COMP327 Mobile Computing

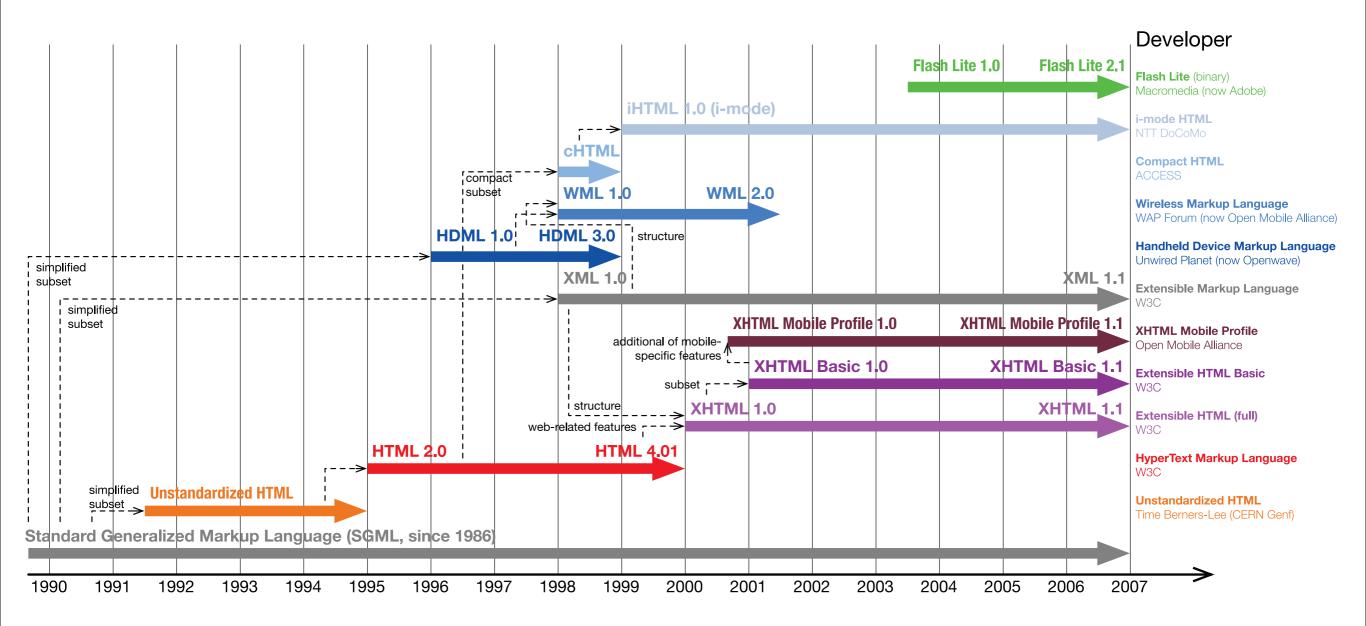
Lecture Set 4 - The Mobile Internet

In this Lecture Set

- Challenges of Mobile access to the Internet
- Early Wireless Internet Systems
 - AT&T PocketNet
 - Palm.Net WebClipping
 - i-Mode
- Wireless Application Protocol
 - Architecture and Application Environment
 - Multimedia Messaging Service
 - Short Messaging Service
 - OTA Programming

The challenges in moving from fixed line PCs to Mobile Devices

- To understand the challenges (and pitfalls) of moving to a Mobile Internet, first consider the fixed line Internet!
 - Initially, most usage was email and web
 - Mostly free, other than modem connection charges
 - Top down content distribution model
 - The web was "read-only" Web 1.0
 - Early retailers (e.g. Amazon) exposed inventory, but offered few value-based services
 - Evolved slowly over several years ("incubation time"), driven by access and expectation
 - Technologies had the chance to settle and be tested before large-scale adoption


The challenges in moving from fixed line PCs to Mobile Devices

- Things were different when the Mobile Internet launched
 - Access was initially targeted at general public
 - Previous technologies were tried and tested by students and universities, which ironed out problems
 - Access was charged from day one!
 - Reduced adoption, and raised false expectation
 - Content and Services was adapted from the Web, rather than redesigned to exploit mobility
 - Very few sites or services had any appeal or use for users
 - WAP stack required new tools and additional effort, yet served a small user base!
 - Early networks unsuited for packet-switched data
 - Initial usage was expensive, thus limiting uptake

The Mobile Internet: Early Precursors

- Early approaches to providing content had to contend with new technical challenges:
 - Limited Screen Size and limited input capability
 - Not suited for most web pages
 - Limited memory, processor and power
 - May struggle to handle any client-side processing
 - Intermittent connectivity
 - HTTP is stateless
- Web 2.0 was emerging on the fixed-line Internet
 - Placed greater demands on both the device and the interface
 - Greater potential for mobile devices, though this was not realised for years
- Various content markup solutions have emerged

Evolution of Mobile Web–Related Markup Languages

Taken from Wikipedia, at http://en.wikipedia.org/wiki/File:Mobile_Web_Standards_Evolution_Vector.svg

Copyright: Matthew Stuckwisch, 2008 GNU Free Documentatyion License, VI.2 and Creative Commons Attribution 3.0 License

AT&T PocketNet

- A mobile data service introduced in the US in 1996
 - Relied on Cellular Digital Packet Data (CDPD)
 - Built on top of the D-AMPS/TDMA infrastructure
 - Exploited an unused bandwidth previously used by AMPS
 - Provided speeds of up to 19.2kbit/s
 - Provided a basic TCP/IP stack to deliver data
 - Content presented using a stripped-down HTML language
 - Handheld Device Markup Language (HDML)
 - A microbrowser was also developed UP.View
 - Content was primarily text
 - Introduced the Deck-of-Cards metaphor

Inspiration for the "Ceck of Cards" Metaphor

- Mobile Phones have tiny screens
 - Can only display a limited amount of content
- Many applications assume a dialog-based interaction (i.e. cards)
 - Each interaction involves a number of options, leading to further options based on the earlier choice
- By bundling all the cards together (a deck) and sending in one transaction, transmission time and delays could be reduced.

<u>02-UK 🗢 15:36 0 ≵ 📼</u>			O2-UK 🗢 15:36 0 🕸 📼
BBC Podca	Pedcas BBC Stations	Stations BBC Podca	Podcasts BBC Podcast
Welcome to the BBC Podcasts (beta). Enjoy free BBC audio, browsing by station, genre or A-Z.	Radio 1	A Point of View: David Attenborough's Life Stories	A Point of View: David Attenborough's Life Stories
By Radio Station	Padio 2	Americana: inside the , USA	For the coming weeks the Point of View podcast presents a series of talks by Sir David Attenborough. Recalling experiences from seven decades of
By Genre > By A-Z List >	Radio 3	Analysis >	exploring the natural world, Sir David presents a series of life stories about animals and plants of particular fascination to him.
FAQ	Radio 4	Best of Natural History Radio	
	3 Radio 5 Live	Best of Today >	AlPoint of View
 → + ⊕ © 	< > + m ₪	< > + m m	< > + m m
< > + co @	< > + 🖽 😐	< > + ttt 🖉	🔺 🕨 🕂 🖽 🖉

Palm.Net - WebClipping

- WebClipping optimises transfer of HTML by caching static web content on the device
 - Introduced in 1998 by Palm
 - Aimed mainly at Palm's PDAs
 - Which had more screen real-estate than mobile phones
 - Only dynamic content is sent over wireless
 - Several hundred web services were adapted
 - Primarily finance, shopping, information, and entertainment

TrackU.com

Airline:

Flight #:

(Find Ite)

/Track#.com

Ecliptic Systems, Inc.

Codes

a service of

Detail:

Summary

[Long form | About | Help | Legal]

Copyright © 1999 Ecliptic Systems,

Inc. All Rights Reserved.

(Reset)

NTT DoCoMo i-Mode

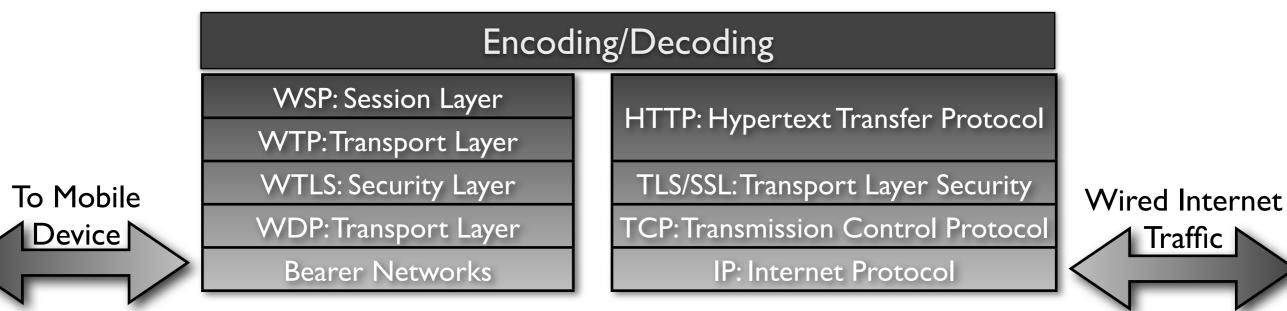
- A service delivery system introduced by DoCoMo in Japan, 1999
 - Uses a variety of protocols to deliver content formatted in a compact variant of HTML (C-HTML)
 - i-mode enabled phones posses a special "i-Mode" button
 - Provides access to more than 12,000 official sites through DoCoMo's portal sites and billing services
 - Over 100,000 unofficial ones!!!
 - Users pay for both up and downlink data, but monthly packages exist
 - Operates over DoCoMo's PDC-P packet-switch network
 - Over 52 million users worldwide in 2006, but now declining

i-Mode and C-HTML

- Adds several features not available in HTML
 - Introduced:
 - Access Keys to improve navigation
 - Phone number shortcuts for links
 - Emoji characters (Japanese emoticons)
 - No support for JPEG images, tables, image maps, multiple fonts, background colours and images, style sheets etc.
 - Basic operations done through four keys, not mouse movement
 - Cursor forward and backward, select, and back/stop
- Has been overtaken by XHTML

The reason for i-Mode's Success

- Ease of use
 - Early use of packet-switched data, with easy access through the i-Mode button
- Critical mass of compelling content
 - Vast number of legal sites with partnership agreements, all discoverable through the main i-Mode portal.
- Usage/payment agreements pre-arranged through DoCoMo
 - Eliminates the need for provider billing, and hence reduces deployment costs for content providers
 - DoCoMo generate incremental revenue by charging a small commission for the clearinghouse billing system service.


For more details on the i-Mode Business Model, look at http://www.nttdocomo.com/services/imode/business/index.html

WAP:Wireless Application Protocol

- An open international standard to support access to the Mobile Web
 - Established in June 1997
 - Joint Forum including Ericsson, Nokia, Motorola and Openwave
 - The previous approaches discussed were all proprietry
 - WAP was developed as an open standard
 - Released WAP Specification 1.1 in Summer 1999
 - First services and devices available by the end of that year
 - Based on GSM, it was heavily hyped, but failed to live up to expectation in Europe (although successful in Asia)
 - "Worthless Application Protocol", "Wait And Pay"

WAP I.I Gateway

- A Gateway translated packets from the WAP stack to the Internet stack
 - Overcame the differences in assumptions of each stack
 - Improves communication by
 - Caching content
 - Authenticating users and providing billing support
 - Compressing and encrypting data across the air interface

WAP I.I Architecture

- Wireless Datagram Protocol (WDP)
 - Provides an interface between the WAP stack and the bearer networks
- Wireless Transport Layer Security (WTLS)
 - Based on the Internet's TLS
 - Tailored for low-bandwidth, high-latency links
 - Also provides provision for security, privacy, data integrity and authentication
 - True end-to-end security with internet services not possible
- Wireless Transaction Protocol (WTP)
 - Simplified, wireless substitute for TCP with some HTTP functionality
 - Optimised for wireless links
 - Three classes of content delivery

WAE: Application Layer WSP: Session Layer WTP:Transport Layer WTLS: Security Layer

WDP:Transport Layer

Bearer Networks

•WTP Class 0

• Unreliable message delivery

• WTP Class I

- Reliable message delivery without result
 - e.g. push notification

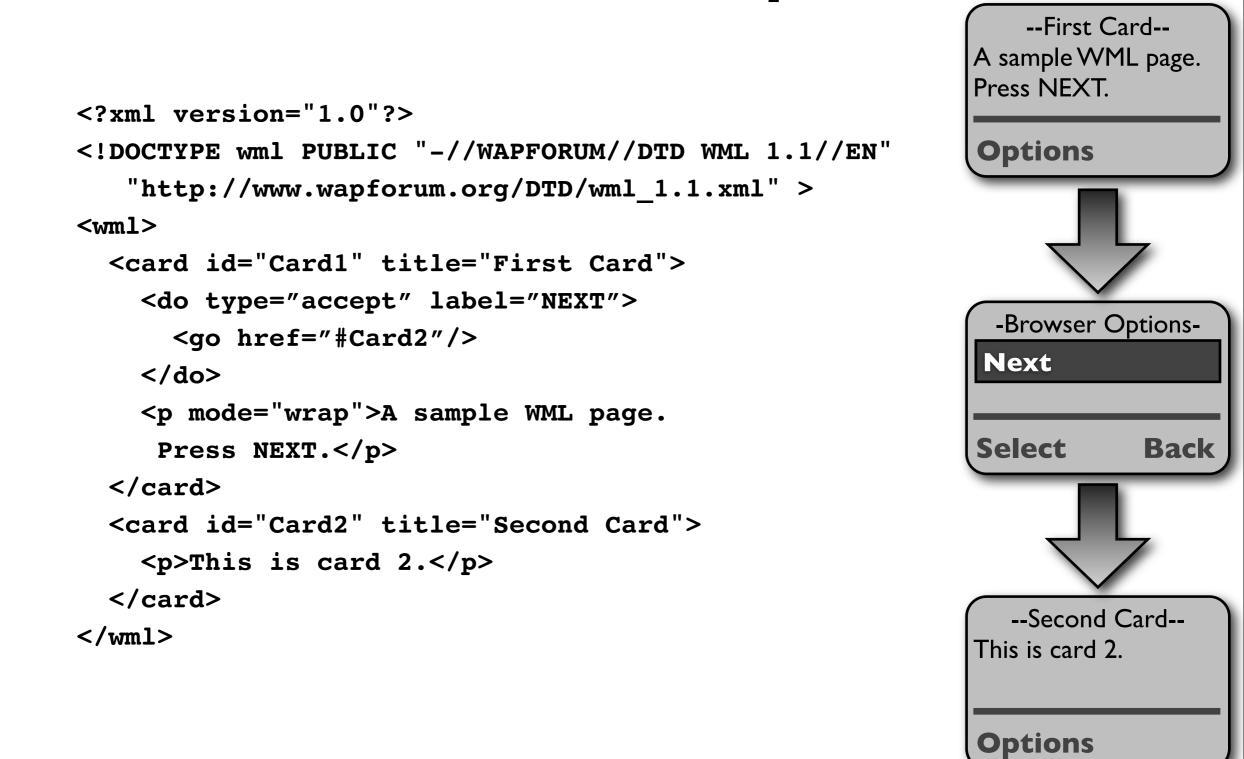
• WTP Class 2

- Reliable message delivery with acknowledgement
 - e.g. banking applications

WAP I.I Architecture

- Wireless Session Protocol (WSP)
 - Provides HTTP/1.1 functionality
 - Introduces shared state between client and server to optimise transfer
 - Facilitates session resumption after suspension due to loss of connection, etc
 - Responsible for binary encoding of sessions
- Wireless Application Environment
 - Provides the WAP browser and support for WML, scripting, etc
 - Provides access to Wireless Telephony Applications Interface (WTAI)
 - Supports telephony services from WAP session

WAE: Application Layer
WSP: Session Layer
WTP:Transport Layer
WTLS: Security Layer
WDP:Transport Layer
Bearer Networks


Wireless Application Environment (WAE)

- Consists of the following specifications:
 - Wireless Markup Language (WML)
 - Based on HTML and HDML (originally from AT&T's PocketNet)
 - WAP Binary XML Format (WBXML)
 - Binary encoding and transfer of XML to reduce traffic size across air interface
 - WMLScript
 - Based on JavaScript, to execute client-side services and reduce repeated comms such as validating user input
 - Wireless Telephony Application (WTAI)
 - Telephony-specific for call and feature control mechanisms
 - Content Formats
 - Data formats such as calendar entries, images, and address book records

Wireless Markup Language (WML)

- Based on the Deck of Cards Metaphor
 - All cards sent simultaneously
 - User then navigates content without bursty comms
 - Overcomes GSM/GPRS latency problems with "bursty" browsing behaviour
 - Uses soft keys, where the semantics change as the context changes
- Includes client-side logic through WMLScript
 - Simplified variant of JavaScript
 - Avoids unnecessary round-trip comms
 - e.g. validating user-entered data
 - Supports functions for digital signing
- WAP 2.0 supports XHTML Basic
 - Separates the data (XML) from the presentation (CSS)

WML Example

WAP 2.0 Architecture

- WAP 2.0 introduced an alternative stack
 - Consisted of variations of the TCP and HTTP protocols which had been configured for wireless comms
 - WAP 1.1 stack now referred to as a *legacy* stack
 - Aimed at 2.5G and 3G bearer networks
 - Gateway significantly simplified
 - Finally supports true end-to-end security
- WML replaced by XHTML Mobile Profile
 - Better transcoding, and use of W3C tools such as CSS
- WAP push introduced, to support server-initiated sessions
 - Good for real-time information, such as stock quotes
- Device capability could be defined using a User Agent Profile

User Agent Profiles

- A protocol to determine the capabilities of the WAP client
 - Introduced in WAP2.0
 - Builds upon W3C's Composite Capability/Preference Profile (CC/PP)
- Represents information such as:
 - Hardware characteristics (screen size and colour capability, bluetooth etc)
 - Software characteristics (OS, A/V codecs, Java support etc)
 - Applications/User preferences (browser type, supported scripting languages)
 - WAP characteristics (WAP version, max WML deck size, etc)
 - Network characteristics (latency, reliability, etc)
- Information typically sent in WSP (Wireless Session Protocol) or HTTP headers, to aid the server in tailoring content for the client
 - Can vary during a session, due to changes in use or cell characteristics

Transcoding HTML to WML

- A variety of microbrowsers have emerged on mobile devices
 - Optimised to display Web content effectively on small devices
 - Often stripped down web browsers, but recent versions handle CSS etc
- However, the variety of markup languages made web maintenance and content provision difficult (especially when supporting legacy devices)
 - HTML, WML, C-HTML, XML etc
- Transcoding addresses this by assuming a canonical source (e.g. XML) which is translated into destination formats, using techniques such as:
 - XSLT (XSL transformation)
 - Java and JAXP (SAX and DOM)
 - External annotations
 - Logical HTML, with CSS based on User Agent Profiles for presentation

Transcoding Challenges

- Various challenges in converting content
 - Ideally, good design practices should be used
 - See HCI slides, and Apple's iPhone Tech Talks Videos on Mobile Safari compatibility
 - Should identify primary / significant content
- May need to:
 - Reduce or eliminate images
 - Reformat HTML content
 - Separating out non-essential content such as navigation bar or banner ads into optional additional pages
 - Multi-column layouts and wide tables need reformatting
 - Separate content into a deck of cards
 - e.g. splitting headed content to produce index page
 - Eliminate functionality for irrelevant interfaces
 - e.g. image maps or mouse-over events

WAP Criticisms

- Idiosyncratic WML language
 - Providers have to either provide WML specific content, or rely on Web-to-WAP transcoders.
 - "Conceptual Distance" between PC screens and mobile display too great
- Underspecification of terminal requirements
 - Early WAP standards left many features optional
 - Devices often failed to operate properly; functionality was often inconsistent
- Constrained User Interface Capabilities
 - Early WAP devices had small monochrome screens with limited buttons
 - Even later colour devices lacked conventional PC based interactions
- Lack of Good Authoring Tools
 - Demands of authoring for WML greater than HTML, but poor tool support

The WAP User Experience

- Although WAP introduced a number of features designed to improve the mobile internet experience, many complained of:
 - Slow connections, hence steep bills (pre GPRS)
 - Dead-ends or sites being down
 - Sites with poor sign-posting making search difficult
 - Uneven quality and stale content
 - Small screens
- Studies in late 2000 found that mundane tasks took longer than users could tolerate

The WAP User Experience

- Problems with WAP usage included:
 - Technical limitations due to bearer (GSM) rather than WAP itself
 - Poor site design with little consideration of the user experience.
 - Little in the way of intuitive navigation support
 - Design typically reflected the wired Internet practices with little attempt to understand Mobile Computing constraints
 - Poor content and poorly managed sites
 - Unlike i-Mode, European operators failed to set up business models to encourage the generation of quality content
 - Device limitations
- However, several of these limitations have faded with time, although some issues remain...!

MultiMedia Messaging Service - MMS

- Often considered a spinoff of SMS and WAP
 - Extends SMS to support transmission of media
 - Driven primarily due to the uptake of camera capabilities within mobile phones
 - Also used to deliver ring tones
 - Developed by the Open Mobile Alliance (OMA)
 - However, was also part of 3GPP and WAP groups
 - Launched in March 2002 across GSM/GPRS and 3G
- But first... SMS!

Short Messaging Service SMS

- The most widely used data application on the planet
 - Generated revenues of US\$89B worldwide in 2008, with almost 3.5 trillion messages sent!
 - Initial uptake was low (0.4 messages per month per user in 1995, 35 in 2000)
 - Uses include Messaging, OTA programming, Value-added Services, and Televoting
 - Originally defined as part of the GSM series of standards to send up to 160 7-bit character messages
 - Sent over the signalling paths during quiet (non-call) periods
 - Required the inclusion of a Short Message Service Centre node (SMSC).
 - First commercial deployments in 1993
 - Subsequent uptake in other technologies
 - cmda networks, Digital AMPS, 3G, and both satellite and landline networks

Short Messaging Service SMS

• Messages sent to a Short Message Service Centre (SMSC)

- Provides a store and forward mechanism:
 - Attempts to send messages to recipients
 - If recipient is unavailable, the message is queued for a later retry
 - No guarantees that message will be sent, but delivery reports can be requested
- Messages are 140 octets long (8*140=1120 bits) plus routing data and metadata
 - Concatenated SMS extends this length
 - Split into 153 7-bit messages with a prefixed User Data Header (UDH)
 - Receiving device then re-assembles message

Back to MMS

- Completely different delivery mechanism to SMS
 - Multimedia content is first encoded using MIME format
 - Then sent to the recipient carrier's MMS store and forward server (MMSC)
 - The MMSC determines if the recipient's device is MMS capable:
 - Content is extracted and sent to a temporary HTTP enabled store
 - An SMS control message containing the content's URL is sent
 - The recipient's WAP browser opens and receives content from the URL
 - If the device is not MMS capable (legacy experience):
 - Content is delivered to a web based service
 - URL is forwarded to the recipient as a standard SMS message
 - Differences in device capability may require transcoding of content

Over-the-air programming (OTA)

al. 02-UK 🤿	18:38 🔍 🕸 📼		
Network Cellular Data			
MMS			
APN	wap.o2.co.uk		
Username	o2wap		
Password	pass		
MMSC	http://mmsc.mms.o2.co.u		
MMS Proxy	193.113.200.195:8080		
MMS Max Message Size 307200			
MMS UA Prof URL			
Reset Settings			

- One of the main challenges of MMS is the number of handset parameters that need configuring.
 - Bad configuration is often responsible for poor user experience
- Over-the-air programming (OTA) increasingly being used to set configuration parameters
 - New software updates or configurations can be sent directly to the device from network operators
- Several Methods in use
 - A call or SMS alerting the user to a new update. User then dials in (when convenient) triggering an automatic software update.
 - SMS may be sent automatically due to a trigger; e.g. using a service for the first time, or after having signed up for a service
- Typically relies on the device possessing a provisioning client to set parameters.

Exercises...

- Describe the Deck-of-Cards metaphor, and explain its origins and motivation. How does it improve the user experience over GSM networks?
- Describe the challenges of transcoding for mobile devices, and give examples of how a User Agent Profile could guide the transcoding for a given device.
- Why did WAP appear to fail, and why is the future of Mobile Computing more promising? What challenges learned from the WAP experience still need to be overcome?
- Compare and contrast the delivery mechanisms used by SMS and MMS. Describe each, and give details about how MMS messages are sent to legacy (non MMS capable) devices.

To Recap...

- In this lecture set, we covered:
 - Differences between Internet access from a PC over a fixed line vs a Mobile wireless device
 - And how this affected early provision of mobile services
 - Early approaches, which led to WAP
 - The WAP stack, WML and Deck-of-Cards
 - Other content delivery systems
 - SMS, MMS and OTA

Further Reading

• M-Commerce

Norman Sadeh (Wiley, 2009)

• Chapter 4

Pervasive Computing: The Mobile World

Uwe Hansmann, Lothar Merk, Martin S. Nicklous, Thomas Stober (Springer Professional Computing, 2003)

• Chapter II

Beyond 3G: Bringing Networks, Terminals, and the Web Together

Martin Sauter (Wiley, 2009)

• Chapter 6

• Wikipedia !!!