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This book is about representirkgnowledgein all its various forms. Yet, whatever phenomenon we aim
to represent, be it natural, computational, or abstradg tnlikely to be static. The natural world is
always decaying or evolving. Thus, computational procgsbg their nature, are dynamic, and most
abstract notions, if they are to be useful, are likely to ipooate change. Consequently, the notion of
representationshanging through times vital. And so, we need a clear way of representing both our
temporal basis, and the way in which entities change oves.tithis is exactly what this chapter is about.

We aim to provide the reader with an overview of many of the svemporal phenomena can be
modelled described reasoned aboutand applied In this, we will often overlap with other chapters
in this collection. Some of these topics we will refer to véitile, as they will be covered directly by
other chapters, for examptemporal action logic[84], situation calculusg[185], event calculug209],
spatio-temporal reasoninfy4], temporal constraint satisfactiof291], temporal planning84, 271], and
gualitative temporal reasoninffl02]. Other topics will be described in this chapter, buertap with
descriptions in other chapters, in particular:

e automated reasoningn Section 3.2 and in [290];
e description logicsin Section 4.6 and in [154]; and
e natural languagein Section 4.1 and in [250].

The topics in several other chapters, sucreasoning about knowledge and bel[2D3], query answering
[34] andmulti-agent system{277], will only be referred to very briefly.

Although this chapter is not intended to be a comprehensiveey of all approaches to temporal
representation and reasoning, it does outline many of tret pnominent ones, though necessarily at a high-
level. If more detail is required, many references are gledi Indeed, the first volume of tlfeundations
of Artificial Intelligenceseries, in which this collection appears, contains muchendetail on the use of
temporal reasoning in Artificial Intelligence [100] whilé12, 56, 129, 114, 148] all provide an alternative
logic-based view of temporal logics. In addition, there mx@ny, more detailed, survey papers which we
refer to throughout.

The structure of this chapter is as follows. We begin, in ®act, by considering structures for mod-
elling different aspects of time, aiming at providing an wew of many alternatives. In Section 2, we
discuss languages for talking about such temporal reptas@ms and their properties. Typically, these lan-
guages are forms eémporal logic Section 3 addresses the problem of reasoning about désesigiven
in these temporal languages and highlights a number offgignt techniques. In order to provide further
context for this discussion, Section 4 outlines a seleaioapplication areas for temporal representation
and reasoning. Finally, in Section 5, concluding remarkspaovided.

1 Temporal Structures

While we will not enter into a philosophical discussion abth& nature of time itself (see, for exam-
ple, [287, 119]), we will examine a variety of different sttures that underlie representations of time.
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Where possible, we will provide mathematical descriptiongrider to make the discussions more formal.
We are only able to describe temporal concepts if we are abiefér to a particular time and so relate
different times to this. Without prejudicing later deciss) we will describe such times atatesand will
refer to each one via an unique index. Thus, at a particute,tsayt, we can describe facts such as “itis
sunny”, “the process is stopped”, and “X is bigger than Y"r Egample, in Fig. 1 we have one such state,

t.

sunny X>Y
process_stopped

Figure 1: State at time

Now, as soon as we go beyond this simple view, we face a nunfilbloies, all of which can significantly
affect the complexity and applicability of the temporal negentation.

1.1 Instants and Durations

It may seem as though the indéxdescribed above naturally represents an instant in timdeedd, by
describingt as astate we have already implied this. While this is a popular views ihot the only one.
Another approach is to consideas ranging over a set of temponmatervals An interval is a sequence of
time with duration. Thus, if now refers to an interval, for example an hour, then Fig. tesgnts proper-
ties true during that hour: “it is sunny throughout that Holthe process is stopped in that hour”, and “X
is bigger than Y for an hour”. It is important to note that thaguage we use to describe properties is vital.
Thus, we have just used “throughout”, “in”, and “for” in deing properties holding over intervals. The
differences that such choices make will be considered irerdetail in Section 2.5. We have also referred
to explicittimes, such as one hour; again, the possibility of talkimgatly about real values of time will
be explored in Section 2.6.

Related to the question of whether points or intervals shbalused as the basis for temporal represen-
tation is the question of whether temporal elements shoeldidztrete If we consider points as the basis
for a temporal representation, then it is important to dbsdhe relationshifppetweerpoints. An obvious
approach is to have each point representing a discrete niomtme, i.e. distinguishably separate from
other points. This corresponds to our intuition of ‘tick$’aoclock and is so appealing that the most popu-
lar propositional temporal logic is based upon this viewisTgic, calledPropositional Temporal Logic
(PTL) [113, 223], views time as being isomorphic to the NatiNumbers, with:

e an identifiable start point, characterised by *

e discrete time points, characterised by, * 1’, * 2, etc;

e an infinite future; and

e a simple operation for moving from one point’J'to the next(characterised byi ‘4 1°).

There are a number of variations of the above propertieswibawill discuss soon, but let us consider a
model for PTL as simplyN, ) with = being a function mapping each element of the Natural Numbgrs
to the set of propositionsue at that moment. We will see later that this is used for the seicgof PTL.
We can visualise this as in Fig. 2, whereaptures the elements inside each temporal element (itbeal
true propositions; those not mentioned are, by defdalse.

1.2 From Discreteness to Density

We next consider some variations on the basic type of modgehgabove. In Section 1.4, we re-examine
the above assumptions of having an identifiable start stetdigearity. For the moment, however, we only
review the decision to have a setdi$cretetime points between which we can move via a simple function.



t+1 t+2

sunny X>Y — rainy — windy —
process_stopped

Figure 2: Organising states &s

Although this corresponds to the Natural Numbers (or Int®gevhat if we take the Rational Numbers as
a basis? Or the Real Numbers? Or, indeed, what if we take etteuthat has no analogue in Number
Theory?

In general, the model for point-based temporal logi¢9sR, 7), whereS is the set of time pointsy
again maps each point to those propositions true at that,id R is an earlier-later relation between
points inS. In the case of discrete temporal logics, we can replaceahergl accessibility relatio®, by
a relation between adjacent poindé, This next-timerelation applies over the set of all discrete moments
in time (S). Thus, for alls; andss in S, N (s, s2) is true if s5 is thenextdiscrete moment aftes; .

If we go further and use a standard arithmetical structueecan replace the combination &fand.S
(or R andS) by the structure itself, e.dR with the associated ordering.

Now, if we consider non-discrete structures, sucRahere is no clear notion of theextpoint in time.

R is dense and so if a temporal relatior, is based on this domain, then if two time points are related,
there is always another point that occbetweerthem:

Vie S.Vke S R(i,k) = [3j €8. R(i,j) A R(j, k).

Consequently, the concept ofn@xt point in time makes little sense in this context and so lotiased
on dense models typically use specific operators relatingteyvals over the underlying domain; see
Section 2.4. And so we have almost come full circle: denseteal logics, such as those basedn
require interval-like operators in their language. {Berval-like, we mean operators that refer to particular
sub-sequences of points.)

There is a further aspect that we want to mention and thab&ilbme important later once we consider
representing point-based temporal logics within clasdicst-order logic (see Section 3.2). As we have
seen, some constraints on the accessibility relation fample, density, above) can be defined using a
first-order language over such relations. However, thexzesame restrictions (for example, finiteness) that
cannot be defined in this way [161, 274, 112].

There is much more work in this area, covering a wide variétgase domains for temporal logics.
However, we will just mention one further aspect of underyimodels of time, namelgranularity, before
moving on to more general organisation within the tempdralksure (in Section 1.4).

1.3 Granularity Hierarchies

The models of time we have seen so far are relatively simplmdntioning the possibility of an underlying
dense domain above we can begin to see some of the complegityeen any two time points there are
an infinite number of other time points. Thus, time can be desd at arbitrarygranularities However,

it is often the case that a description is needed at a patigrhnularity, and only later do we need to
consider finer time distinctions. A simple example from izt reasoning concerns a discussion between
participants who agree to organise a meetngry monthThey must agree to either a date, e.g. the 25th, or
to a particular day, e.g. the last Tuesday in the month. | #tey will consider times within that day. Then
they might possibly consider more detailed times withinrtieeting itself, and so on. In the first case, the
participants wish to represent the possibilities withcanihg to deal with minutes, or even hours. Later,
hours, minutes and seconds may be needed. In practical $eichgequirements have led to systems such
ascalendar logic[213]. More generally, significant work has been carried@uhierarchies of differing
granularities, for example in [202, 105, 59, 232], with a poehensive descriptions being given in [93, 46].
Finally, the work on interval temporal logics describectaias also led to alternative views of granularity
and projection [206, 130, 58, 131].



1.4 Temporal Organisation

In general, the accessibility relation between temporaitgas an arbitrary relation. However, as we have
seen above, many domains provide additional constraintiien Typically, the accessibility relation is
irreflexiveandtransitive In addition, the use of arithmetical domains, suctNa€§), andR, ensures that
the temporal structure is both linear and infinite in the fatWVhile a linear model of time is adopted within
the most popular approaches [223], there is significant fifeedbranching (in to the future) model [91,
281], particularly in model checking (see Section 4.4). tfetre are many other ways of organising the
flow! of time, including acircular view [239], apartial-order, or trace-based, view [163, 218, 139, 268],
or analternatingview [68, 17]. These last two varieties have been found todrg useful in specific
applications, particularly partial-order temporal logyfor partial/trace-based requirements specifications,
such as Message Sequence Charts or concurrent system#eamatimg-time temporal logics for both the
logic of games and the verification of multi-process (andtivagent, see [277]) systems [18, 14, 200].

All these considerations are closely related to finite aat@nover infinite strings«(-automata). There
has been a considerable amount of research developingnthediween forms ofs-automata (such as
Biichi automata) and both temporal and modal logics [254, 280]. It is beyond the scope of this article
to delve much into this, yet it is important to recognise timatch of the development of (point-based)
temporal representation and reasoning is closely relatadtbmata-theoretic counterparts.

1.5 Moving in Real Time

So far we have considered thelative movement through time, where time is represented by albstrac
entities organized in structures such as trees or sequeBwes in discrete temporal models, the idea of
the nextmoment in time is an abstract one. Each step does not direathgspond to explicit elements
of time, such as seconds, days or years. In this section, Weutiine the addition of sucheal-time
aspects. These allow us to compare times, not just in terisfofe/after or earlier/later relations, but also
in quantitativeterms.

Since there are many useful articles on structures for septeng real-time temporal properties, such as
the influential [12, 13], together with overviews of the wdgarticularly on timed automata) [15, 19, 44],
we will simply give an outline of theimed automatapproach on discrete, linear models. (Note that a
collection of early, but influential, papers can be found7f][)

Recall that discrete, linear models of time correspond tuerces of ‘moments’. These, in turn, can
be recognised as infinite words in specific finite automata o¥mite strings called Bchi automata. The
only relationship between such moments is that each subséque is considered as thextmoment in
time. In order to develop eeal-timeversion of this approach, we can consider such sequencewjthu
timing statements referring to particular clocks (in theeén Fig. 3, the clock ig) added between each
consecutive moment. See Fig. 3 for an example of a timed nfbdedt < 1 is a constraint stating that the
time, ¢, is less than on this transition, while the timeis at leas® on thet > 8 transition).

sunny X>Y t<1 rainy t>38 windy
process_stopped — . —

Figure 3: Model with timing constraints.

Where only a finite number of different states exisficBi automata can also be extended to recognise
thesdimed sequencd$2, 13]. In practical applications of such models (seeiBret.4) various automata-
theoretic operations, such as emptiness checking, are Tikede tend to be complex [19], but vary greatly
depending on the type of clocks and constraints used.

As well as being developed further, for example witbcked transition systenj$65], and extended
into hybrid automatg11], timed automata have led to many useful and practicdfieation tools, partic-
ularly UrPPAAL (see Section 4.4).

IHowever, describing time awing might even be an assumption too far! Several authors havedeoesi time withgapsin
it[112, 28].



1.6 Intervals

As mentioned above, anterval captures some duration of time over which certain propetigd. As
in the case of point-based approaches described earkee #ie many different possibilities concerning
how intervals are defined. Given a linear model of time, theestjons such as whether the ‘moments’
within this linear order are represented as points or notthdr the order is infinite in either (or both)
future or past, etc, must still be decided upon. Additionalle now have the notion of an interval. Simply,
this represents the period of time between two ‘moments’t, Biicourse, there armanypossibilities
here [275]. Does the interval include the end points? Canave imtervals where the start point and end
point are the same? Can we have zero length intervals? And.so o

Assuming we have decided on the basic structure of intertteds the key questions concerned with
reasoning in such models are those relating points to ialgrand relating intervals to other intervals. For
example, imagine that we have the simple model of time basa,as described above. Then, let us
denote the interval between two time pointandb by [a, b]. Now, we might ask:

e does a particular time poiatoccur within the intervala, b]?

e is a particular time poing adjacent to (i.e. immediately before or immediately afteg interval
[a, b] (and what interval do we get if we adito [a, b])?

e does another interval, f], overlap[a, b]?
e is the intervalh, i] a strictsub-intervalof [a, b]?
e what interval represents the overlap of the interyals] and[a, b]?

And so on. As we can see, there amanyquestions that can be formulated. Indeed, we have not even
addressed the question of whether intervalsogenor closed This question really becomes relevant we
consider underlying sets such as the Rational or Real Nusnlbaiormally, an element in the temporal
domain are within the@peninterval (a,b) if a« < z andz < b, and is within theclosedinterval [a, b] if
a < xandzx <b.

Yet, that is not all. In the temporal models described eaniee defined temporal properties. Such
properties, usually represented by propositions, weisfiat at particular times. Thus, with intervals, we
not only have these aspects, but can also ask questionssuch a

e does the propositiop hold throughoutthe interval[a, b]?

e does the propositiop hold anywherevithin the interval[a, b]?

e does the propositiop hold by theendof interval[a, b]?

e does the propositiop hold immediatelybeforethe intervalla, b]?
And so on. Various connectives allow us to express even more:

e given an intervala, b] wherey holds, is there another interval, m|, occurring in the future (i.e.
strictly after [a, b]), on whichy also holds?

e can we split up an intervdk, b] into two sub-intervals|a, ¢;] and [cq, b] such thaty holds con-
tinuously throughouta, ¢;] but not ate; (and where joininda, ¢;] and[cz, b] back together gives
[a, b])?

In general, there ammanyquestions that can be asked, even when only consideringnttexlying interval
representations. As we will see in Section 2.5, once we addiféplanguages to reason about intervals,
then the variation in linguistic constructs brings an evezatger set of possibilities.

In a historical context, although work in Philosophy, Limgfics and Logic had earlier considered time
periods, for example [65], interval temporal represeataticame to prominence in Computer Science and
Artificial Intelligence via two important routes:



1. the development, in the early 1980s, of interval temptwgics for the description of computer
systems, typically hardware and protocols [135, 204, 288];2nd

2. the development, by Allen, of interval representatioitiw Artificial Intelligence, primarily for use
in planning systems [6, 9, 7].

We will consider the languages used to describe such phammesection 2.5 and will outline some to
the applications of interval representations later.

Finally, in this section, we note that there are a number oékent articles covering much more than we
can here: introductory articles, such as [287, 190]; sus\ayinterval problems in Artificial Intelligence,
such as [85, 121]; and the comprehensive survey of intendldaration calculi by Goranko, Montanari
and Sciavicco [127].

2 Temporal Language

Just as there are many models for representing temporatisitg, there is an abundance of languages
for describing temporal properties. Again, many of thesgyleges have evolved from earlier work on
modal [181, 61] or tense logics [107, 66]. Yet, with each ngpetof phenomenon, a different logical
approach is often introduced. Thus, there are so many elifteaemporal logics, that we are only able to
introduce a few of the more common ones in the following.

2.1 Modal Temporal Logic

We will begin with a common language for describing tempgralperties, often termeghodal temporal
logic due to its obvious links with modal and tense logics [229,,58 37]. This is the type of language
originally applied by Pnueli [222] and is now widely used inr@puter Science. Based on modal notions
of necessityandpossibility, the basic (modal) temporal operators are

CJe — “pisalwaystrue in the future”

O — “pis true atsome timén the future”
Thesealwaysandsometimeperators form the basis for many logics operating ovealimeodels of time.
Yet there are temporal aspects that are impossible to presnply using <>’ and ‘[’ [161, 292, 53].

Thus, theuntil operator (U ") together with its counterpart, thenlessoperator (W), are often imported
from tense logic [161, 64]:

U1 — “there exists a moment whenholds andp will continuously hold from nowntil this moment”
e W1 — "¢ will continuously hold from now on unlessg occurs, in which case will cease”

(Note that there are several variations on the semantiteeétoperators, for example differing on whether
0 must be satisfied at the current moment.) The similaritiéaéen the above connectives means that the
unlessoperator is often termedeak until This is generally enough to handle common situations, &s bo
sometimeandalwayscan be defined usingntil. However, in the case of a discrete model of time, it is
often convenient to add theext timeoperator, O

O —“pis true at thenextmoment in time”

The formal semantics for such temporal operators can begiuehe discrete case, using thext-time
relation introduced earlier. Over modél$ = (S, N, 7), example semantics can be given as follows.

(M,s) = Qg if,andonlyif, Vte S.if N(s,t) then (M,t) = ¢

Note that, depending on the semantics of th&€ operator, the O’ operator may be able to be defined
directly using U/’ [87].



2.2 Backto the Future

Work on tense logics typically incorporated a notionpafst-timeconnectives, such asnce[161, 64].
Though such past-time connectives were omitted from tHg tsamporal logics used in Computer Science,
researchers have found it convenient to re-introduce fpastinto temporal logics [38, 182].

Thus, temporal logics can contain operators that are thetjpaes counterparts of |, <, etc. Discrete
temporal logics also incorporate tipeeviousoperator, @’, which is the past-time dual of the “next”
operator.

@ — “ypistrue at thgpreviousmoment in time”

In order to indicate some of the interesting interactionsvben these two operators, we provide more
general definitions that depend only on the discretenedseofimderlying model, not on its linearity. For
this purpose, we again timext-timerelation introduced earlier and define the semantic@dover models
M = (S, N,n)) as follows.

(M,s) E Oy if,andonlyif, Vte S.if N(s,t) then (M,t) = ¢
(M,t) = @¢ ifandonlyif, Vs e S.if N(s,t)then (M,s) = ¢

It is important to note the duality between the semantic@fand ‘O’ given earlier. This duality allows
us to describe some interesting properties. First of alie tioat@ false (or Ofalse) is only satisfiable
at the first (or last) moments in the temporal model. Exangirtive definition above, the only way that
@ false can be satisfied is if there ane previous moments in time. If there were any previous ones) th
false would have had to be satisfied at them! Similaflyfalse corresponds closely to the ITL operator
fin describing the end of finite intervals (see Section 2.5).

An interesting aspect of the past/future combination i®giley the possible interactions between the
previous and next operators. For example, the axjora> @ O ¢ implies that, in models such as that
described below, either the statés disallowed, or if it is allowed, it is indistinguishableom the “now”
state by any temporal formula.

S

S

future

now

As we can see, there is much scope for interesting combimatwen with just thenext and previous
operators. A large range of interactions can be explorek thi#gsometime in the futurend thesometime

in the pastoperators, or withuntil andsince[240, 112, 267]. In addition, questions of whether both past
and future operators are needed can also been conside®d [17

2.3 Temporal Arguments and Reified Temporal Logics

While variations of modal temporal logics are widely used iontputer Science, there are alternative
approaches that have been developed within Artificial ligeshce. An obvious alternative to the modal-
temporal approach is to essentially use first-order logitestents, treating one of the arguments to each
predicate as a reference to time. To see this, let us givestharstics of PTL in classical logic by represent-
ing temporal propositions as classical predicates parxisetl by the moment in time being considered.
Below we look at several temporal formulae and, assumingdheto be evaluated at the momeérghow
how these formulae can be represented in classical logic.

p A Ogq — p(i) A q(i+1)

Or — 3. =i0) Ar()



(s — Vk. (k> 1) = s(k)

This is often termed theemporal argumentapproach, because the temporal propositions are defined as
predicates taking times as arguments.

A further approach that became popular in Artificial Intgdihce research is theification approach.
Here, the idea is to have predicates sucha@dsandoccursapplied to properties (often calléidienty and
times (points or intervals) over which the properties haldgccur).

Since Allen’s Interval Algebra, considered in Section 2s50f this form, we will not mention these
possibilities further. However, there are a great many ipatibns in this area, beginning with initial
work on reified approaches, such as McDermott’s logic of p[d®7], Allen’s Interval Algebra [7] (and
Section 2.5), Situation Calculus [237, 185] and the Evernt@as [169]. In addition, there are numerous
surveys and overviews concerning these approaches, ingl{idL7, 189, 236, 35].

2.4 Operators over Non-discrete Models

As we outlined in Section 2.2, various temporal operatorsehzeen devised, beginning witntil and
sinceor, alternatively withsometime in the futurand sometime in the pastndeed, these operators are
useful for general linear orders, not just discrete one§][16onsequently, if we move away from discrete
temporal models towards dense (and, generally, non-déameodels, these temporal operators form the
basis of languages used to describe temporal properties.

Sometime in the futuendsometime in the pagpften referred to ag’ and P) have been used to analyse
a variety of non-discrete logics, for example those baseR §itil1, 112, 114]. Past and future operators,
such aauntil andsincehave been productively used in transforming arbitrary fdem into more useful
normal forms, for example separating past-time from futime [108, 36, 97, 147].

Finally, it is informative to consider the approach takeirR[39, 164]. Here, the temporal model is
based oR anduntil is taken as the basic temporal operator (only the future fieggment is considered).
However, the difficulty of dealing with properties ovBrmeant that the authors introduced an additional
constraint, termedinite variability. Here, any property may only change valuéréte number of times
between any two points in time. This avoids the problem ofnapieral property, say, varying between
true andfalse infinitely over a finite period of time, for example betwetand2 on the Real Number
line. (This aspect has also been explored in [77, 118].)

2.5 Intervals

As mentioned earlier, the two strong influences for the usatefval temporal representations were from
Allen, in Artificial Intelligence, and Moszkowski et al., i@omputer Science. We will give a brief flavour
of the two different approaches, before mentioning somesmecent work.

2.5.1 Allen’s Interval Algebra

Allen was concerned with developing an appropriate fornegkr@sentation for temporal aspects which
could be used in a variety of systems, particularly planrgggtems. He developed a formal model of
intervals, or time periods, and provided syntax to desdtileerelationships between such intervals [6, 7].
Thus, I; overlaps I5 is true if the intervalsl; and I, overlap, 3 during I, is true if the intervalls is
completely contained withid,, while I5 before Ig is true if I occurs befordg. This led on to 13 such
binary relations between intervals, giving the Allen IntdrAlgebra.

Further work on the formalisation and checking of Allen’¢eitval relations can be found in [8, 175,
183, 136, 184, 176] with the algebraic aspects being exglomgher in [144, 145]. In addition, the basic in-
terval algebra has been extended and improved in manyaetlifferays; see [121] for some of these aspects
and [85] for a thorough analysis of the computational protdeassociated with such interval reasoning.
These last two references also bring in the work on repragestich problems as temporal constraint
networks [80, 251] and solving them via constraint satiséactechniques [291].



2.5.2 Moszkowksi's ITL

The interval logic developed by Moszkowski et al. in the vd980s was much closer in spirit to the
propositional (discrete) temporal logics being develogethat time [113]. Moszkowski’s logic is called
ITL and was originally developed in order to model digitabciits [135, 204]. Although the basic temporal
model is similar to that of PTL given earlier, ITL formulaesanterpreted in a sub-sequence (defined by
oy, - .., 0c) Of, rather than at a point within, the model Thus, basic propositions (such & are
evaluated at thetart of an interval:

(O, ..., 00) =P if,andonlyif, P € oy,
Now, the semantics of two common PTL operators can be givéollas/s.

(op, ..., 00) | Lle if,andonlyif, foralli, if b <i<ethen{(o; ..., 00) E @
(opy ..., 0e) E O¢ if,andonlyif, e >b and {(ops1, ..., 0e) E

A key aspect of ITL is that it contains the basic temporal afas of PTL, together with thehopoperator,
“’ which is used to fuse intervals together (see also [283]). Thus:

(b, ..., 0c) F @y if,and only if, there exists ¢ such that b < i < e and both
<0b7 ) Ui> ':SO and <0i7 R 0’6> ':w

This powerful operator is both useful and problematic (&t the operator ensures a high complexity logic).
Useful in that it allows intervals to be split based on theperties; for exampled>’ can be derived in
terms of ¥, i.e.
<><p = true;p

meaning that there is some (finite) sub-interval in whiche is satisfied that is followed (immediately) by
a sub-interval in whichy is satisfied.

To explain further, simple examples of formulae in ITL areeyi below, together with English expla-
nations.

e p persists through the current intervallp

e The following defines steps within an interval:
up A Odown A OQOQup AN OOO down

e The following allows sequences of intervals to be conseudict

[ january; O [february; O [ Imarch; . ..

e p enjoys a period of beinfalse followed by a period of beingrue, i.e. it becomes positive:
L=p;O Up.

As mentioned earlier, there has also been work on granghaithin ITL, particularly via thetemporal
projectionoperation [206, 130, 58, 131].

In [136], Halpern and Shoham provide a powerful logic (HSrantervals (not just of linear orders). This
logic has been very influential as it subsumes Allen’s algebrdeed, the HS language with unary modal
operators captures entirely Allen’s algebra; binary ofpesaare needed to capture thehop operator
within ITL [127], reflecting its additional complexity.

Finally, we note that, there are natural extensions of tlewalnterval approaches. One is to consider
intervals, not just over linear orders, but also over aabjtrelations. This moves towards spatial and spatio-
temporal logics, see [115] or [74]. Another extension is imdp real-time aspects into interval temporal
logics. This has been developed within the worldomation calculi[296, 69]. Pointers to such applications
of interval temporal logics are provided in Section 4. Hialn interesting extension to interval temporal
logic is to add operators that allow endpoints to be movads thivingcompass logi¢193].



2.6 Real-Time and Hybrid Temporal Languages

In describing real-time aspects, a number of languages eatelseloped [15]. For instance, standard
modal-temporal logic can be extended with annotationsesging real-time constraints [170]. Thus, “I
will finish reading this section within 8 time units” might bepresented by:

Oggﬁnzsh .

Another approach is to useeeze quantificationThis is similar to the approach taken with hybrid logics
(see Section 2.8) where a moment in time can be recorded byabohaand then referred to (and used in
calculations) later. In addition, there is the possibitifyexplicitly relating to clocks (and clock variables)
within a temporal logic [216]. Consequently, there are aagreany different real-time temporal logics
(and axiomatisations [249]). There are several excellenteys of work in this area, including those by
Alur and Henzinger [15, 16], Ostroff [217], and Henzinge4(1

In a different direction, theluration calculug78, 69] was introduced in [296], and can be seen as a
combination of an interval temporal representation withl-tane aspects. It has been applied to many
applications in real-time systems, with behaviours magpin to the dense underlying temporal model.

In developing temporal logics for real-time systems, itdrae clear that many (hard) practical prob-
lems, for example in complex control systems, required evere expressive power. And bgbrid systems
were analysed and formalisms for these developed. Hybsgtesys combine the standard discrete steps
from the automata approach with more complex mathemagcdniques related to continuous systems
(e.g. differential equations). While we will not delve inttig complex area further, we direct the inter-
ested reader to the HyTech system [141, 157], the RED sy£85j ind to work orybrid automatg11].

2.7 Quantification

So far we have examined essentighippositionallanguages, most often over discrete, linear models of
time. In this section, we will consider the addition of varsoforms of quantificatich Again, we will not
provide a comprehensive survey, but will examine a variétjifferent linguistic extensions that allow us
to describe more interesting temporal properties.

2.7.1 Quantification Over Paths

Although quantification in classical first-order logic ipigally used to quantify over a particular data do-
main, the additional aspect of an underlying temporal stinecprovides a further possibility in temporal
logics, namely the ability to quantify over some aspecthefdtructure. As we have seen, temporal opera-
tors such as[ ]’ typically quantify over moments of time. Yet, there areatlpossibilities for quantifica-
tion, the most common of which is to quantify over possitd¢hs If we consider a linear sequence of time
points as a path, then many temporal structures (most otlyidtees) comprise multiple paths [248, 246].
Temporal logics over such branching time structures allmvitie possibility ofquantifyingover the paths
within the branching structure.

Although branching structures in tense logic were previostudied by Prior (see also [132]), we will
exemplify the branching approach by considering two papté@mporal logics over branching structures
from Computer Science. Computation Tree Logic (CTL) wasothiiced in [88, 89] and basically used
Pnueli’s modal temporal logic for describing propertiesng paths (sequences). However, to deal with the
possibility of multiple paths through a tree-like temposaucture, two new logicgbath operatorsvere
introduced:

A —‘on all future paths starting here’
E — ‘on some future path starting here’

The CTL approach, however, is to restrict the combinatiohtemporal/path operators that can occur.
Thus, each temporal operatoustbe prefixed by a path operator.

2As one might expect, quantification in temporal logics is etajuite closely to quantification in modal logics, thoughriied
modal logics are not without difficulties [120, 195].
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The CTL logic has been popular in specifying properties attige systems, for example
A lsafe EO active A terminate

Here, ‘A [’ effectively considers all future moments, while©’ must find at least one path such that the
required property is true at the next moment in the path,aviiK)' is useful for describing the fact that,
whichever future path is considered, the property will hamtidome point on that path.

Although restricted in its syntax, CTL has found importasgsiin verification throughmodel checking
(see Section 4.4) since the complexity of this techniquéCfble is relatively low [72].

Just as CTL puts a restriction on the combination of tempamdl path quantifiers, the need for more
complex temporal formulae, such ds]<}’, over paths in branching structures led to various othanbi-
ing logics [86, 92, 91, 72], most notabRull Computation Tree Logi¢CTL*). With CTL* there is no
restriction on the combinations of path and temporal opesatllowed. Thus, formulae such as

A[1OEAD

can be given. However, there is a price to pay for this in@éasxpressiveness [201], as the decision
problem for CTL" is quite complex [92], and so this logic is less often usedracpcal verification tools.

A further significant development of logics over branchitrgstures was the introduction afternating-
time temporal logicsTo quote from the abstract of [17]:

“Temporal logic comes in two varieties: linear-time tempdogic assumes implicit universal
quantification over all paths that are generated by the etienwf a system; branching-time
temporal logic allows explicit existential and universalamtification over all paths. We in-
troduce a third, more general variety of temporal logic:aliating-time temporal logic offers
selective quantification over those paths that are possibleomes of games, such as the game
in which the system and the environment alternate movesle\lifiear-time and branching-
time logics are natural specification languages for closgstems, alternating-time logics are
natural specification languages for open systems. For el@rbp preceding the temporal op-
erator ‘eventually’ with a selective path quantifier, we cgoecify that in the game between the
system and the environment, the system has a strategy toae=tain state. The problems of
receptiveness, realizability, and controllability canfoemulated as model-checking problems
for alternating-time formulae. Depending on whether or wetadmit arbitrary nesting of se-
lective path quantifiers and temporal operators, we obtamtivo alternating-time temporal
logics ATL and ATL”

Given a set (@oalition) of agents A, ATL allows operators such g$A))¢, meaning that the set of agents
have a collective strategy that will achieye This approach has been very influential, not only on the
specification and verification of open, distributed systelmg also on the modelling of the behaviour of
groups of intelligent agents [277, 276].

Finally, we note that the development of thedal:-calculus[171] provided a language that subsumed
CTL, CTL*, and many other branching (and linear) logics [76], andelzee even timeg-calculi [142].

2.7.2 Quantification Over Propositions

In extending from a propositional temporal logic, a smallt(bignificant) step to take is to alloguan-
tification over propositions. Thus, the usual first-order quantifienisgls, v’ and ‘3", can be used, but
only over Boolean valued variables, namely propositiontheflanguage. Thus, using such a logic, called
quantified propositional temporal logi@QPTL) [254], it is possible to write formulae such as

Ip.pAOOpAO—p

It is important to note that the particular form of quantifioa provided here, termed ttmibstitutional
interpretation[133], can be defined as:

(M, s) E3p.¢ if,andonlyif, there exists a model M’ such that
(M’ s) E ¢ and M’ differs from M

in at most the valuation given to p
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This style of quantification is used in QPTL and in other egiens of PTL we mention below, such as
fixpoint extensions. Note that Haack [133] engages in a tigit@iscussion of the philosophical arguments
between the proponents of the above and the, more standela@ssical logicobjectual interpretatiorof
guantification:

(M,s) =3p. ¢ if,and onlyif, there exists a proposition ¢ € PROP
such that (M, s) = ¢(p/q)

whereyp(p/q) is the formulap with p replaced by; throughout

QPTL gives an extension of PTL (though still representabklagiBichi automata) that allows regular
properties to be defined. It was inspired by Wolper's work gtereding PTL with grammar operators
(termed ETL) [292]. Another approach that followed on fronolgér's work was the development of
fixpointextensions [55] of PTL [32, 33, 278, 109], extending PTL vidghst (1.") and greatest ¢’) fixpoint
operators. In such fixpoint languages, one could write moreptex expressions. For a simple example,
though, consider:

Lo = v oNQOE.

Here,[ J¢ is defined as the maximal (with respect to implication) fixpdg) of the formula = (pAO&).
Thus, the maximal fixpoint above definesy as the ‘infinite’ formula

eNOeANOOeAOOOpA...

Finally, it is important to note that all these extensionsTQPETL, and fixpoint extensions can be shown
to be expressively equivalent under certain circumstafR@s 32, 254, 282].

2.7.3 First-Order TL

Adding standard first-order (and, in the sense above, algBatjuantification to temporal logic, for ex-
ample PTL, is appealing yet fraught with danger. Such a lagjiery convenient for describing many
scenarios, but is so powerful that we can write down formthag capture a form of arithmetical induc-
tion, from which it is but a short step to being able to repnééell arithmetic [262, 263, 1]. Consequently,
full first-order temporal logic is incomplete; in other warthe set of valid formulae isot recursively
enumerable (or finitely axiomatisable) when considered ow@dels such as the Natural Numbers.

While some work was carried out on methods for handling, wpessible, such specifications [191],
first-order temporal logic was generally avoided. Even ‘#hfeagments of first-order temporal logic,
such as théwo-variable monadiéragment, are not recursively enumerable [199, 149].

However, a breakthrough by Hodkinsenhal.[149] showed thaimonodicfragments of first-order tem-
poral logics could have complete axiomatisations and eeetidzidable. A monodic temporal formula is
one whose temporal subformulae have, at most, one freedlari@hus Vz. p(z) = Og(x) is monodic,
while Va.Vy. p(x,y) = Ogq(z,y) is not. Wolter and Zakharyaschev showed that any set of wadidodic
formulae is finitely axiomatisable [295] over a temporal relbolased on the Natural Numbers. Intuitively,
the monodic fragment restricts the amount of informati@msferred between temporal states so that, ef-
fectively, only individual elements of information are pad between temporal states. This avoids the
possibility of describing the evolution through time of rmaomplex items, such as relations, and so re-
tains desirable properties of the logic. In spite of thig #udition of equality or function symbols can
again lead to the loss of recursive enumerability from thesaodic fragments [295, 82], though recovery
of this property is sometimes possible [146].

2.8 Hybrid Temporal Logic and the Concept of “now”

The termhybrid logic is here used to refer to logical systems comprising a hybfrichedal/temporal
and classical aspects [156]. Basically, hybrid modal Isgicovide a language for referring to specific
points in a model. This approach is widely usedi@scription logicswith nominals typically referring to
individuals [27]. In the case of temporal logics, such a oty was suggested by Prior [229] in tense
logics, but did not become popular until the 1990s, for eXength [52, 54].
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The ability to refer to specific time points, for examplew, has been found to be very useful in a
number of applications. Consequently, operators such ’asré used to bind a variable to the current
point [125]. This allows the specifier to describe a tempsitalation, record the point at which it occurs,
then use a reference to this point in later formulae. Thigulisess, has led to work on both reasoning
technigues and complexity for such logics [83, 20].

3 Temporal Reasoning

Having considered the underlying temporal representstitogether with languages that are used to de-
scribe such situations, we now take a brief look at a few ofréd@soning methoddeveloped for these
languages.

3.1 Proof Systems

There are a wide variety of axiom systems for temporal logitd, consequently, proof methods based
upon them. For PTL, the most popular modal-temporal logi@domatisation was provided in [113], and
revisited in [243]:

O < O-p

Op =)= (Op= O)
e =) = (e = LY)
Oe = (A0 0Oe)

(e = Op) = (¢ = o)
(U ) = O

(pUY) = WV (pAO(pUY)))

In addition, all propositional tautologies are theoremd #re inference rules used aredus ponento-
gether withtemporal generalizatian

T T T T T T

T

oo
%)
However, several other proof systems, even for this logie leeen given [172, 191, 87, 260]. Many proof
systems for temporal logics are based on their tense logitgoessors, such as those systems developed
by van Benthem [275] and Goldblatt [123].

As to other varieties of temporal logic, perhaps the mostlyidtudied are variants of branching-time
logics. Thus, there are proof systems for CTL [225] and,mégeCTL* [241, 242].

Concerning quantifier extensions, proof systems have beegiaped for QPTL [106, 166]. For full
first-order temporal logics, an arithmetical axiomatisathas been given in [262]. Recently, complete
(monodig fragments of both linear and branching temporal logicseha@en provided [295, 150] while
proof systems have been developed for alternative fragnadriirst-order temporal logics [221].

3.2 Automated Deduction

Given the utility of temporal formalisms, it is not surprigithat many computational tools for establishing
the truth of temporal statements have been developed. le spproaches, such as model checking (see
Section 4.4), temporal conditions are often replaced bief@iitomata over infinite words. The close link
between temporal logics and such finite automata [254, 289] @eans that decisions about the truth
of temporal statements can often be reduced to automateeticequestions. Rather than discussing this
further, we will consider more traditional automated apguftes, such asbleauandresolutionsystems.
However, before doing this, we note that tieenporal argumentsiew of temporal representations given
earlier points to an obvious way to automate temporal reagpnamely to translate statements in temporal
logic to corresponding statements in classical logic, mgldin extra argument. Thus the implication

(pAOgq) = [r
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might become, if we consider the simple Natural Number Hasisemporal logic, the following formula
Vi. (p(t) Aq(t+1)) = (Vu. (u>t) = r(u)).

This is an appealing approach, and has been successfullgédppthe translation of modal logics [212].
However, the translation approach has been used relatittédy]210], possibly because the fragment of
logic translated to often has high complexity; see [143]124

Probably the most popular approach to deciding the trutkempbral formulae is theableaumethod.
The basis of the tableau approach is to recursively takedimauia apart, until atomic formulae are dealt
with, then assess the truth of the formula in light of thehrabnstraints imposed by these atomic liter-
als [75]. In classical logic, this typically generatesree of subformulae. However, in temporal logics,
as in many modal logics [101], either an infinite tree or, mawenmonly, a graph structure is generated.
The main work in this area was carried out by Wolper [292, 298]o developed a tableau system for
discrete, propositional, linear temporal logic. Sevethko tableau approaches have been reported, both
for the above logic [128, 253], and for other varieties of pemal logic [90, 194, 126, 220, 168]. However,
the structures built using the tableau method are very d¢m$ee w-automata representing the formulae.
Thus, particularly in the case of logics such as C;Tautomata theoretic approaches are often used [92].

In recent yearsiesolutionbased approaches [244, 30] have been developed. Thesedmmisted of
bothnon-clausaltesolution, where the formulae in question do not have todrestated to a specific clausal
form [3, 5], andclausalresolution, where such a form is required [67, 284, 95, 99fiA, resolution tech-
niques have been extended beyond the basic propositiasatete, linear temporal logics [57, 81, 167],
leading to some practical systems (see Section 4.3). Rireiudetails on such approaches, particularly for
discrete temporal logics, the article [243] is recommended

Automated deduction for interval temporal logics has ofiean subsumed by work on temporal plan-
ning or temporal constraint satisfaction (see Section 4h®ugh some work has been carried out on SAT-
like procedures for interval temporal problems [269] arildléau methods for interval logics [126, 58].

4 Applications

In this section we will provide an outline of some of the wagiswhich the concepts described in the
previous sections can be used to describe and reason alffeuérdi temporal phenomena. This is not
intended to be a comprehensive survey and, again, thererammler of excellent publications covering

these topics in detail. However, we aim, through the desorip below, to provide a sense of the breadth
of representational capabilities of temporal logics.

4.1 Natural Language

The representation of elements of natural language, péatlg tense is not only an intuitively appealing
use of temporal logic but provides the starting point for ma€the work on temporal logics described in
this chapter. The main reason for this is the work of Prio8[kih the formal representation of tense [229].
The sentence:

“I am writing this section, willwrite the next section later, and eventually will havettenthe
whole chapter”

naturally contains the verb “to write” under different tess The tenses used depend upon the moment in
time referred to, relative to the person describing it. Pcarried out a logical analysis of such uses of
tense, developintense logi¢cand captured a variety of temporal connectives that havsesjuently been
used in many temporal logics, for exampletil, since before after, andduring.

Subsequent work by Kamp [161] related tense operators,aasthceanduntil, to first-order languages
of linear order. This work has been very influential, leadingeeper analysis of tense logic [107, 64, 65],
and then to work on temporal logics. An excellent summaryushsvork on tense logic is given in [66].

The representation of natural language using various testhpepresentations has also moved on, for
example through the work of van Benthem [275], Galton [1¥&mp and Reyle [162], Steedman [257,
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258], ter Meulen [265] and Pratt-Hartmann [228]. A more detboverview of temporal representation in
natural language can be found in [266].

Finally, work in this area naturally impacts upon practiapplications, such as the use of temporal
representation itegal reasoning288].

4.2 Reactive System Specification

Itis in the description of complex (interacting, concutrendistributed) systems that temporal representa-
tions have been so widely used. While it is clearly imposdiblgive a thorough survey of all the ways that
temporal notations have been used, particularly as forpediications, we will give some initial pointers
to this area below.

Probably the best known style of temporal specification ciliiias been used in the specification and
verification of programs, is that instigated by Pnueli [2223, 223] and continued by Manna and Pnueli
through a series of books [191, 192] and papers. In such amagp the expressive power of modal
temporal languages is used in order to specify propertiels assafety

[ (temperature < 500)
ensuring, in this case, that in any current or future situmtihe temperature must be less tha, liveness
O (terminate A successful)
where, for example, some process is guaranteed to eventeiatiinate successfully, arfidirness
OO request = respond

guaranteeing that if a request is made often enough<{’ implies “infinitely often”) then, eventually, a
response will be given.

In parallel with the Manna/Pnueli line of work, Lamport deyged aTemporal Logic of Actions
(TLA) [177]. This has also been successful, leading to agldrgdy of work on temporal specifications
of a variety of systems [178]. Finally, it should be notedtttiascriptions of many real-world applica-
tions have been given using other varieties of temporaldagg, such as real-time temporal logics (see
Section 2.6), interval temporal logics (see Section 2,pa&itial-order temporal logics [268], etc.

Once a system has been specified, for example using the ll@gipeoach above, a number of tech-
nigues may be used. These includgfinementin order to develop a modified specification [8kecution
where the specification is treated like a program and exdditectly [205, 36, 98]deductive verification
whereby the relationship between two logical specificatiemproved (see Sections 3.2 and 4ayorith-
mic verification where the match between the specification and a finite-desteription (for example, a
program) is established (see Section 4.4); syrthesiswhereby such a finite-state description (program)
is generated (semi-) automatically from the specificatk#26].

4.3 Theorem-Proving

Several of the reasoning techniques described in Sectieneiieen developed into powerful proving tools.
In the case of modal-temporal logic, the best known isStamford Temporal Prover (STe&gveloped over

a number of years by Manna and colleagues [259, 51, 50]. Slgogs the “the computer-aided formal
verification of reactive, real-time and hybrid systems basetheir temporal specification”. It incorporates
both model checking and proof procedures and is therefdeg@kbackle more complex, even infinite state,
verification problems.

For modal-temporal logics, several other systems have theezloped, notably TeMP [155], based on
the clausal temporal resolution approach [167], TLPVS [2Z/4], built on top of PVS [233], and the
Logics Workbench [188, 253].

In terms of interval temporal logics, many of the reasoneahhiques and uses of interval algebras have
been incorporated in temporal planning [104, 271] and tealpmnstraint satisfaction systems [85, 291].
These topics are covered in depth elsewhere, but we hereifassome of the relevant work on tem-
poral planning, notably that by Bacchus and Kabanza on usimgporal logics to control the planning
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process [29], by Fox and Long on describing complex tempawatains [103], by Geffner and Vidal on
constraint-based temporal planning [286], by Mayer et ai. ptanning using first-order temporal log-
ics [196], by Gerevini et al. on developing the LPG planniggtem [187], and by Doherty on planning in
temporal action logic [84].

There has been less development and implementation of MaskKs ITL, but see [159] for sev-
eral tools based on this approach. However, the direct ¢épecaf ITL statements is the basis for the
Tempuraprogramming language [205, 134] which is important in theettgoment of compositional rea-
soning [207]. Just as Tempura is based on forward-chainiagution of ITL statements, the BfATEM
approach forward-chains through PTL formulae, though ipexcsic normal form [36, 98]. Alternative ap-
proaches to the execution of temporal statements are baghd extension of logic programming to modal
temporal logic, giving Templog [4, 40] or Chronolog [215,6]1&r the addition of interval constructs to
logic programming, giving the temporal event calculus [188, 209, 34]. For introductions to the ideas
behind executable temporal logic, see [214, 96]

4.4 Model Checking

Undoubtedly the most practical use of temporal logic ismimdel checkingThis is simply based on the idea
of satisfiability checking. Thus, given a mod&f,, and a propertyp, is it the case thap is true throughout
M? If M represents all the possible paths through a hardware dewigil the possible executions of
a program, then answering this question corresponds tittgearhether all the executions/paths satisfy
the property. Consequently, this is used extensively infomal verification of hardware descriptions,
network protocols and complex software [151, 73].

That model checking has become so popular is due mainly toowvements in theengineeringof
model checking algorithms and model checkers. Simply enatimg all the paths through the modet
and checking whethes is satisfied on that path can clearly be slow. However, amaat#@-theoretic view
of the approach helped suggest improvements [254]. Hezad#a is that a Bchi automatond,,, can be
developed to represent all the paths throdghwhile another Bichi automatonA-,, can be developed to
capture all paths thato notsatisfyy. Thus,A-, represents all thbad paths. Now, once we have these
two automata, we simply take the produdt,; x A, which produces a new automaton whose paths are
those that satisfpothautomata. Thus, a path through, x A-, would be a path through ,,; that also
did not satisfy . Now, the question of whether “all paths through satisfy " can be reduced to the
question of whether “the automateh,; x A-, hasnoaccepting runs”. This automata theoretic view was
very appealing and led to significant theoretical advan2g&8][ However, a key practical problem is that
the space (and time) needed to construct the product of thatomata can be prohibitively large. Thus,
mechanisms for reducing this were required before modelikchg could be widely used.

Two approaches have been developed that have led to widespse of model checking in system
verification. The first is the idea afn-the-fly model checkind 22, 152]. Here, the product automaton
is only constructed as needed (i.e., it is baittthe fly, avoiding expensive product construction in many
cases. This approach has been particularly successfid 8pin  model checker [153, 256], which checks
specifications written in linear temporal logic againstteyss represented in tieromela modelling
language [153].

The second approach is to still carry out automata compositiut to find a much better (and more
efficient) representation for the structures involved.sTikitermedsymbolic model checkin@3] and uses
Binary Decision Diagrams (BDDs) [60] to represent both th&eam and property. BDDs are a notation in
which Boolean formulae can be represented as a graph s&umtuwhich certain logical operations can
be very quick. This is dependent on finding a good orderingHerBoolean predicates within the graph
structure. The use of varieties of BDDs has led to a significarease in the size of system that can be
verified using model checking, and is particularly sucagdssfthe SMV[198, 62] andhu_smv [71, 211]
model checkers, which check branching temporal formula€TiL) over finite automata.

Model checking has also been applied to real-time syste®s4, 272, 219, 173, 234, 285], most
successfully via the BPAAL system. This has been used to model and verify networks efttiautomata,
and uses model checking as a key component [180, 42].

Although model checking has been relatively successfukbhmwork still remains. Current work on
abstraction techniques (i.e. reducing complex systemisrtplar ones amenable to model checking), SAT
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based and bounded model checking [48, 49, 26, 227], prasi@binodel checking [174, 230], and model
checking for high-level languages such@81, 255] andlava [289, 160] promise even greater advances
in the future.

4.5 PSL/Sugar

The success of model checking, particularly in the realimeofiwaredesign, has led to the use of temporal
techniques in a number of industrial areas. Standards &mifying the functional properties of hardware
logic designs are now based upon temporal logics. For exgrtiptre is a large consortium developing
and applying PSL/Sugar [41, 231]. This, and other appraasheh as ForSpec [21] and SystemVerilog
Assertions [261], extend temporal logic adding regularregpions and clocks and even allowing more
complex combinations of automata and regular express#8is [

4.6 Temporal Description Logics

It is often desirable to combine temporal logic with destioip logic, to give @aemporal description logic
While there have been some attempts to consider the geneiagkpr of combining such non-classical
logics [45], it is only in specific areas that a systematicneixetion of detailed combinations has been
carried out. Temporal description logics are just such an.ar

The motivation for studying temporal description logicearily arose from work on temporal databases [94,
24] and dynamic knowledge/plan representation [247, 2R,R8orough survey of the varieties of com-
bination, and their properties, is provided by Artale andrieoni in [25]. Different logical combinations
can be produced, depending on what type of temporal logisasl e.g. point-based or interval) and how
the temporal dimension is incorporated. A simple tempogatdption logic can be obtained by combining
a basic description logic with a standard point-based teatpogic, such as PTL. This combination can
be carried out in a number of ways, two of which are terme@rnalandinternalin [25]:

e using arexternalapproach, the temporal dimension is used to relate diff€gtatic) ‘snapshots’ of
the system, each of which is described by a description lagioula;

e using aninternal approach, the temporal dimension is effectively embeddéumthe description
logic.

For simplicity, we consider the first view; for example
parentof(Michael,Christopher) = (Oparentof(Michael, James)

Hereparentof(Michael, Christopher) is true at present, and within the current description ldyées
ory, while parentof (Michael, James) will be true at the next moment in time. This, relatively simp
approach allows us to add a dynamic element to descriptgindo Yet, it is also important to be able to
carry information between temporal states, for example

Vx. parentof(Michael,x) = Oparentof(Michael,x) (1)

However, just as in first-order temporal logics [263, 1] (Seetion 2.7.3), the amount of information trans-
ferred between temporal states can drastically affect tbpepties of the logic. Thus, varieties including
(1) above, where only individual elements of informatior passed between temporal states, correspond
to the class omonodicfirst-order temporal logics [149] in which decidability che retained. Correspond-
ingly, temporal description logics where concepts canwsvoler time, but where the temporal evolution
of roles is limited, can retain recursive enumerability aoften, decidability [294, 25].

5 Concluding Remarks

In this chapter we have provided an overview of a variety gleats concerning temporal representation
and reasoning. Even though this is not meant to be exhayistivelear that not only are there many subtle
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aspects within the general area of temporal representdiidgrthere is also a vast number of other areas
and applications within which temporal approaches areaele

Although we have described many aspects of temporal repi@gm and reasoning, others that we
have omitted include:

e temporal data mining— the extraction of temporal patterns either from large sktimor streams of
data [264, 46];

e temporal databases- the incorporation in (relational) databases and querguages of various
temporal constraints [46, 273, 70]; and

e probabilistic temporal logics— the extension of temporal representations with prob#sliand
uncertainty [137], together with various applicationsisas probabilistic model checking [230].

As is clear in these areas, as well as in the topics examingdnwthis chapter, research on temporal
representation and reasoning continues to expand andgsddew formalisms, techniques and tools are
being developed, and all of this points to the increasingvagice of temporal representation and reasoning
to knowledge representation, and to Computer Science atiftciat Intelligence in general.
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