whether “all paths throughM satisfyϕ” can be reduced to the
question of whether “the automatonAM ×A¬ϕ hasnoaccepting runs”. This automata theoretic view was
very appealing and led to significant theoretical advances [279]. However, a key practical problem is that
the space (and time) needed to construct the product of the two automata can be prohibitively large. Thus,
mechanisms for reducing this were required before model checking could be widely used.

Two approaches have been developed that have led to widespread use of model checking in system
verification. The first is the idea ofon-the-fly model checking[122, 152]. Here, the product automaton
is only constructed as needed (i.e., it is builton the fly), avoiding expensive product construction in many
cases. This approach has been particularly successful in theSpin model checker [153, 256], which checks
specifications written in linear temporal logic against systems represented in thePromela modelling
language [153].

The second approach is to still carry out automata composition, but to find a much better (and more
efficient) representation for the structures involved. This is termedsymbolic model checking[63] and uses
Binary Decision Diagrams (BDDs) [60] to represent both the system and property. BDDs are a notation in
which Boolean formulae can be represented as a graph structure on which certain logical operations can
be very quick. This is dependent on finding a good ordering forthe Boolean predicates within the graph
structure. The use of varieties of BDDs has led to a significant increase in the size of system that can be
verified using model checking, and is particularly successful in theSMV[198, 62] andnu_smv [71, 211]
model checkers, which check branching temporal formulae (in CTL) over finite automata.

Model checking has also been applied to real-time systems [10, 47, 272, 219, 173, 234, 285], most
successfully via the UPPAAL system. This has been used to model and verify networks of timed automata,
and uses model checking as a key component [180, 42].

Although model checking has been relatively successful, much work still remains. Current work on
abstraction techniques (i.e. reducing complex systems to simpler ones amenable to model checking), SAT
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based and bounded model checking [48, 49, 26, 227], probabilistic model checking [174, 230], and model
checking for high-level languages such asC [31, 255] andJava [289, 160] promise even greater advances
in the future.

4.5 PSL/Sugar

The success of model checking, particularly in the realm ofhardwaredesign, has led to the use of temporal
techniques in a number of industrial areas. Standards for specifying the functional properties of hardware
logic designs are now based upon temporal logics. For example, there is a large consortium developing
and applying PSL/Sugar [41, 231]. This, and other approaches such as ForSpec [21] and SystemVerilog
Assertions [261], extend temporal logic adding regular expressions and clocks and even allowing more
complex combinations of automata and regular expressions [43].

4.6 Temporal Description Logics

It is often desirable to combine temporal logic with description logic, to give atemporal description logic.
While there have been some attempts to consider the general problem of combining such non-classical
logics [45], it is only in specific areas that a systematic examination of detailed combinations has been
carried out. Temporal description logics are just such an area.

The motivation for studying temporal description logics primarily arose from work on temporal databases [94,
24] and dynamic knowledge/plan representation [247, 22, 23]. A thorough survey of the varieties of com-
bination, and their properties, is provided by Artale and Franconi in [25]. Different logical combinations
can be produced, depending on what type of temporal logic is used (e.g. point-based or interval) and how
the temporal dimension is incorporated. A simple temporal description logic can be obtained by combining
a basic description logic with a standard point-based temporal logic, such as PTL. This combination can
be carried out in a number of ways, two of which are termedexternalandinternal in [25]:

• using anexternalapproach, the temporal dimension is used to relate different (static) ‘snapshots’ of
the system, each of which is described by a description logicformula;

• using aninternal approach, the temporal dimension is effectively embedded within the description
logic.

For simplicity, we consider the first view; for example

parentof(Michael, Christopher) ⇒ gparentof(Michael, James)

Hereparentof(Michael, Christopher) is true at present, and within the current description logicthe-
ory, while parentof(Michael, James) will be true at the next moment in time. This, relatively simple,
approach allows us to add a dynamic element to description logics. Yet, it is also important to be able to
carry information between temporal states, for example

∀x. parentof(Michael, x) ⇒ gparentof(Michael, x) (1)

However, just as in first-order temporal logics [263, 1] (seeSection 2.7.3), the amount of information trans-
ferred between temporal states can drastically affect the properties of the logic. Thus, varieties including
(1) above, where only individual elements of information are passed between temporal states, correspond
to the class ofmonodicfirst-order temporal logics [149] in which decidability canbe retained. Correspond-
ingly, temporal description logics where concepts can evolve over time, but where the temporal evolution
of roles is limited, can retain recursive enumerability and, often, decidability [294, 25].

5 Concluding Remarks

In this chapter we have provided an overview of a variety of aspects concerning temporal representation
and reasoning. Even though this is not meant to be exhaustive, it is clear that not only are there many subtle
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aspects within the general area of temporal representation, but there is also a vast number of other areas
and applications within which temporal approaches are relevant.

Although we have described many aspects of temporal representation and reasoning, others that we
have omitted include:

• temporal data mining— the extraction of temporal patterns either from large datasets or streams of
data [264, 46];

• temporal databases— the incorporation in (relational) databases and query languages of various
temporal constraints [46, 273, 70]; and

• probabilistic temporal logics— the extension of temporal representations with probabilities and
uncertainty [137], together with various applications such as probabilistic model checking [230].

As is clear in these areas, as well as in the topics examined within this chapter, research on temporal
representation and reasoning continues to expand and progress. New formalisms, techniques and tools are
being developed, and all of this points to the increasing relevance of temporal representation and reasoning
to knowledge representation, and to Computer Science and Artificial Intelligence in general.
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