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Chapter 1

Introduction
The problem of complex data analysis is a central topic of modern statistical science as well as computer
and information sciences, and is connected to both theoretical and applied parts of these sciences. The
analysis of complex data in general implies the development of statistical models and autonomous algo-
rithms that aim at acquiring knowledge from raw data for analysis, interpretation and to make accurate
decisions and predictions for future data. Such analysis by learning models from raw data requires, from
a theoretical point of view, models which rely on well-established statistical background, as well as, from
a practical point of view, the derivation of efficient algorithmic tools to address problems regarding the
data complexity, including heterogeneity, missing information, high dimensionality, dynamical structure,
and big volume. To ensure such reliability of models and algorithms for the analysis, it is important to
understand the processes generating the data. From a statistical learning prospective, this in general
arises in generative learning approaches. Generative model-based approaches are indeed well-established
statistical models that explicit the processes generating the data and for which the computational part
regarding the development of dedicated efficient inference algorithms has took and is still taking a lot
of investigations in the computer science field particularly machine learning field as well as in statistics.
They are well-suitable in many contexts, in particular the unsupervised context when the supervision
(e.g., expert information required for the analysis in the large sense) is missing, hidden or difficult to
obtain, and are useful for many applications, including clustering and classification of heterogeneous data.
Latent data models, including (Bayesian) mixture model-based approaches and their Markovian exten-
sions, are one of the most popular and successful generative unsupervised learning approaches. They are
very used in particular in cluster analysis for automatically finding clusters, in discriminant analysis when
the classes are dispersed, as well as in non-linear regression when the response exhibits a non-stationary
behavior conditional on predictors and in segmentation for data arranged in sequences, etc. Fitting such
models is the core of the analysis task and has lead to an important research to derive efficient algorithmic
tools such as the expectation-maximization (EM) algorithms or Markov Chain Monte Carlo (MCMC)
sampling techniques in the Bayesian framework. Thanks to their flexibility and their sound statistical
background, these successful latent data models, in general used in multivariate analysis in which the
analyzed data are composed of individuals described by vectors, have took and are still taking a growing
investigation for adapting them to the framework of functional data analysis, in which the individuals
are describing functions (e.g., curves, surfaces), rather than simple vectors. In many areas of application,
including signal and image processing, functional imaging, handwritten text recognition, bio-informatics,
etc., the analyzed data are indeed often available in the form of discretized values of functions or curves
(e.g., time series, waveforms) and surfaces (e.g., 2D-images, spatio-temporal data) which makes them
very structured, and for which classical multivariate analyses are not suitable. This “functional” aspect
of the data adds additional difficulties compared to the case of a classical multivariate (non-functional)
analysis.

These modeling questions and the methodological issues, as well as their related practical and com-
putational issues, are in the core of my research. This manuscript synthesizes the research activities I
conducted on the subject after my PhD thesis, defended in December 2010 at Université de Technologie
de Compiègne. My research activities are at the interface between applied mathematics (statistics) and
computer science, with a special interest to statistical signal processing, and primary lie into the multidis-
ciplinary area of statistical learning and analysis of complex data. The data complexity aspect refers to
temporal non-stationary data, high dimensional multivariate and functional data, spatial structured data
with possibly random effects, and non-normal, skewed and noisy (with atypical observations) data. They
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are more precisely structured around the following five thematics of research, summarized after a brief ac-
count on my thesis research. My publications are given in my personal bibliography provided in Chapter
8, as well as in the long French version of my CV: http://chamroukhi.univ-tln.fr/CV/FChamroukhi_
CV_fr.pdf or its short English version http://chamroukhi.univ-tln.fr/CV/FChamroukhi_CV_en.pdf,
which contain my other academic activities.

1.1 Contributions during my thesis (2007-2010)

Curve modeling and classification using hidden process regression

My thesis research has mainly resulted in a contribution to the approximation and segmentation of
temporal non-stationary data. This contribution addressed two main issues of the state of the art ap-
proaches related to the subject, which provide non-smooth approximations, or smooth but very costly in
optimization: It provides smooth approximations thanks to the regression model with a hidden logistic
process (RHLP) which allows to control the smoothness in the underlying process governing the data,
with a very reasonable complexity thanks to efficient maximum-likelihood fitting via the expectation-
maximization (EM) algorithm. I also showed that this model presents a well-principled alternative to
address the classical problem of nonlinear regression by showing that the resulting RHLP regression
function is asymptotically identical to the one obtained by the classical nonlinear regression model. The
developments have also been of a great interest and successfully applied to, in particular, the diagnosis
and the survey of the french high-speed railway system in a collaboration with the SNCF.

1.2 Contributions after my thesis (2011-2015)

1.2.1 Latent data models for non-stationary multivariate temporal data

This first theme of research after my thesis focuses on the modeling and joint segmentation of non-
stationary multivariate time series which present regime changes. The main part of this research, initiated
in 2010, was conducted in the framework of the PhD thesis of Dorra Trabelsi defended in 2013 at Paris 12
University - LISSI Lab, that I co-supervised with Pr. Latifa Oukhellou, Pr. Yacine Amirat and Dr. Samer
Mohammed. Motivated by a problem of recognition of human activities from acceleration data issued from
on-body sensors in the framework of assistive robotics, I reformulated the problem, generally addressed
from a supervised prospective, into the methodological one of joint segmentation of multiple time series
with hidden process regression. I proposed a new unsupervised generative modeling based on two latent
data models: The multiple hidden Markov model regression (MHMMR) which naturally allows to recover
the underlying states (i.e. activities) governing the data via the Markov chain, and provides a better fit
for this structured data thanks to the conditional regression density for each state, compared to standard
Markovian modeling and other unsupervised and supervised techniques. Furthermore, I proposed the
multiple regression model with hidden logistic process (MRHLP), which tackles the problem from the
same generative point of view, but with better theoretical modeling capabilities as in the univariate
RHLP, that is, particularly the possibility of better and explicitly addressing possible smoothness in the
time series, and with no restrictions on the state modeling, that is, a state residence time which is not
necessarily Geometrically distributed as in the Markovian case. For the inference of the proposed models,
I developed dedicated EM algorithms for MLE which were successfully applied to the real-world problem
of human activity recognition and provided very interesting results.

1.2.2 Functional data analysis

Beyond the standard learning problem for the analysis of data which are univariate or multivariate
variables, in this reach direction, that I mainly conducted since the end of my thesis and pursued, under
additional modeling considerations, until now, focuses on functional data analysis (FDA). The key tenet
of the modeling and analyses I perform in this research is that the unit of information (individual) is
a function (e.g., curves, time series, surfaces). This is a learning problem for structured data analysis
in which I essentially seek to provide solutions to the problems of classification, supervised or not (e.g.,
segmentation, clustering) of such complex data. I considered namely complex functional data arising in
time series presenting regime changes and organized in groups. The considered functional data exhibit a
hidden complex structure in two respects, that is, on the one hand, the dynamical behavior within the
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individuals generated by regime changes, and, on the other hand, a grouping aspect between individuals,
that is, a clustering property. Moreover, I also considered modeling data presenting random effects.
I proposed latent data models, particularly, dedicated functional mixture models to accommodate the
complexity of the data density. The models rely on hierarchical mixtures with regression components
governed by hidden processes and were applied to the classification and the segmentation of functional
data. More specifically, the developed models are: the mixture of piecewise regressions (MixPWR), the
mixture of hidden Markov model regressions (MixHMMR), and the mixture of regressions with hidden
logistic process (MixRHLP), in which the classification is performed directly in the space of curves. I
also showed that the probabilistic formulation of such functional probabilistic models naturally optimized
with EM type algorithms generalizes alternatives based on the of optimization of distortion criteria (i.e.
K-means based functional methods). The models firstly applied in clustering, thanks to their generative
formulation, are naturally used in discriminant analysis for functional data, particularly when the classes
are dispersed, by proposing functional (mixture) discriminant analyses (FMDA) where the classification
is directly performed in the space of curves and accounts for the structure of the curves.

1.2.3 Bayesian regularization of mixtures for functional data analysis

In this third axis that I initiated in 2013, I consider the subject of fitting latent data models for FDA
and I aim at answering the two following main questions: i) how to automatically and simultaneously
fit the model and its structure, and ii) how to overcome issues encountered in the ML point estimation
framework, regarding possible singularities and degeneracies of the ML estimator. More precisely, in a
first stage, I was interested in constructing fully unsupervised regression mixture models for univariate
functional data, that is, where both the number of mixture components and the parameters are unknown
and have to be inferred from the data. I handled this problem by proposing a penalized maximum
likelihood estimation framework carried out via a robust-EM like algorithm which namely encourages
sparse structures. Both the parameters and the model structure are simultaneously inferred from the
data as the learning proceeds. As such, the proposal constitutes an alternative to conventional approaches
on mixture-model based functional data clustering where the model selection is performed in a two-steps
strategy by selecting a model from several pre-estimated model candidates. The algorithm effectiveness
has been shown on application on functional data classification from various fields.

Then, since 2014, I considered the problem of fitting latent data models for FDA, treated in the
two previous directions for some of the models considered here; The angle of the approach is different
though, since here I am placed only in the Bayesian framework, that is, maximum a posteriori estimation
(MAP) via Bayesian sampling techniques, in particular Markov Chain Monte Carlo to simulate directly
under the posterior distribution of the parameters. Furthermore, here I considered the problem of spatial
functional data analysis where the data are surfaces, rather than univariate or multivariate curves as
before. I introduced a Bayesian spatial spline regression model with mixed-effects (BSSR) for modeling
spatial functional data. The model accommodates both common mean behavior for the data through
a fixed-effects part, and variability inter-individuals thanks to a random-effects part. Then, in order to
model populations of spatial functional data issued from heterogeneous groups, I proposed a Bayesian
mixture of spatial spline regressions with mixed-effects (BMSSR) for density estimation and model-based
surface clustering. The two models, through their Bayesian formulation, allow to integrate possible prior
knowledge on the data structure and constitute a Bayesian alternative to recent mixture of spatial spline
regressions model estimated in a maximum likelihood framework via the EM algorithm. The Bayesian
model inference is performed by Gibbs sampling and is applied on surface approximation as well as on a
problem of handwritten digit recognition using the MNIST data set. The obtained results highlight the
potential benefit of the proposed Bayesian approaches.

1.2.4 Bayesian non-parametric parsimonious mixtures for multivariate data

I initiated this research direction in 2012 with the beginning of the PhD thesis of Marius Bartcus and
for whom I was the principal supervisor, in collaboration with Pr. Hervé Glotin. The PhD defense is
scheduled for October 26th, 2015. In this research theme, I investigated the problem of fitting mixtures
and model-based clustering under a Bayesian point of view where the aim is to deal with limitations
of the previously and classically studied MLE based approaches. I study the case of Bayesian mixture
fitting by investigating two sub-axis. The first one corresponds to the investigation of Bayesian finite
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mixtures and their inference using mainly MCMC sampling, with a particular focus on finite parsimonious
mixtures which offer great modeling flexibilities. The second one, however, addresses the problem from
a non-parametric perspective by investigating the Dirichlet process mixture derivation for Bayesian mix-
tures, which can be interpreted as infinite mixture models. Then, I introduced Bayesian non-parametric
parsimonious mixture models by relying on general flexible priors, that is, Dirichlet processes, or by
equivalence the Chinese Restaurant Process. The developed DPPM models provide a flexible framework
for modeling different data structures as well as a well-principled alternative to tackle the problem of
model selection. The derived Gibbs sampling techniques to infer the models and the Bayes Factors used
for model selection and comparison perform well on several real data and particularly have shown very
interesting results in a challenging problem of unsupervised bioacoustic signals decomposition.

1.2.5 Non-normal mixtures of experts

The previously developed models in my research, as well as those classically used in learning for the
analysis of continuous data, are usually or at least very often based on the normal hypothesis regarding
the distribution of the data or a group of the data. In this research direction that I initiated very
recently in May 2015, I attempt to overcome the (well-known) limitations of modeling with the normal
distribution in terms of non suitability to heavy-tailed data, skewed data, and data possibly affected
by outliers. I particularly focused on the problem of mixture modeling in such situations including
for model-based clustering and for fitting non-linear regression. I investigated the framework of non-
normal mixture models for density estimation and clustering of regression data, particularly mixture of
experts (MoE), a popular framework for modeling heterogeneity in data in the computer science field in
particular in machine learning, as well as in statistics. I proposed three non-normal and robust derivations
for standard normal of mixture of experts models which can deal with possibly skewed, heavy-tailed
data and are robust to atypical data. The proposed models are the skew-normal MoE (SNMoE), and
the robust t MoE (TMoE) and skew-t MoE (STMoE). I developed dedicated expectation-maximization
(EM) type algorithms for ML fitting of the models. The obtained results on simulations and real-world
data show very interesting results and confirm that the proposed MoE models are well-suited and robust
generalizations of the standard normal MoE.

1.2.6 Applications

The contributed models has lead to the development of numerous codes and were applied at least in the
following structuring project applications

SwitchRdf project (2007-2010) This project has constituted the applicative context of my PhD
research and was in collaboration between IFSTTAR and Heudyasic Lab where I did my PhD, and
the SNCF (the French railway company). The objectives were the diagnosis and the monitoring of the
high-speed railway switches based on temporal data of switch operations.

Human Activity recognition (2010-2013) This application relates the problem of human activity
recognition, which is central for understanding and predicting the human behavior, in particular in a
prospective of assistive services to humans, such as health monitoring, well being, security, etc. It was
conducted with the LISSI Lab/Universié Paris-Est Créteil (Paris 12) mainly in framework of the PhD
thesis of Dorra Trabelsi. The aim was the analysis of multidimensional raw acceleration data measured
using body-worn sensors.

Bio-acoustic signals decomposition (2012-2015) SABIOD - Scaled Acoustic BIODiversity is CNRS
MASTODONS project coordinated by LSIS, started in 2012 and calls for learning techniques to analyze
bioacoustic data, mainly songs of marine mammals (e.g. whales). The idea was to apply unsupervised
Bayesian learning techniques for the decomposition of whale song signals to discover possible call units
which can be considered as a kind of whale alphabet of the whale.

Other projects I was also member and served for other projects in our team, that is, the ANR (french
research council) Project COGNILEGO : from Pixels to Semantics (2011-2014) and the DGA-RAPID
Project PHRASE: Augmented Reality and Autonomous Perception (2012-2015). I also Initiated the ANR
proposal “LegoFit” proposed to ANR in collaboration with Paris 13, Paris 5, IFSTTAR and AIRBUS
(see the perspectives section).

More additional information is available in my CV (in French) http://chamroukhi.univ-tln.fr/CV/

FChamroukhi_CV_fr.pdf or in English (short version) http://chamroukhi.univ-tln.fr/CV/FChamroukhi_
CV_en.pdf.
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pour la régression non linéaire. Revue des Nouvelles Technologies de l’Information (RNTI), S1:15–
32, Jan 2011c. URL http://chamroukhi.univ-tln.fr/papers/chamroukhi_same_govaert_aknin_

rnti.pdf

[4] F. Chamroukhi, D. Trabelsi, S. Mohammed, L. Oukhellou, and Y. Amirat. Joint segmentation of
multivariate time series with hidden process regression for human activity recognition. Neurocomput-
ing, 120:633–644, November 2013b. URL http://chamroukhi.univ-tln.fr/papers/chamroukhi_

et_al_neucomp2013b.pdf

[5] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat. An unsupervised approach
for automatic activity recognition based on Hidden Markov Model Regression. IEEE Transactions
on Automation Science and Engineering, 3(10):829–335, 2013. URL http://arxiv.org/pdf/1312.

6965.pdf

[6] F. Attal, M. Dedabrishvili, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat. Physi-
cal human activity recognition using wearable sensors. Sensors, 2015. URL http://chamroukhi.

univ-tln.fr/papers/Sensors-2015.pdf. submitted

Some related conference papers:

[1] F. Chamroukhi and H. Glotin. Mixture model-based functional discriminant analysis for curve clas-
sification. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), June
2012b

[2] F. Chamroukhi, H. Glotin, and C. Rabouy. Functional Mixture Discriminant Analysis with hidden
process regression for curve classification. In Proceedings of XXth European Symposium on Artificial
Neural Networks ESANN, pages 281–286, Bruges, Belgium, April 2012b
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This first research theme concerns the modeling and segmentation of complex temporal data, univari-
ate and multivariate, and directly follows some of work I developed during my PhD thesis. This research
axis can be organized into two sub-axes which are developed in what follows. The first deals with latent
process regression models for univariate time series and mainly resulted into 3 methodological articles
[J-1][J-2] [J-3] . The second is dedicated to latent data models for dealing with the joint segmentation of
multivariate time series. This main part initiated in 2010 was conducted in the framework of the PhD
thesis of Dorra Trabelsi defended in 2013 at Paris 12 University - LISSI Lab, and that I co-supervised
with Pr. Latifa Oukhellou, Pr. Yacine Amirat and Dr. Samer Mohammed. This work resulted into 2
methodological articles [J-7][J-6] and the preprint [J-15] is issued from this work.

2.1 Introduction

In many application domains of data analysis, the data to be analyzed are presented as time series (may
be called in other communities signals, curves, etc). Time series analysis is a popular problem with a
broad literature, and is studied by several scientific communities, including statistics, (statistical) signal
processing, economics as well as statistical learning in pattern recognition. In this study, we particularly
focus on complex non-stationary time series that present non-linearities through various regime changes.
When analyzing such data, very often of large size, it is often necessary to approximate them in order to
extract relevant knowledge such as a relevant feature representation, a simplified model resuming the data
for prediction, a segmentation for further categorization, etc. In such a context of time series with regime
changes, the problem of time series analysis is in general reformulated into a time series segmentation
problem possibly via models, parametric or not. The general problem of time series segmentation has
taken great interest from different communities, including statistics, detection, signal processing, and
machine learning. Earlier contributions in the subject were taken from a statistical point of view, one can
cite for example the following references on the subject, among many others (McGee and Carleton, 1970;
Rabiner and Juang, 1986; Brailovsky and Kempner, 1992; Basseville and Nikiforov, 1993; Eamonn Keogh
and Pazzani, 1993; Fridman, 1993; Fearnhead, 2006; Fearnhead and Liu, 2007; Dobigeon et al., 2007).
The problem can be stated as a detection problem via hypothesis testing as in Basseville and Nikiforov
(1993). This in general requires a detection threshold to reject the null hypothesis. In addition, the
hypothesis testing is often used in a binary setting, the problem of multiple hypothesis testing, which is
the case in this multi-class segmentation problem, is not very common while one can take the hypotheses
to be tested in pairs independently. The time series modeling for segmentation can also be handled via
piecewise regression (PWR) which goes back to McGee and Carleton (1970), and which partitions a time
series into several regimes (segments) where each regime is assumed to be a noisy constant function, or
polynomial function as in Brailovsky and Kempner (1992). Each regime being characterized by its mean
and possibly its own noise variance in the case of a heteroskedastic PWR model, and activated in a time
range defined by its boundary transition points. In such a model, which is perhaps the most frequently
used one in time series segmentation, at least from a statistical inference point of view, the problem of
time series segmentation becomes the one of estimating the regression parameters and the change points.
Thanks to the additivity of the error criterion, the usual tool for parameter estimation of the PWR
model is dynamic programming (Bellman, 1961; Stone, 1961) which provides an optimal segmentation.
However, it is known that the dynamic programming may be computationally expensive especially for
time series with a large number of observations. The other alternative, which I mainly consider in this
analysis, is in the framework of statistical learning of latent data models. Recall that latent data models
which go back to Spearman (1904) with factor analysis, are statistical models that aim at representing
the distribution of the observed data in terms of a number of latent (hidden, unknown, missing) variables.
Mixture models (Titterington et al., 1985; McLachlan and Peel., 2000; Frühwirth-Schnatter, 2006) and
hidden Markov models (HMMs) (Rabiner and Juang, 1986; Rabiner, 1989; Frühwirth-Schnatter, 2006)
are two well-known widely used examples of such models. In deed, in this framework of regime changing
time series, it is natural to think that the observed time series is generated by an underlying stochastic
process, with several possibly parametric states. The problem of time series modeling and segmentation
therefore becomes the one of recovering the underling process and inferring the statistical parameters
of each of its states. The classical model in that case is the well-known hidden Markov model (HMM)
(Rabiner and Juang, 1986; Rabiner, 1989) which assumes that the observed time series is generated by a
hidden state sequence following a Markov chain, and for a time series segmentation problem, each regime
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2. LATENT DATA MODELS FOR TEMPORAL DATA SEGMENTATION

might be associated with a state. A classical assumption for such analysis is to consider that conditional
on each state, the observation has a Gaussian density with constant or vectorial mean. Another way for
time series with more structured regimes is to use a HMM regression (HMMR) (Fridman, 1993) which
is a formulation of the standard HMM into an regression context. The parameters of such HMM-based
models are estimated using the well-adapted expectation-maximization algorithm (Dempster et al., 1977)
known as the Baum-Welch algorithm (Baum et al., 1970) in the context of HMMs. The problem of the
analysis of time series with multiple change points based on Markov processes has also been considered as
from a Bayesian prospective by using MCMC sampling as in Fearnhead (2006) an sequential MCMC for
online change point detection as in Fearnhead and Liu (2007). Another Bayesian sampling approach is
the one based on hierarchical Bayesian model for a joint segmentation of multidimensional astronomical
time series (Dobigeon et al., 2007). These approaches, while at the time when I developed the proposed
method were out of the scope, since I mainly focused on the frequentist paradigm of inference, as they
use MCMC sampling, this can be limiting in terms of computational time compared to optimization
methods I developed using deterministic EM algorithms. In addition, the previously described approaches
particularly concern abrupt change point detection. Hence, if we are placed in the situation where we
have nonlinear regimes their changes may be smooth and/or abrupt, in such a context, such models,
particularly the piecewise regression model and the HMM based model, are not very appropriate to in
particular provide regular approximation of the time series. In such a context, the aim of the analysis
might be two-fold, that is i) to build a dedicated generative model, possibly parametric, to capture the
dynamical behavior of the data, that is, mainly through detecting the temporal regime locations, while
ii) providing a precise approximation to preserve a relevant data representation.

So in summary I focused on the approaches that attempt to address these issues by naturally thinking
that a curve or a time series is generated by a process with several states. Conventional solutions to find
these states generally are subject to limitations in the control of the transitions between these states,
leading to a non-smooth approximation. One can force the resulting approximation to be regular, but
this leads to combinatorial optimization problems for the optimal choice of the positions of the regime
transitions. Relaxing the regularity conditions leads to efficient dynamic programming algorithms, but
also to non smooth approximations. In what I proposed, I particularly relied on generative parametric
latent data modeling, given the flexibility and easy interpretation of the generative framework which
helps understanding the underlying processes generating the data. In addition, a generative model is in
general directly usable for classification and clustering perspectives.

2.1.1 Personal contribution

My personal contribution consists in the study of generic generative regression models for both curve
approximation and segmentation. I also studied the implementation of efficient estimation algorithms
and applied them on real data and evaluated them with the alternatives. By tackling the problem from a
statistical generative modeling prospective, the regression model that incorporates a discrete hidden logis-
tic process (RHLP) presented in [J-1] for example, addresses these two issues regarding accurate regular
curve approximation and segmentation. The RHLP which represents a dynamical mixture model, allows
for activating, simultaneously and preferentially, time-varying polynomial regression models with both
smooth and abrupt regime changes. Then, as showed in [J-3], the RHLP model, by producing smooth
approximation, can be an alternative to solve the classical problem of nonlinear regression. I proposed two
variants of efficient model inference algorithms by monotonically maximizing the observed-data (respec-
tively complete-data) likelihood with a dedicated EM algorithm as in [J-1] (respectively classification EM
(CEM)) algorithm [C-1]. The proposal provides results clearly better than those provided by standard
methods, by considering real-world data issued from mainly diagnosis of complex systems [J-1] [C-13]
[C-14] [C-16] [C-17] [C-18] and energy application for fuel cell life time estimation [C-15].

Then, I studied the problem of modeling and joint segmentation of multivariate temporal data and
proposed two multiple hidden process regression models. I extended the previously developed univariate
RHLP model to the multivariate case to develop a multiple RHLP (MRHLP) model as in [J-6]. I
also investigated the use of HMM in such a regression context, and proposed, when the main aim is
the segmentation, the multiple hidden Markov model regression (MHMMR) as in [J-7] which is better
adapted to these structured time series thanks to the conditional regression density, compared to namely
standard Markovian modeling. Both the MRHLP and the MHMMR models are naturally tailored to
recover the underlying states governing these non-stationary time series via efficient EM algorithms.
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2.2 Regression with hidden logistic process

The proposed models were successfully applied to a real-world problem of human activity recognition
in an assistive robotics context and both provide better results compared to standard unsupervised and
supervised techniques for activity recognition as shown in [J-6] [J-7] [J-15] [C-10] [C-12].

The remainder of this chapter is organized as follows. In section 2.2.1, I first present the first theme
regarding the approximation and the segmentation of univariate time series, mainly by developing the
regression model with hidden logistic process (RHLP). Then, I present the second theme which focuses
on the on modeling and joint segmentation of multiple time series with regime changes by developing
two latent data models, that is, the multiple regression model with hidden logistic process (MRHLP)
presented in Section 2.3 and the multiple hidden Markov model regression (MHMMR) presented in 2.4.

2.1.2 Problem statement

The developed models are based on (multiple) regression with hidden processes. The aim of regression
is to explore the relationship of an observed random variable Y given a covariate vector X ∈ Rp via
conditional density functions for Y |X = x of the form f(y|x), rather than only exploring the uncondi-
tional distribution of Y . For time series, the independent vector x in general relates the sampling time
t, which we will consider hereafter. We are interested in parametric (non-)linear regression functions
f(y|x) = µ(x;β). Let y = (y1, . . . , yn) be a time series composed of n univariate observations yi ∈ R
(i = 1, . . . , n) observed at the time points t = (t1, . . . , tn).

2.2 Regression with hidden logistic process

2.2.1 The model

The regression model with a hidden logistic process (RHLP) assumes that the observed time series is
governed by a K-“state” hidden process z = (z1, . . . , zn) with the categorical random variable zi ∈
{1, . . . ,K} representing the unknown (hidden) label of the state (or class), in this case associated with a
regime, generating the ith observation yi. Each regime Zi is modeled by a Gaussian polynomial regression
model. Thus, the ith observation of the time series is modeled as

yi = βTzixi + σziεi ; εi ∼ N (0, 1), (i = 1, . . . , n) (2.1)

where βzi ∈ Rp+1 is the regression coefficient vector of the polynomial regression model character-
izing regime Zi, p being the polynomial degree, xi = (1, ti, . . . , t

p
i )
T ∈ Rp+1 is the time dependent

covariate vector at time ti, εi are independent standard zero-mean Gaussian variables representing an
additive noise and σ2

zi the associated noise variance. Under the RHLP, the process Z = (Z1, . . . , Zm)
is assumed to be logistic, that is, the hidden variable Zi that allows for the switching from one regres-
sion model to another, given ti, is generated independently according to the multinomial distribution
M(1, π1(ti; w), . . . , πK(ti; w)), where the component probabilities have a logistic distribution:

πk(ti; w) = P(Zi = k|ti; w) =
exp (wT

k vi)∑K
`=1 exp (wT

` vi)
, (2.2)

where vi = (1, ti, , . . . , t
u
i )T ∈ Ru+1 is time-dependent covariate vector, wk ∈ Ru+1 is the coefficients vec-

tor associated with vi and w = (wT
1 , . . . ,w

T
K−1)T ∈ R(K−1)×(u+1) is the parameter vector of the logistic

model, with wK being the null vector. This modeling with the logistic distribution allows activating
simultaneously and preferentially several regimes during time, and hence switching from one regime to
another during time. The relevance and flexibility of the logistic distribution for modeling the dynamical
behavior within a time series through accurately capturing smooth/abrupt etc regime transitions is dis-
cussed in Section 4.1 of [J-1]. Particularly, if the goal is to segment the curves into contiguous segments,
one just needs to use linear logistic functions, that is by setting the value u of wk to 1, which leads to
linear logistic regression, what will be assumed hereafter.

From the above, the observation yi at each time point ti is distributed according to the following
dynamical conditional mixture density:

f(yi|ti;θ) =

K∑
k=1

πk(ti; w)N
(
yi;β

T
k xi, σ

2
k

)
, (2.3)
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where θ = (wT ,βT1 , . . . ,β
T
K , σ

2
1 , . . . , σ

2
K)T is the unknown parameter vector to be estimated.

In the RHLP model (2.3), both the mixing proportions and the component parameters are time-
varying, contrary to for example standard switching regression models or mixture of regression models
(Quandt, 1972; Quandt and Ramsey, 1978; Veaux, 1989). It can be seen as a mixture of experts (ME)
(Jordan and Jacobs, 1994) where the logistic weights are time-dependent, that is, the particular covariate
variable used for the mixing proportions represents the time.

2.2.2 Maximum likelihood estimation via a dedicated EM

The parameter vector θ is estimated by monotonically maximizing the observed-data likelihood. Under
the RHLP model, the maximization of the log-likelihood of θ, which is given by:

logL(θ;y, t) =

n∑
i=1

log

K∑
k=1

πk(ti; w)N
(
yi;β

T
k xi, σ

2
k

)
(2.4)

can not be performed in a closed form since the data are incomplete, that is, the labels (z1, . . . , zm)
indicating from which component each observation of the time series is originated from, are unknown.
However, in this latent data framework, the expectation-maximization (EM) algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 2008) is particularly adapted to achieve this task. By artificially com-
pleting the observed data with the indicator variables zik such that zik = 1 if zi = k (i.e., when yi is
generated by the kth regression model), and 0 otherwise, the EM algorithm monotonically maximizes
logL(θ;y, t) (2.4) iteratively by alternating between the two following steps until convergence (see for
example [J-1] for more details).

The E-Step computes the expected complete-data log-likelihood (also often called the Q-function),

given the observations (t,y) and the current parameter value θ(q), q being the current iteration:

Q(θ,θ(q)) = E
[
logLc(θ;y, t, z)|y, t;θ(q)

]
=

n∑
i=1

K∑
k=1

τ
(q)
ik

[
log πk(ti; w)N

(
yi;β

T
k xi, σ

2
k

)]
, (2.5)

which simply requires the computation of the posterior probability τ
(q)
ik that yi (i = 1, . . . ,m) originates

from component k (k = 1, . . . ,K):

τ
(q)
ik = P(Zi = k|yi, ti;θ(q)) =

πk(ti; w
(q))N (yi;β

T (q)
k xi, σ

2(q)
k )∑K

`=1 π`(ti; w
(q))N (yi;β

T (q)
` xi, σ

2(q)
` )

· (2.6)

The M-Step computes the parameter vector update θ(q+1) by maximizing the expected complete-data
log-likelihood, that is, θ(q+1) = arg max

θ∈Θ
Q(θ,θ(q)) where Θ is the parameter space. The maximization

of the Q-function w.r.t the regression coefficient vector βk for each component k consists in analytically
solving a weighted least-squares problem and the one w.r.t σ2

k is a weighted variant of the problem of
estimating the variance of an univariate Gaussian density. In both cases the weights are the posterior

membership probabilities τ
(q)
ik and the updates of these two parameters are given by

β
(q+1)
k =

[ n∑
i=1

τ
(q)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik yixi, (2.7)

σ2
k
(q+1)

=
1∑n

i=1 τ
(q)
ik

n∑
i=1

τ
(q)
ik (yi − βT (q+1)

k xi)
2. (2.8)

The maximization of the Q-function with respect to w is a multinomial logistic regression problem

weighted by the τ
(q)
ik ’s and however cannot be solved in a closed form. It is solved with a multi-class

Iteratively Reweighted Least Squares (IRLS) algorithm (Green, 1984; Chen et al., 1999a), see for example
[C-14], which is equivalent to the Newton-Raphson algorithm, and in which the parameter w is updated
as follows:

w(l+1) = w(l) −
[∂2Qw(w,θ(q))

∂w∂wT

]−1
w=w(l)

∂Qw(w,θ(q))

∂w

∣∣∣
w=w(l)

(2.9)
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2.2 Regression with hidden logistic process

where ∂2Qw(w,θ(q))
∂w∂wT and ∂Qw(w,θ(q))

∂w are respectively the Hessian matrix and the gradient of Qw(w,θ(q)).

The parameter update w(q+1) is taken at convergence of the IRLS algorithm (2.9). Note that one can
limit the number of iterations of the IRLS procedure of the EM algorithm. This version consists in
only increasing the criterion Qw(w,w(q)) at each EM iteration rather than maximizing it. One can,
for example, limit the number of IRLS iterations up to a single iteration. This scheme yields to a
Generalized EM (GEM) algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2008) which has
the same convergence properties as the EM algorithm. However, in practice, the IRLS is very fast and
takes only up to forty iterations for the first three or four EM iterations and then only up to three or
four iterations.

The time complexity of the E-step of this EM algorithm is of O(Kn). The calculation of the regression
coefficients in the M-step requires the computation and the inversion of the square matrix XTX which
is of dimension p + 1, and a multiplication by the observation sequence of length n which has a time
complexity of O(p3n). In addition, each IRLS loop requires an inversion of the Hessian matrix which is
of dimension (u + 1) × (K − 1). Therefore for a small u (here we used u = 1), the complexity of the
IRLS loop is approximatively of O(IIRLSK

2) where IIRLS is the average number of iterations required by
the internal IRLS algorithm. Therefore the proposed algorithm is performed with a time complexity of
O(IEMIIRLSK

3p3n), where IEM is the number of iterations of the EM algorithm.

Time series approximation and segmentation Given the MLE θ̂, the time series approximation
under the RHLP model i by its mean

E[yi|ti; θ̂] =

∫
R
yi p(yi|ti; θ̂)dyi =

K∑
k=1

πk(ti; ŵ)β̂
T

k xi (i = 1, . . . , n) (2.10)

which results in a smooth and flexible approximation thanks to the flexibility of the logistic weights as
illustrated namely in [J-1]. Thus, as proved in [J-3], if we consider the classical nonlinear regression model
yi = f(ti;θ) + εi (Antoniadis et al., 1992), and, in order to cover a broad range of non-linear regression
functions that are easily parameterizable, regression functions which can be written in the form of a finite
sum of weighted polynomials with logistic weights f(ti;θ) =

∑K
k=1 πk(ti; w)βTk xi, thanks to the desirable

asymptotic properties the MLE estimator of θ, the regression function (2.10) estimated under the RHLP
model is asymptotically identical to the one obtained from the classical nonlinear regression model. This
strengthens us in the fact that the proposed model can be a good well-principled alternative to solve
the nonlinear regression problem, if a suitable algorithm for parameter estimation is available, which is
the case of the EM algorithm here. On the other hand, a time series segmentation can be obtained by
computing the estimated label ẑi of the polynomial regime generating yi according to the following rule:

ẑi = arg max
1≤k≤K

πk(ti; ŵ), (i = 1, . . . , n). (2.11)

We show that applying this rule guarantees the curves are segmented into contiguous segments if the
probabilities πk are computed with a dimension u = 1 of wk (k = 1, . . . ,K). The separation between the
polynomial regimes is linear in t in this case.

Model selection In a general application of the proposed model, the optimal values of (K, p, q) can
be computed by using the Bayesian Information Criterion (BIC) (Schwarz, 1978) which is in our case

defined by BIC(K, p, u) = logL(θ̂) − νθ log(n)
2 where νθ = K(p + u + 3) − (u + 1) is the number of free

parameters of the model and logL(θ̂) is the observed-data log-likelihood obtained at convergence of the
EM algorithm. Note that in the case of contiguous segmentation (u = 1) which we adopt here, the
dimension of the parameter space reduces to νθ = K(p+ 4)− 2.

In this particular regression model, the variable zi controls the switching from one regression model
to another of K regression models at each time ti. Therefore, unlike basic polynomial regression models
which can be seen as stationary models as they assume uniform regression parameters over time, the
proposed dynamical regression model allows for polynomial coefficients to vary over time by switching
from one regression model to another. This modeling is therefore beneficial for capturing non-stationary
behavior involved by regime changes for a curve.
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2. LATENT DATA MODELS FOR TEMPORAL DATA SEGMENTATION

2.2.3 Experiments

In [J-1][C-14][C-16], I evaluated the RHLP approach on simulated data and real data and compared it
to alternatives, including piecewise regression and univariate HMM regression. Two evaluation criteria
were used. the mean squared error between the true simulated mean curve (before noise is added) and
the estimated mean curve, this criterion is used to assess the models with regard to the true curve ap-
proximation. The second criterion is the segmentation error rate between the true simulated and the
estimated partitions and is used to assess the models with regard to time series segmentation.
Three experiments were performed: the first aims to observe the effect of the smoothness level of transi-
tions on estimation quality, by varying the smoothness level of transitions from abrupt to very smooth
changes, for different data situations. The second aims to observe the effect of the sample size n on
estimation quality (to observe the convergence of the MLE of the model), and the third aims to observe
the effect of the noise level σ. In terms of modeling and segmentation, while the results are closely
similar when the transitions are abrupt, the proposed approach clearly outperforms the alternatives for
smooth transitions in all situations. The proposed approach performs the time series segmentation and
approximation better than the piecewise regression and the HMRM approaches. We also observed that
the approximation error and the segmentation error rate decrease when the sample size n increases for
the proposed model which provides more accurate results than the piecewise and the HMRM approaches.
When the noise level increases, the RHLP provides more stable results than to the two other alternatives.
In terms of computing time, as shown for example in [C-14], the proposed EM algorithm for the RHLP
is clearly faster compared to using dynamic programming for piecewise regression, slightly faster that
the EM for HMM regression, and faster than both when derived into a CEM version as in [C-1]. The
proposed RHLP were also applied to the approximation of real time series issued from a complex system
diagnostic application [C-18][C-17] [C-14][J-1]. The data are signals of the power consumed during high-
speed railway switch operations, each operation signal is composed of five successive movements, each of
them is associated with a regime in the time series model. The provided results are very satisfactory in
terms of both segmentation and approximation, the model retrieves the actual phases precisely (see an
illustrative example1 in Figure 2.1). This result has also been reveled relevant for signal representation
for a classification perspective. In deed, for example in [J-1], we considered the RHLP model in a clas-
sification context to diagnosis the railway switch by predicting the class label of a new measured signal
based on a probabilistic discrimination model trained on a labeled training set of curves.
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Figure 2.1: Results obtained with the proposed RHLP on a real switch operation time series: The signal

and the polynomial regimes (left), the corresponding estimated logistic proportions (middle) and the

obtained mean curve (right).

The RHLP was used first to extract features from the data, each feature vector being the MLE of the
RHLP model from a given signal. Then, the estimated features wer used to train a mixture discriminant
analysis (MDA) Hastie and Tibshirani (1996) classifier, that is, by using a Gaussian mixture as conditional
density. The Bayes rule is finally applied for class prediction (by covering three classes: without defect,
with minor defect, and with critical defect). The results in terms of correct classification rates confirm

1Please note that, in this experiment, as well as along the whole manuscript, I’m trying to summarize

at best the (numerous) experiments and just provide some graphical illustrations, at some places where I

think this may help better understanding. However, the complete results, for all the considered data sets

are available in the references as cited in the manuscript.
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2.3 Multiple hidden logistic process regression

that the RHLP can be a good representation of such time series to be used as input for external classifiers
(the gain is about 8% when using PWR and 3% when using HMM regression).

In [J-3], I considered the RHLP as an alternative to the estimation of the classical non linear regression
model by covering a broad range of non-linear regression functions that are easily parameterizable, and
which can be written in the form of a finite sum of weighted polynomials with logistic weights. The
provided results, compared to other alternatives, confirmed this claim.

2.2.4 Conclusion

In conclusion, the RHLP, thanks to its generative modeling, is naturally tailored to deal with the problem
of modeling regime changing time series, and, is particularly particularly useful for situations with smooth
regime transitions. In addition to accurate time series approximation and segmentation, the RHLP can
be used as a signal representation method in a context of time series classification by using classical
classification approaches such as MDA as experimented in [J-1].

2.2.5 Multiple hidden process regression for joint segmentation of multivari-

ate time series

It is natural to extend the RHLP model as well as its alternative, in particular the Markovian model and
the piecewise regression model, to the segmentation of multivariate time series. Indeed, it is natural to
think that the univariate components of the multivariate time series are simultaneously governed by a
hidden process and thus the problem of segmentation becomes the one of recovering the hidden process.
This what we did respectively in [J-6] and [J-7], respectively, where we focused on the extension of the
two generative models, that is, the RHLP model and the hidden Markov model regression model, which
are described in the two following sections.

In this multivariate case, let Y = (y1, . . . ,yn) be a time series of n multidimensional observations

yi = (y
(1)
i , . . . , y

(d)
i )T ∈ Rd observed at the time points t = (t1, . . . , tn). Then, the multiple regression

with hidden process model is formulated as a set of several polynomial regression models (RHLP or
HMMR) for univariate time series and is stated as follows:

y
(1)
i = β(1)T

zi xi + σ(1)
zi εi

y
(2)
i = β(2)T

zi xi + σ(2)
zi εi

...
...

y
(d)
i = β(d)T

zi xi + σ(d)
zi εi (2.12)

which can be written in a matrix form as

yi = BT
zixi + ei ; ei ∼ N (0,Σzi), (i = 1, . . . , n) (2.13)

where Bk =
[
β
(1)
k , . . . ,β

(d)
k

]
is a (p+1)×d dimensional matrix of the multiple regression model parameters

associated with the regime (class) Zi = k and Σzi its corresponding d × d covariance matrix. with
xi = (1, ti, t

2
i . . . , t

p
i )
T with p is the degree of the polynomial model associated with the class zi = k.

The latent process z that simultaneously governs all the univariate time series components controls the
switching from one regime to another during time and allows therefore for a joint segmentation of the
time series. We investigated the case where this process is logistic as it will be presented in Section 2.3,
as well as the alternative case in which the hidden process is assumed to be a Markov chain as it will be
presented in Section 2.4.

2.3 Multiple hidden logistic process regression

The Multiple hidden logistic process regression (MRHLP) model proposed in [J-6] assumes that the ob-
served multivariate time series is governed by hidden states following a logistic process and conditional on
each state, the observed data has a Gaussian multiple regression model. More specifically, the proposed
approach is based on a specific multiple regression model incorporating a hidden discrete logistic process
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2. LATENT DATA MODELS FOR TEMPORAL DATA SEGMENTATION

which governs the switching from one regime to another over time. The model is learned in an unsuper-
vised context by maximizing the observed-data log-likelihood via a dedicated expectation-maximization
(EM) algorithm. The proposed approach extends the regression model with a hidden logistic process
(RHLP) [J-1] which is concerned with univariate time series, to the multivariate case. Note that the
general model formulation may include the possibility to train the polynomial dynamics with different
orders rather than assuming a common order for all the polynomials. In this way, the model offers more
flexibility allowing the capture of nonlinearities generated by the different regimes.

2.3.1 The model

Under the MRHLP model, the probability distribution of the process z = (z1, . . . , zn), that allows for the
switching from one regression model to another is assumed to be logistic and hence is well-adapted for
capturing both abrupt and/or smooth regime changes thanks to the flexibility of the logistic distribution
as illustrated in [J-1]. The observation yi at each time point ti is therefore distributed according to the
following conditional normal mixture density:

f(yi|ti;θ) =

K∑
k=1

πk(ti; w)N
(
yi; B

T
k xi,Σk

)
, (2.14)

where θ = (w, vec(B1)T , . . . , vec(BK)T , vech(Σ1)T , . . . , vech(ΣK)T )T is the unknown parameter vector
to be estimated where vec is the vectorization operator and vech is the half-vectorization operator which
produces the lower triangular portion of the symmetric matrix it operates on.

2.3.2 Maximum likelihood estimation via a dedicated EM

The parameter vector θ of the MRHLP model is estimated by maximizing the observed-data log-likelihood
of θ:

logL(θ) =

n∑
i=1

log

K∑
k=1

πk(ti; w)N
(
yi; B

T
k xi,Σk

)
. (2.15)

via the EM algorithm developed in [J-6] which alternates between the two following steps until conver-
gence:

The E-Step computes the expected complete-data log-likelihood which is given by:

Q(θ,θ(q)) =

n∑
i=1

K∑
k=1

τ
(q)
ik log

[
πk(ti; w)N

(
yi; B

T
k xi,Σk

)]
, (2.16)

and consists in only computing the posterior component membership probabilities given by:

τ
(q)
ik = P(Zi = k|yi, ti;θ

(q)) =
πk(ti; w

(q))N (yi; B
T (q)
k xi,Σ

(q)
k )∑K

`=1 π`(ti; w
(q))N (yi; B

T (q)
` xi,Σ

(q)
` )
· (2.17)

The M-Step computes the parameter vector update θ(q+1) by maximizing the Q-function w.r.t θ:
θ(q+1) = arg maxθ Q(θ,θ(q)). In this case the regression model parameters update correspond to analytic

solutions of weighted multiple regression problems where the weights are the posterior probabilities τ
(q)
ik

and are given by:

B
(q+1)
k =

[ n∑
i=1

τ
(q)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik xiy

T
i (2.18)

Σ
(q+1)
k =

1∑n
i=1 τ

(q)
ik

n∑
i=1

τ
(q)
ik (yi −B

T (q+1)
k xi)

T (yi −B
T (q+1)
k xi)· (2.19)

The maximization of Qw(w,θ(q)) with respect to w is a multinomial logistic regression problem weighted

by τ
(q)
ik which we solve with a multi-class IRLS.
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2.3 Multiple hidden logistic process regression

The complexity of the E-step of this EM algorithm is of O(Kn). The calculation of the regression
coefficients in the M-step requires the computation and the inversion of the d×(p+1) square matrix, and
a multiplication by the observation sequence of length n which has a time complexity of O(d3p3n). In
addition, each IRLS loop requires an inversion of the Hessian matrix which is of dimension 2× (K − 1).
The complexity of the IRLS loop is then approximatively of O(IIRLSK

2) where IIRLS is the average
number of iterations required by the internal IRLS algorithm. The proposed algorithm has therefore a
time complexity of O(IEMIIRLSK

3d3p3n), where IEM is the number of iterations of the EM algorithm. So
this attractive for a reasonable number of regimes and dimensions and large number of individuals.

Once the model parameters are estimated by the EM algorithm, the time series segmentation can be
obtained by computing the estimated label ẑi of the polynomial regime generating each measurement yi
according to the rule (2.11).

The model selection, mainly related to choosing the optimal value of K can be performed from the

data by using for example the BIC defined as BIC(K, p, u) = logL(θ̂)− νθ log(n)
2 where νθ = K(d(p+1)+

d × (d + 1)/2 + 2) − 2 is the number of free parameters of the model and logL(θ̂) is the observed-data
log-likelihood obtained at convergence of the EM algorithm.

2.3.3 Application on human activity time series

In [J-6](Trabelsi, 2013)[C-10], the MRHLP model was applied on real-world problem of segmentation of
human activity time series for activity recognition in a context of assistive robotics. The experiments
were conducted at the LISSI Lab/University of Paris-Est Créteil (UPEC) by six different healthy sub-
jects of different ages and have consisted in collecting raw acceleration data over time when from three
body-worn sensor units, each unit being a tri-axial accelerometer. The 9-dimensional acceleration time
series recorded overtime for each activity, present regime changes, each regime is associated to an activity.
The MRHLP was used to jointly segment the time series in order to recover the activities in an unsu-
pervised way. Twelve activities including dynamical and transitory activities have been studied. The
model performances have been compared to those obtained with alternative unsupervised and supervised
activity recognition approaches. The evaluation criterion is the error segmentation between the obtained
segmentation and the ground truth (the data were labeled by an independent operator). The estimated
probabilities of the logistic process that govern the switching from one activity to another over time
correspond to a quite accurate segmentation of the acceleration time series (see an example in Figure
2.2). Moreover, the flexibility of the logistic process allows to get smooth probabilities in particular for
the transitions. On the other hand, for the standard HMM, which represents a standard temporal seg-
mentation approach, we clearly observed segmentation errors in the transitory phases and even when the
person maintains the same activity. Furthermore, comparison with other classical supervised techniques,
including MLP and SVM, showed that the MRHLP performs better thanks to its time-varying parame-
ters formulation. While in some situations the KNN can provide slightly better results, it may require an
important computational load for each classification (about 5 seconds for a single time series) while for
the MRHLP one, the Bayes assignment rule is instantaneous once the model is trained. While the HMM
model is also a dynamic model for time series modeling, it was observed that it does not outperform
the proposed MRHLP approach. These misclassification errors can be attributed to the fact that the
transitions here are similar the problem of class overlap in the case of multidimensional data classification
problem. However, it was seen that, unlike the proposed model, for the HMM approach, confusions can
occur even within a homogeneous part of the class that is not necessarily near the transition.

2.3.4 Conclusion

In summary, the proposed MRHLP model provides a well established statistical latent data model with
very encouraging performance for automatic segmentation of human activity time series. The model
formulation explicits the switching from one regime to another during time through a flexible logis-
tic process which is also particularly well adapted for abrupt or smooth transitions. Furthermore, the
expectation-maximization algorithm offers a stable efficient optimization tool to learn the model. The
proposed MRHLP approach is applied on a real-world activity recognition problem based on multidi-
mensional acceleration time series measured using body-worn accelerometers. The approach has shown
very encouraging results compared to alternative models for activity recognition. Future work will also
concern the use of other non-linear models to describe each activity signal rather than polynomial bases.
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Figure 2.2: MRHLP segmentation results for the scenario: Standing A2 (k=1) - Sitting down A3 (k=2)-

Sitting A4 (k=3) - From sitting to sitting on the ground A5 (k=4) - Sitting on the ground A6 (k=5) -

Lying down A7 (k=6) - Lying A8 (k=7) with (top) the true labels, (middle) the time series and the actual

segments in bold line and the estimated segments in dotted line, and (bottom) the logistic probabilities.

This may improve in particular the representation of each activity. Then, another extension may consist
int integrating the model into a Bayesian non-parametric framework which will be useful for any kind of
complex activities and in which the number of activities might be selected as the learning proceeds.

2.4 Multiple hidden Markov model regression

The Multiple hidden Markov model regression (MHMMR) model is a HMM model in a multiple regression
setting which allows to better handle the dynamical structure of the time series through the underlying
Markov chain as well as the structure within each state thanks to the multiple regression model. More
specifically, it is an extension of the standard hidden Markov model (HMM) Rabiner and Juang (1986);
Rabiner (1989) to regression analysis as in univariate hidden Markov model regression Fridman (1993),
particularly for regression on multivariate data.

Each regime is described by a regression model rather than a simple constant mean over time, while
preserving the Markov process modelling for the sequence of unknown (hidden) regimes. Indeed, standard
HMM-based approaches use in general standard Gaussian density as emission density. However, in the
HMM regression context, each observation is assumed to be a noisy polynomial function to better model
very structured observations for each state. The approach we propose further extends the HMM model
to a multiple regression setting.
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2.4 Multiple hidden Markov model regression

2.4.1 The model

The proposed multiple HMM regression (MHMMR) model is formulated by (2.12) or in a matrix form
by (2.13) and assumes that the hidden sequence z = (z1, . . . , zn) is a homogeneous Markov chain of
first order parameterized by the initial state distribution π and the transition matrix A. IEach regime
is represented by a multiple regression model and the switching from one regime to another is thus
governed by the hidden Markov chain. The model is therefore fully parameterized by the parameter
vector θ = (πT , vec(A)T , vec(B1)T , . . . , vec(BK)T , vech(Σ1)T , . . . , vech(ΣK)T )T .

2.4.2 Maximum likelihood estimation via a dedicated EM

The parameter vector θ of the MHMMR model is estimated by maximizing the observed-data log-
likelihood, which is in this case given by:

logL(θ) = log
∑
z

p(z1;π)

n∏
i=2

p(zi|zi−1;A)

n∏
i=1

N (yi; B
T
zixi,Σzi)· (2.20)

Since this log-likelihood cannot be maximized directly in this incomplete-data framework (the segment
labels are missing), this can be performed by using the EM algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 2008), known as the Baum-Welch algorithm in the HMM context (Baum et al., 1970;
Rabiner and Juang, 1986; Rabiner, 1989). The EM algorithm for the MHMMR model alternates between
the two following steps:

The E-step computes the conditional expectation of the complete-data log-likelihood given the ob-
served data Y, the time points t and a current parameter estimation denoted by θ(q):

Q(θ,θ(q)) = E
[

log p(Y, z|t;θ)|Y, t;θ(q)
]
· (2.21)

It can be easily shown that this step only requires the calculation of the posterior probability τ
(q)
ik =

P(Zi = k|Y, t;θ(q)) (i = 1, . . . , n; k = 1, . . . ,K) that yi originates from the kth polynomial regression

component given the whole observation sequence and the current parameter estimation θ(q), as well as
the joint posterior probability of the state k at time i and the state ` at time i − 1 given the whole

observation sequence and θ(q), that is ξ
(q)
i`k=P(Zi = k, Zi−1 = `|Y, t;θ(q)) (i = 2, . . . , n; k, ` = 1, . . . ,K).

These posterior probabilities are computed by the forward-backward procedures in the same way as
for a standard HMM (Rabiner and Juang, 1986; Rabiner, 1989).

The M-step updates the value of the parameter vector θ by computing θ(q+1) that maximizes the
conditional expectation (2.21) with respect to θ. It can be shown that this maximization leads to the
following updating rules. The updates of the parameters governing the hidden Markov chain z are the
ones of a standard HMM and are given by:

π
(q+1)
k = τ

(q)
1k ; A

(q+1)
`k =

∑n
i=2 ξ

(q)
ik`∑n

i=2 τ
(q)
ik

The updates of the regression parameters consist in analytically solving K weighted multiple polynomial
regressions and the analytic update of each of the covariance matrices corresponds to a weighted variant of
the estimation of the covariance of a multivariate Gaussian with polynomial mean. They are respectively
given by (2.18) and (2.19) as in the case of the previously presented MRHLP model.

The most likely sequence of activities is then estimated using the Viterbi algorithm (Viterbi, 1967)
which is performed in a complexity of O(nK2).

2.4.3 Application on human activity time series

Similarly like with the previously devoloped MRHLP mode, the MHMMR model was applied to an
activity recognition problem based on multivariate acceleration time series. See for example [J-7](Trabelsi,
2013). For the particular problem of human activity recognition, the standard HMM is used for example
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in (Lin and Kulić, 2011) wand thus was also applied for comparison, as well GMMs or other supervised
techniques such as MLP or SVM. Note that in the generative models, including the proposed MHMMR
approach, the raw acceleration data are directly used without a prior feature extraction step as for example
in (Altun et al., 2010), Ravi et al. (2005) and Yang and Hsu (2010) in such application context. The
MHMMR gives 91.4% as a mean correct classification rate averaged over all observations. It highlights
the potential benefit of the proposed approach in terms of automatic segmentation and classification
of human activity. Both the transitions and the stationary activities are well identified. It significantly
outperforms the alternative standard unsupervised classification approaches (k-Means, the GMM and the
standard HMM which only provide 60%, 72% and 84% of correct classification, respectively). Notice that,
the GMM and K-means approaches are not well suitable for this kind of longitudinal data. The model also
outperforms the majority of the considered supervised classification approaches (such as random forests,
SVM, MLP wich provide respectively correct classification of 93.5%, 88.1% and 83.1% respectively).
While the k-NN might provide slightly better results, it might need a strong data storage especially
for large sequences, contrary to the classification with the MHMMR, which is direct. In addition, the
K-NN is supervised and can not be applied in an unsupervised context. In summary, compared to
standard supervised classification techniques (using class labels), these results are very encouraging since
the proposed approach performs in an unsupervised way. Se an example in Figure 2.3.
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Figure 2.3: MHMRM segmentation for the sequence (Standing A2 - Sitting down A3 - Sitting A4 - From

sitting to sitting on the ground A5 - Sitting on the ground A6 - Lying down A7- Lying A8) for the seven

classes k=(1,. . . , 7)

2.4.4 Conclusion

In this section, we presented a statistical approach based on hidden Markov models in a multiple regres-
sion context for the joint segmentation of multivariate time series. The main advantage of the proposed
approach comes from the fact that the statistical model explains the regime changes over time through
the hidden Markov chain, each regime being interpreted as a regime (a segment) and its internal structure
is accommodated by a multiple regression model. The parameter estimates are computed by maximiz-
ing the log-likelihood by using a dedicated EM algorithm. Application on real time series of human
activities based upon the use of raw accelerometer data acquired from body mounted inertial sensors in
a health-monitoring context, and the comparison with well-known unsupervised and supervised classi-
fication approaches demonstrated the effectiveness of the model. This work can be extended in several
directions, namely by integrating the model into a Bayesian context to better control the model com-
plexity via choosing suitable prior distributions on the model parameters. Then, and perhaps more
interestingly, another step to explore is to built a fully Bayesian non-parametric model which will be
useful for any kind of complex activities and in which the number of activities might be inferred from
the data.

18



Chapter 3

Latent data models for functional

data analysis

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Personal contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Mixture modeling framework for functional data . . . . . . . . . . . . . . . . . 22

3.2 Mixture of piecewise regressions . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Maximum likelihood estimation via a dedicated EM . . . . . . . . . . . . . . . 24

3.2.3 Maximum classification likelihood estimation via a dedicated CEM . . . . . . . 25

3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Mixture of hidden Markov model regressions . . . . . . . . . . . . . . . . . 30

3.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Maximum likelihood estimation via a dedicated EM . . . . . . . . . . . . . . . 31

3.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Mixture of hidden logistic process regressions . . . . . . . . . . . . . . . . . 34

3.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Maximum likelihood estimation via a dedicated EM algorithm . . . . . . . . . 35

3.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Functional discriminant analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Functional linear discriminant analysis . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Functional mixture discriminant analysis . . . . . . . . . . . . . . . . . . . . . 38

3.5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

19



Related journal papers:
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This research direction that I initiated at the end of my PhD thesis in 2010 with the development of
a functional classification models for temporal data, and pursued, under additional modeling consider-
ations, until now, focuses on functional data analysis (FDA) where the individuals are entire functions.
This theme is structured into two sub-axes. In the first, I seek to provide solutions to the problem of
unsupervised classification (clustering, segmentation) of functional data, particularly curves with regime
changes. This has lead mainly to three contributions: [J-4], [J-9], and [C-11] [J-16]. In the second sub-
axis, which concerns the supervised case, that is, discrimination of functional data, I am interested in
building discriminant analyses that handle the problem of classification of functional data that might be
organized in homogeneous or heterogeneous groups and further exhibit a non-stationary behavior due to
regime changes. This has lead to mainly two following contributions [J-2][J-5].

3.1 Introduction

Most statistical analyses involve vectorial data where the observations are finite dimensional vectors.
However, in many application domains, such as diagnosis of complex systems [J-2][J-4], electrical en-
gineering (Hébrail et al., 2010), speech recognition (e.g. the phoneme data studied in (Delaigle et al.,
2012)), medicine for example with the study of human growth curves (Liu and Yang, 2009), bioinformat-
ics (Gui and Li, 2003), spectroscopy (Ferraty and Vieu, 2002), etc, the individuals are described by entire
functions (.i.e curves) rather than finite dimensional vectors. The most frequent case is that in which the
studied individuals have a temporal variability. The functional representations are also present in other
cases which are not necessarily temporal, for example, spectroscopy in which samples are charactered
by their spectrum, a function that, at a wavelength associates a measurement of interest such as the
absorbance (e.g. near infrared (NIR) absorbance spectra1, see Ferraty and Vieu (2002)). This “func-
tional” aspect of the data adds additional difficulties in the analysis compared to the case of a classical
multivariate (non functional) analysis, which ignores the structure of individuals, and there is therefore
a need to formulate “functional” models that explicitly integrate the functional form of the data, rather
than directly and simply considering them as vectors to apply classical multivariate analysis methods,
which is of course possible, but is subject to a strong loss of information. The paradigm of analyzing
such data is known as functional data analysis (FDA) (Ramsay and Silverman, 2005, 2002; Ferraty and
Vieu, 2006). The key tenet of FDA is to treat the data not just as multivariate observations but as
(discretized) values of possibly smooth functions. FDA is indeed the paradigm of data analysis in which
the individuals are functions (e.g., curves or surfaces) rather than vectors of reduced dimension and the
statistical approaches for FDA allow to fully exploit the structure of the data.

The goals of FDA, like in multivariate data analysis, may be exploratory for example clustering or
segmentation prospectives when the curves arise from sub-populations, or when each individual functional
itself presents a heterogeneity aspect say for example a non-stationary temporal curve, or decisional for
example to make prediction on future data, that is, regression when predicting continuous responses or
classification when predicting categorical ones. Additional background on FDA, examples and analysis
techniques can be found for example in Ramsay and Silverman (2005). In this FDA field, I considered the
problems of functional data clustering, segmentation and classification. The methods on which I focus
here rely on generative functional regression models which are based on the finite mixture formulation with
tailored component densities. Finite mixture models (McLachlan and Peel., 2000; Frühwirth-Schnatter,
2006; Titterington et al., 1985), known in multivariate analysis by their well-established theoretical back-
ground, flexibility, easy interpretation and associated efficient estimation tools in many problems par-
ticularly in cluster and discriminant analyses, say the EM algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 2008), are taking a growing investigation for adapting them to the framework of FDA.
See for example (Devijver, 2014; Jacques and Preda, 2014; Bouveyron and Jacques, 2011; Chamroukhi,
2010a; Liu and Yang, 2009; Gaffney and Smyth, 2004; Gaffney, 2004; James and Sugar, 2003; James and
Hastie, 2001). Indeed, when the data are curves, which are in general very structured, relying on standard
multivariate mixture analysis may lead to unsatisfactory results in terms of modeling and classification
accuracy. The classic mixture methods for data analysis, in particular the multivariate (Gaussian) mix-
ture model might be used but ignore the functional structure of the data since they simply assume them
as vectors in Rm, which leads to rough approximations and strong loss of information. Addressing the
problem from a functional data analysis prospective, that is, formulating functional mixture models, al-

1For example the tecator data available at http://lib.stat.cmu.edu/datasets/tecator.
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lows to better handle the issue as shown for example in [J-1][J-2][J-4](Gaffney and Smyth, 1999; Gaffney,
2004; Gaffney and Smyth, 2004; Liu and Yang, 2009). In this case of model-based curve clustering, one
can distinguish the regression mixture approaches (Gaffney and Smyth, 1999; Gaffney, 2004), including
polynomial regression and spline regression, or random effects polynomial regression as in Gaffney and
Smyth (2004) or (B-)spline regression as in Liu and Yang (2009). When clustering sparsely sampled
curves, one may use the mixture approach based on splines in (James and Sugar, 2003). In (Devijver,
2014) and Giacofci et al. (2013), the clustering is performed by spanning the data on wavelet basis instead
of (B-)spline ones. Another alternative, which concerns mixture-model based clustering of multivariate
functional data, is the one in which the clustering is performed in the space of reduced functional prin-
cipal components (Jacques and Preda, 2014). One can also mention the K-means based clustering for
functional data by using B-spline bases (Abraham et al., 2003) or wavelets as in Antoniadis et al. (2013).
ARMA mixtures have also been introduced in Xiong and Yeung (2004) for time series clustering. Beyond
these (semi-)parametric approaches, one can also cite non-parametric statistical methods (Ferraty and
Vieu, 2003) using kernel density estimators (Delaigle et al., 2012), or those using mixture of Gaussian
processes regression (Shi et al., 2005; Shi and Wang, 2008; Shi and Choi, 2011) of hierarchical Gaussian
process mixtures for regression (Shi and Choi, 2011; Shi et al., 2005).

In functional data discrimination, the generative approaches for functional data related to this work
are essentially based on functional linear discriminant analysis using splines, including B-splines as in
James and Hastie (2001), of mixture discriminant analysis (Hastie and Tibshirani, 1996) in the context
of functional data by relying on B-spline bases as in Gui and Li (2003). Delaigle et al. (2012) have also
addressed the functional data discrimination problem from an non-parametric prospective using a kernel
based method.

3.1.1 Personal contribution

My personal contribution to FDA consists in studying latent data models, particularly the finite mix-
ture modeling in the framework of functional data and proposing models to deal with the problem of
i) functional data clustering [J-4][J-5][J-9][J-16][C-11] and ii) the one of functional data discrimination
[J-2][J-5], particularly when the data present a complex structure due to regime changes. More specifi-
cally, I proposed mixture-model based cluster and discriminant analyzes based on latent processes. The
heterogeneity of a population of functions arising in several sub-populations is naturally accommodated
by a mixture distribution, and the dynamic behavior within each subpopulation, generated by a non-
stationary process typically governed by a regime change, is captured via a dedicated latent process. Here
the latent process is modeled by either a Markov chain or a logistic process, or as a deterministic piecewise
segmental process. I first investigated the use of a mixture model with piecewise regression components
(PWRM) for simultaneous clustering and segmentation of univariate regime changing functions [J-9].
Then, I formulated the problem from a full generative prospective by proposing the mixture of hidden
Markov model regressions (MixHMMR) [C-11][J-16] and the mixture of regressions with hidden logistic
processes (MixRHLP) [J-4][J-5] which offers additional attractive features including the possibility to deal
with possible smooth dynamics within the curves. I also investigated discriminant analyzes for homoge-
neous ones [J-2] as well as for heterogeneous curves [J-5]. For each model, I also studied and evaluated
the algorithmic tools, which mainly consist in EM algorithms, on real data from different application
domains.

The remainder of this chapter is organized as follows. After giving the general modeling framework
in subsection 3.1.2, I derive the proposed finite mixtures for simultaneous functional data clustering and
segmentation. The PWRM model is presented in Section 3.2. Then, Section 3.3 presents the MixHMMR
model and Section 3.4 is dedicated to the MixRHLP. Finally, In Section 3.5, I derive the proposed
functional discriminant analyses, in particular, the functional mixture discriminant analysis with hidden
process regression (FMDA).

3.1.2 Mixture modeling framework for functional data

The considered modeling framework for the analysis is the one of the finite mixture model. The finite
mixture model decomposes the density of the observed data as a convex sum of a finite number of
component densities. In multivariate analysis, the most frequently used model is the finite Gaussian
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mixture model (GMM) in which each mixture component is a multivariate Gaussian. In what follows, I
will specify the global mixture distribution whose components are tailored to functional data modeling.
Let D = ((x1,y1), . . . , (xn,yn) be a set of n independent individuals describing functions (e.g curves)
where each individual (xi,yi) consists of mi observations yi = (yi1, . . . , yimi) regularly observed at
the independent covariates, for example the time in time series, (xi1, . . . , ximi) with xi1 < . . . < ximi .
The mixture model for such functional data, which will referred to hereafter as the “functional mixture
model”, assumes that the observed pairs (x,y) are generated from K tailored functional components,
more particularly, tailored regressors explaining the response y by the covariate x, and are governed by
a hidden categorical random variable Z indicating from which component each function is generated.
Thus, the functional mixture model can be defined as:

f(y|x;Ψ) =

K∑
k=1

αkfk(y|x;Ψk) (3.1)

where the αk’s defined by αk = P(Z = k) are the mixing proportions such that αk > 0 for each

k and
∑K
k=1 αk = 1, Ψk (k = 1, . . . ,K) is the parameter vector of the kth component density and

Ψ = (π1, . . . , πK−1,Ψ
T
1 , . . . ,Ψ

T
K)T is the parameter vector of the functional mixture model.

In mixture modeling for FDA, the component densities fk(y|x) may be the ones of polynomial (B-
)spline regression, regression using wavelet bases etc or Gaussian process regressions. As we focus on
functions arising in curves with regimes changes, possibly smooth, these regression mixture models, as
mentioned before, however do not address the problem of regime changes. For the (hierarchical) mixture
of Gaussian processes for functional regression (Shi and Choi, 2011) which might be used in this context
as a non parametric alternative, they are more tailored to approximate smooth functions, and would not
be suited to deal with possible abrupt regime changes. For curves with regime changes, they only provide
a non-linear smooth approximation, without account for the segmentation.

In the models I present, the mixture component density fk(y|x) is itself assumed to exhibit a complex
structure arising in sub-components, each one is associated with a regime. In what follows, we investigate
mainly three choices for this component specific density, that is, first a piecewise regression density
(PWR), then a hidden Markov regression (HMMR) density and finally a regression model with hidden
logistic process (RHLP) density.

3.2 Mixture of piecewise regressions

The idea described here and proposed in [J-9] is in the same spirit of the one proposed byHugueney et al.
(2009); Hébrail et al. (2010) for curve clustering and optimal segmentation based on a piecewise regres-
sion model that allows for fitting several constant (or polynomial) models to each cluster of functional
data with regime changes. However, unlike the distance-based approach, which uses a K-means-like al-
gorithm (Hugueney et al., 2009; Hébrail et al., 2010), the proposed model provides a general probabilistic
framework to address the problem. Indeed, in the proposed approach, the piecewise regression model is
included into a mixture framework to generalize the deterministic K-means like approach. As a result,
both fuzzy clustering and hard clustering are possible. I also provide two algorithms for learning the
model parameters. The first one is a dedicated EM algorithm to find a fuzzy partition of the data and an
optimal segmentation by maximizing the observed-data log-likelihood. The EM version being the natural
way to the maximum likelihood estimation of a mixture model, including the proposed piecewise regres-
sion mixture. The second algorithm consists in maximizing a specific classification likelihood criterion
by using a dedicated CEM algorithm in which the curves are partitioned in a hard way and optimally
segmented simultaneously as the learning proceeds. The K-means-like algorithm of Hébrail et al. (2010)
is shown to be a particular case of the proposed CEM algorithm if some constraints are imposed on the
piecewise regression mixture.

3.2.1 The model

The piecewise regression mixture model (PWRM) assumes that each curve (xi,yi) (i = 1, . . . , n) is
generated by a piecewise regression model among K models, with a prior probability αk, that is, each
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component density in (3.1) is the one of a piecewise regression model, defined by:

fk(yi|Zi = k,xi;Ψk) =

Rk∏
r=1

∏
j∈Ikr

N (yij ;β
T
krxij , σ

2
kr) (3.2)

where Ikr = (ξkr, ξk,r+1] represents the element indices of segment (regime) r (r = 1, . . . , Rk) for com-
ponent (cluster) k, Rk being the corresponding number of segments, βkr is the vector of its polynomial
coefficients and σ2

kr the associated Gaussian noise variance. Thus, the PWRM density if defined by:

f(yi|xi;Ψ) =

K∑
k=1

αk

Rk∏
r=1

∏
j∈Ikr

N (yij ;β
T
krxij , σ

2
kr), (3.3)

where the parameter vector Ψ = (α1, . . . , αK−1,θ
T
1 , . . . ,θ

T
K , ξ

T
1 , . . . , ξ

T
K)T with θk = (βTk1, . . . ,β

T
kRk

, σ2
k1, . . . , σ

2
kRk

)T

and ξk = (ξk1, . . . , ξk,Rk+1)T are respectively the vector of all the polynomial coefficients and noise vari-
ances, and the vector of transition points which correspond to the segmentation of cluster k. The proposed
mixture model is therefore suitable for clustering and optimal segmentation of complex shaped curves.
More specifically, by integrating the piecewise polynomial regression into the mixture framework, the
resulting model is able to approximate curves issued from different groups. Furthermore, the problem
of regime changes within each cluster of curves is addressed as well thanks to the optimal segmentation
provided by dynamic programming for each piecewise regression component. These two simultaneous
outputs are clearly not provided by the standard generative curve clustering approaches namely the re-
gression mixtures. On the other hand, the PWRM is a probabilistic model and as it will be shown in the
following, generalizes the deterministic K-means-like algorithm.
I derived two approaches for learning the model parameters. The former is an estimation approach and
consists in maximizing the observed-data likelihood via a dedicated EM algorithm. A fuzzy partition of
the curves in K clusters is then obtained at convergence by maximizing the posterior component proba-
bilities. The latter however focuses on the classification and optimizes a specific classification likelihood
criterion through a dedicated CEM algorithm. The optimal curve segmentation is performed by using
dynamic programming. In the classification approach, both the curve clustering and the optimal seg-
mentation are performed simultaneously as the CEM learning proceeds. I showed that the classification
approach using the PWRM model with the CEM algorithm is the probabilistic version that generalizes
the deterministic K-means-like algorithm proposed in Hébrail et al. (2010).

3.2.2 Maximum likelihood estimation via a dedicated EM

In this estimation (maximum likelihood) approach, the parameter estimation is performed by monotoni-
cally maximizing the observed-data log-likelihood

logL(Ψ) =

n∑
i=1

log

K∑
k=1

αk

Rk∏
r=1

∏
j∈Ikr

N
(
yij ;β

T
krxij , σ

2
kr

)
(3.4)

iteratively via the EM algorithm [J-9]. In this EM framework, the complete-data log-likelihood which
will be denoted by logLc(Ψ , z), and which represents the log-likelihood of the parameter vector given the
observed data, completed by the unknown variables representing the component labels Z = (Z1, . . . , Zn)
with Zi ∈ {1, . . . ,K} the label of the ith individual, is given by:

logLc(Ψ , z) =

n∑
i=1

K∑
k=1

Zik logαk +

n∑
i=1

K∑
k=1

Rk∑
r=1

∑
j∈Ikr

Zik logN (yij ;β
T
krxij , σ

2
kr) (3.5)

where Zik is an indicator binary-valued variable such that Zik = 1 iff Zi = k (i.e., if and only if the ith
curve is generated from component k). The EM algorithm for the PWRM model (EM-PWRM) alternates
between the two following steps until convergence (e.g., when there is no longer change in the relative
variation of the log-likelihood):
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3.2 Mixture of piecewise regressions

The E-step computes the expected complete-data log-likelihood given the observed curves D =
((x1,y1), . . . , (xn,yn)) and the current value of the parameter vector Ψ (q):

Q(Ψ ,Ψ (q)) = E
[

logLc(Ψ ;D, z)|D;Ψ (q)
]

=

n∑
i=1

K∑
k=1

τ
(q)
ik logαk+

n∑
i=1

K∑
k=1

Rk∑
r=1

∑
j∈Ikr

τ
(q)
ik logN (yij ;β

T
krxij , σ

2
kr)

(3.6)
where

τ
(q)
ik = P(Zi = k|yi,xi;Ψ

(q)) =
α
(q)
k fk

(
yi|xi;Ψ

(q)
k

)∑K
k′=1 α

(q)
k′ fk′

(
yi|xi;Ψ

(q)
k′

) (3.7)

is the posterior probability that the curve (xi,yi) belongs to cluster k. This step therefore only requires

the computation of the posterior component membership probabilities τ
(q)
ik (i = 1, . . . , n) for each of the

K components.

The M-step computes the parameter vector update Ψ (q+1) by maximizing the Q-function with respect
to Ψ , that is: Ψ(q+1) = arg maxΨ Q(Ψ ,Ψ (q)). The mixing proportions are updated as in standard
mixtures and their updates are given by:

α
(q+1)
k =

∑n
i=1 τ

(q)
ik

n
, (k = 1, . . . ,K). (3.8)

The maximization of theQ-function w.r.t Ψk, that is, w.r.t the piecewise segmentation {Ikr} of component
(cluster) k and the corresponding piecewise regression representation through {βkr, σ2

kr}, (r = 1, . . . , Rk),
corresponds to a weighted version of the piecewise regression problem for a set of homogeneous as de-

scribed in [J-9], with the weights being the posterior component membership probabilities τ
(q)
ik . The

maximization simply consists in solving a weighted piecewise regression problem where the optimal seg-
mentation of each cluster k, represented by the parameters {ξkr} is performed by running a dynamic
programming procedure Finally, the regression parameters are updated as:

β
(q+1)
kr =

[ n∑
i=1

τ
(q)
ik XT

irXir

]−1 n∑
i=1

Xiryir (3.9)

σ
2(q+1)
kr =

1∑n
i=1

∑
j∈I(q)kr

τ
(q)
ik

n∑
i=1

τ
(q)
ik ||yir −Xirβ

(q+1)
kr ||2 (3.10)

where yir is the segment (regime) r of the ith curve, that is the observations {yij |j ∈ Ikr} and Xir its
associated design matrix with rows {xij |j ∈ Ikr}.

Thus, the proposed EM algorithm for the PWRM model provides a fuzzy partition of the curves into
K clusters through the posterior cluster probabilities τik, each fuzzy cluster is optimally segmented into
regimes with indices {Ikr}. At convergence of the EM algorithm, a hard partition of the curves can then
be deduced by assigning each curve to the cluster that maximizes the posterior probability (3.7), that is:

ẑi = arg max
1≤k≤K

τik(Ψ̂), (i = 1, . . . , n) (3.11)

where ẑi denotes the estimated cluster label for the ith curve.

3.2.3 Maximum classification likelihood estimation via a dedicated CEM

As mentioned before, in addition to the MLE approach via EM, here I present another scheme to achieve
both the model estimation (including the segmentation) and the clustering. It consists in a maximum
classification likelihood approach which uses the Classification EM (CEM) algorithm. The CEM algo-
rithm (see for example (Celeux and Govaert, 1992)) is the same as the so-called classification maximum
likelihood approach as described earlier in McLachlan (1982) and dates back to the work of Scott and
Symons (1971). The CEM algorithm was initially proposed for model-based clustering of multivariate
data. We adopt it here in order to perform model-based curve clustering with the proposed PWRM
model. The resulting CEM simultaneously estimates both the PWRM parameters and the class labels by
maximizing the complete-data log-likelihood (3.5) w.r.t both the model parameters Ψ and the partition
represented by the vector of cluster labels z, in an iterative manner, by alternating between the two
following steps:
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Step 1 update the cluster labels for the current model defined by Ψ (q) by maximizing the complete-data
log-likelihood (3.5) w.r.t the cluster labels z, that is: z(q+1) = arg maxz logLc(Ψ

(q), z).

Step 2 Given the estimated partition defined by z(q+1), update the model parameters by maximizing
(3.5) w.r.t to the PWRM parameters Ψ : Ψ (q+1) = arg maxΨ logLc(Ψ , z

(q+1)). Equivalently, the CEM
algorithm consists in integrating a classification step (C-step) between the E- and the M- steps of the EM
algorithm presented previously. The C-step computes a hard partition of the n curves into K clusters
by applying the Bayes’ optimal allocation rule (3.11). The only difference between this CEM algorithm
and the previously derived EM one is that the posterior probabilities τik in the case of the EM-PWRM
algorithm are replaced by the cluster label indicators Zik in the CEM-PWRM algorithm; The curves
being assigned in a hard way rather than in a soft way. By doing so, the CEM monotonically maximizes
the complete-data log-likelhood (3.5).

Another attractive feature of the proposed PWRM model is that when it is estimated by the CEM
algorithm, as shown in [J-9], it is equivalent to a probabilistic generalization for the K-means-like algo-
rithm of Hébrail et al. (2010). Indeed, maximizing the complete-data log-likelihood (3.5) optimized by
the proposed CEM algorithm for the PWRM model, is equivalent to minimizing the following distortion
criterion w.r.t the cluster labels z, the segments indices Ikr and the segments constant means µkr, which
is exactly the criterion optimized by the K-means-like algorithm:

J
(
z, {µkr, Ikr}

)
=

K∑
k=1

Rk∑
r=1

∑
i|Zi=k

∑
j∈Ikr

(
yij − µkr

)2
if the following constraints are imposed:

• αk = 1
K ∀K (identical mixing proportions);

• σ2
kr = σ2 ∀r = 1, . . . , Rk and ∀k = 1, . . . ,K; (isotropic and homoskedastic model);

• piecewise constant approximation of each segment rather than a polynomial approximation.

The proposed CEM algorithm for piecewise polynomial regression mixture is therefore the probabilistic
version for hard curve clustering and optimal segmentation of the K-means-like algorithm.

Model selection The problem of model selection here is equivalent to the one of choosing the optimal
number of mixture components K, the number of regimes R and the polynomial degree p. The optimal
value of the triplet (K,R, p) can be computed by using some model selection criteria such as the BIC
(Schwarz, 1978), the ICL (Biernacki et al., 2000), etc. Let us recall that BIC is a penalized log-likelihood

criterion which can be defined as a function to be maximized as: BIC(K,R, p) = logL(Ψ̂) − νΨ log(n)
2 ,

while ICL consists in a penalized complete-data log-likelihood and can be expressed as: ICL(K,R, p) =

logLc(Ψ̂) − νΨ log(n)
2 , where logL(Ψ̂) and logLc(Ψ̂) are respectively the incomplete (observed) data

log-likelihood and the complete data log-likelihood, obtained at convergence of the (C)EM algorithm,

νΨ =
∑K
k=1Rk(p + 3) − 1 is the number of free parameters of the model and n is the sample size.

The number of free model parameters includes K − 1 mixing proportions,
∑K
k=1Rk(p + 1) polynomial

coefficients,
∑K
k=1Rk noise variances and

∑K
k=1(Rk − 1) transition points.

3.2.4 Experiments

The performance of the PWRM with both the EM and CEM algorithms is studied in [J-9] by compar-
ing it to the polynomial regression mixture models (PRM) (Gaffney, 2004), the standard polynomial
spline regression mixture model (PSRM) (Gaffney, 2004; Gui and Li, 2003; Liu and Yang, 2009) and
the piecewise regression model used with the K-means-like algorithm (Hébrail et al., 2010). I also in-
cluded comparisons with standard model-based clustering of multivariate data including the GMM. The
algorithms have been evaluated in terms of curve classification and approximation accuracy. The used
evaluation criteria are the classification error rate between the true partition (when it is available) and
the estimated partition, and the intra-cluster inertia.

In the simulation studies, in summary, for some situations, when all the algorithms retrieve the actual
partition, which is possible for obvious partitions, in terms of curves approximation, we clearly saw that,
on the one hand, the standard model-based clustering using the GMM is not adapted as it does not take
into account the functional structure of the curves and therefore does not account for the smoothness,
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they rather compute an overall mean curve. On the other hand, the proposed probabilistic model, when
trained with the EM algorithm (EM-PWRM) or with the CEM algorithm (CEM-PWRM), as well as
the K-means-like one of Hébrail et al. (2010), as expected, provide the quasi identical results in terms
of clustering and segmentation. This is attributed to the fact that the K-means PWRM approach is
a particular case of the proposed probabilistic approach. The best curves approximation are however
those provided by the PWRM models. The GMM mean curves are simply over all means, and the
PRM and the PSRM models, as they are based on continuous curve prototypes, do not account for
the segmentation, unlike the PWRM models which are well adapted to perform simultaneous curve
clustering and segmentation. When we varied the noise level, for a small noise level variation, the results
are very similar. However, as the noise level increases, the misclassification error rate increases faster for
the other models compared to the proposed PWRM model. The EM and the CEM algorithm for the
proposed approach provide very similar results with a slight advantage for the CEM version, which can be
attributed to the fact that CEM is by construction tailored to the classification end. When the proposed
PWRM approach is used, the misclassification error can be improved by 4% compared to the K-means
like approach, about 7% compared to both the PRM and the PSRM, an more that 15% compared to
the standard multivariate GMM. In addition, when the data have non-uniform mixing proportions, the
K-means based approach can fail namely in terms of segmentation. This is attributed to the fact that
the K-means-like approach for PWRM is constrained as it assumes the same proportion for each cluster,
and does not sufficiently take into account the heteroskedasticity within each cluster compared to the
proposed general probabilistic PWRM model. For the model selection, the ICL was used on simulated
data. We remarked that when using the proposed EM-PWRM and CEM-PWRM approaches, the actual
model may be selected up to more than 10% cases compared to when using the K-means-like algorithm for
piecewise regression. The number of regimes was underestimated with only around 10% for the proposed
EM and CEM algorithms, while the number of clusters is correctly estimated. However, the K-means-like
approach overestimates the number of clusters in 12% of cases. These results highlight an advantage of
the fully probabilistic approach compared to the one based on the K-means-like approach.

Application to real curves In [J-9] the model was also applied on real curves issued from three
different data sets, other railway switch curves (different from those used in the previous chapter), the
Tecator curves, and the Topex/Poseidon satellite data as studied in Hébrail et al. (2010). The actual
partitions for these data are however unknown and we used the intra-class inertia as well as a qualitative
assessment of the results. The first studied curves are the railway switch curves issued from a railway
diagnosis application of the railway switch. Roughly, the railway switch is the component that enables
(high speed) trains to be guided from one track to another at a railway junction, and is controlled
by an electrical motor. The considered curves are the signals of the consumed power during the switch
operations. These curves present several changes in regime due to successive mechanical motions involved
in each switch operation. A preliminary data preprocessing task is to automatically identify homogeneous
groups (typically, curves without defect and curves with possible defect (we assumed K = 2). The used
database is composed of n = 146 real curves of m = 511 observations. The number of regression
components was set to R = 6 in accordance with the number of electromechanical phases of these
switch operations and the degree of the polynomial regression p was set to 3 which is appropriate for
the different regimes in the curves. The obtained results show that, for the CEM-PWRM approach, the
curves the two obtained clusters do not have the same characteristics with quite clearly different shapes
and may correspond to two different states of the switch mechanism. According to the experts, this can
be attributed to a default in the measurement process, rather than a default of the switch itself. The
device used for measuring the power would have been used slightly differently for this cluster of curves.
The intra-class inertia results are also significantly better compared to the standard alternatives. This
confirms that the piecewise regression mixture model has an advantage for giving homogeneous and well
approximated clusters from curves of regime changes.

The second data set is the Tecator data1 which consist of near infrared (NIR) absorbance spectra of
240 meat samples. The NIR spectra are recorded on a Tecator Infratec food and feed Analyzer working
in the wavelength range 850−1050 nm. The full Tecator data set contains n = 240 spectra with m = 100
for each spectrum. This data set has been considered in Hébrail et al. (2010) and in our experiment we
consider the same setting, that the data set is summarized with six clusters (K = 6), each cluster being
composed of five linear regimes (segments) (R = 5, p = 1). The retrieved clusters are informative (see

1Tecator data are available at http://lib.stat.cmu.edu/datasets/tecator.
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Fig. 3.1) in the sense that the shapes of the clusters are clearly different, and the piecewise approximation
is in concordance with the shape of each cluster. On the other hand, the obtained result is very close to
the one obtained by Hébrail et al. (2010) by using the K-means-like approach. This is not surprising and
confirms that the proposed CEM-PWRM algorithm is a probabilistic alternative for the K-means-like
approach.

850 900 950 1000 1050
2

2.5

3

3.5

4

4.5

5

5.5

a
b

s
ro

b
a

n
c
e

850 900 950 1000 1050
2

2.5

3

3.5

4

4.5

5

5.5

850 900 950 1000 1050
2

2.5

3

3.5

4

4.5

5

5.5

850 900 950 1000 1050
2

2.5

3

3.5

4

4.5

5

5.5

a
b

s
ro

b
a

n
c
e

wavelength
850 900 950 1000 1050
2

2.5

3

3.5

4

4.5

5

5.5

wavelength
850 900 950 1000 1050
2

2.5

3

3.5

4

4.5

5

5.5

wavelength

Figure 3.1: Clusters and the corresponding piecewise prototypes for each cluster obtained with the CEM-

PWRM algorithm for the Tecator data set.

The third data set is the Topex/Poseidon radar satellite data1 which were registered by the satellite
Topex/Poseidon around an area of 25 kilometers upon the Amazon River and contain n = 472 waveforms
of the measured echoes, sampled at m = 70 (number of echoes) We considered the same number of
clusters (twenty) and a piecewise linear approximation of four segments per cluster as used in Hébrail
et al. (2010). We note that, in our approach, we directly apply the proposed CEM-PWRM algorithm to
raw the satellite data without a preprocessing step. However, in Hébrail et al. (2010), the authors used a
two-fold scheme. They first perform a topographic clustering step using the Self Organizing Map (SOM),
and then apply their K-means-like approach to the results of the SOM. The proposed CEM-PWRM
algorithm for the satellite data provide clearly informative clustering and segmentation which reflect the
general behavior of the hidden structure of this data set (see Fig. 3.2). The structure is indeed more clear
with the mean curves of the clusters (prototypes) than with the raw curves. The piecewise approximation
thus helps to better understand the structure of each cluster of curves from the obtained partition, and
to more easily infer the general behavior of the data set. On the other hand, the result is similar to the
one found in Hébrail et al. (2010). Most of the profiles are present in the two results. There is a slight
difference that can be attributed to the fact that the result in Hébrail et al. (2010) is provided from a
two-stage scheme which includes and additional pre-clustering step using the SOM, instead of directly
applying the piecewise regression model to the raw data.

3.2.5 Conclusion

Here I introduced a new probabilistic approach based on a piecewise polynomial regression mixture
(PWRM) for simultaneous clustering and optimal segmentation of curves with regime changes. I provided
two algorithms to learn the model. The first (EM-PWRM) consists of using the EM algorithm to
maximize the observed data log-likelihood and the latter (CEM-PWRM) is a CEM algorithm to maximize

1Satellite data are available at http://www.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html.
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3.2 Mixture of piecewise regressions

Figure 3.2: Clusters and the corresponding piecewise prototypes for each cluster obtained with the CEM-

PWRM algorithm for the satellite data set.

the complete-data log-likelihood. I showed that the CEM-PWRM algorithm is a general probabilistic-
based version of possible K-means-like algorithm. However, it is worth to mention that if the aim
is density estimation, the EM version is suggested since the CEM provides biased estimators but is
well-tailored to the segmentation/clustering end. The obtained results demonstrated the benefit of the
proposed approach in terms of both curve clustering and piecewise approximation and segmentation of
the regimes of each cluster. In particular, the comparisons with the K-means-like algorithm approach
confirm that the proposed CEM-PWRM is an interesting probabilistic alternative. We note that in
some practical situations involving continuous functions the proposed piecewise regression mixture, in
its current formulation, may lead to discontinuities between segments for the piecewise approximation.
This may be avoided by slightly modifying the algorithm by adding an interpolation step as performed
in Hébrail et al. (2010). We also note that in this work we are interested in piecewise regimes which
dot not overlap; only the clusters can overlap. However, one way to address the regime overlap is to use
more segments so that a regime that overlaps (for example it occurs in two different time ranges) can
be treated as two sub-regimes. These two reconstructed non-overlapping regimes would have very close
characteristics so that as to correspond to a single overlapping regime. In terms of computing time, I
mention that in some situations, especially for large sample sizes and large value of the number segments,
the algorithms may lead to significant computational load. However, for quite reasonable dimensions, the
algorithms remain usable without significant difficulty.
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3.3 Mixture of hidden Markov model regressions

The mixture of piecewise regressions presented previously can be seen as not being completely generative,
since the transition points, while assumed unknown and determined automatically from the data, are not
governed by a probability distribution. This however achieves the clustering and segmentations tasks
and was useful at least to show that K-means based alternatives may be particular cases of such model
with even so a probabilistic dimension thanks to its mixture formulation. The aim now is to build a full
generative model. It is natural to think, as previously for the univariate case, that for each group the
regimes governing the observed curves follow a discrete hidden process, typically a hidden Markov chain.
By doing so, it is assumed that, within each cluster k, the observed curve is governed by a hidden process
which enables for switching from one state to another among Rk states following a homogeneous Markov
chain, which leads to the mixture of hidden Markov models introduced by Smyth (1996). Two different
approaches can be adopted for estimating this mixture of HMMs. The first one is the K-means-like
approach for hard clustering used in Smyth (1996) and in which the optimized function is the complete-
data log-likelihood. The resulting clustering scheme consists of assigning sequences to clusters at each
iteration and using only the sequences assigned to a cluster for re-estimation of the HMM parameters
related to that cluster. The second one is the soft clustering approach described in Alon et al. (2003)
where the model parameters are estimated in a maximum likelihood framework by the EM algorithm.
The model I propose here can be seen as an extension of the model-clustering approach using mixture of
standard HMMs introduced by Smyth (1996), where each HMM state has a conditional Gaussian density
with simple scalar mean, by considering polynomial regressors, and by performing a MLE using EM,
rather that K-means. In addition, the use of polynomial regime modeling rather than simple constant
means should be indeed more suitable for fitting the non-linear regimes governing the time series, and
the EM fitting should better capture the uncertainty regarding the curve assignments thanks to the fuzzy
posterior component memberships. This results into the mixture of hidden Markov model regressions
(MiXHMMR) [C-11][J-16].

3.3.1 The model

The proposed mixture of HMM regressions (MixHMMR) assumes that each curve is issued from one of
K-component mixture where, conditional on each component k (k = 1, . . . ,K), the curve is distributed
according to an Rk-state hidden Markov model regression. That is, given the label Zi = k of the
component generating the ith curve, and given the state Hij = r (r = 1, . . . , Rk), the jth observation
yij (e.g., the one observed at time tj in the case of temporal data) is generated according to a Gaussian
polynomial regression model with regression coefficient vector βkr and noise variance σ2

kr:

yij = βTkrxj + σkrεij , εij ∼ N (0, 1) (3.12)

where xj is a covariate vector, the εij are independent random variables distributed according to a stan-
dard zero-mean unit-variance Gaussian distribution and the hidden state sequence Hi = (Hi1, . . . ,Him)
for each mixture component k is assumed to be Markov chain with initial state distribution πk with
components πkr = P(Hi1 = r|Zi = k) (r = 1, . . . , Rk) and transition matrix Ak whose general term is
Ak`r = P(Hij = r|Hi,j−1 = `, Zi = k). Thus, the change from one regime to another is governed by
the hidden Markov Chain. Note that if the time series we aim to model consist of successive contiguous
regimes, one may use a left-right model (Rabiner and Juang, 1986; Rabiner, 1989) by imposing order
constraints on the hidden states via constraints on the transition probabilities. From (3.12), it follows
that the response yi for the predictor (bsxi), conditional on each mixture component Zi = k is therefore
distributed according to a HMM regression distribution, defined by:

fk(yi|Zi = k,xi;Ψk) =
∑
Hi

P(Hi1;πk)

mi∏
j=2

P(Hij |Hi,j−1;Ak)×
mi∏
j=1

N (yij ;β
T
khijxj , σ

2
khij ) (3.13)

with parameter vector Ψk = (πTk , vec(Ak)
T
,βTk1, . . . ,β

T
kR, σ

2
k1, . . . , σ

2
kR)T . Finally, the distribution of a

curve (xi,yi) is defined by the following MixHMMR density:

f(yi|xi;Ψ) =

K∑
k=1

αkfk(yi|Zi = k,xi;Ψk) (3.14)
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described by the parameter vector Ψ = (α1, . . . , αK−1,Ψ
T
1 , . . . ,Ψ

T
K)T .

3.3.2 Maximum likelihood estimation via a dedicated EM

The MixHMMR parameter vector Ψ is estimated by monotonically maximizing the observed-data log-
likelihood

logL(Ψ) =

n∑
i=1

log

K∑
k=1

αk
∑
Hi

P(Hi1;πk)

mi∏
j=2

P(Hij |Hi,j−1;Ak)×
mi∏
j=1

N (yij ;β
T
khijxj , σ

2
khij ) (3.15)

by using a dedicated EM algorithm as devoloped in [C-11][J-16]. By introducing the two following
indicator binary variables for indicating the cluster memberships and the regime memberships for a given
cluster, that is, Zik = 1 if Zi = k (i.e., yi belongs to cluster k) and Zik = 0 otherwise, and Hijr = 1 if
Hij = r (i.e., the ith time series yi belongs to cluster k and its jth observation yij at time tj belongs to
regime r) and Hijr = 0 otherwise, the complete-data likelihood of Ψ can be written as:

logLc(Ψ) =

K∑
k=1

[∑
i

Zik logαk+
∑
i,r

ZikHi1r log πkr+
∑

i,j=2,r,`

ZikHijrHi(j−1)` logAk`r+
∑
i,j,r

ZikHijr logN (yij ;β
T
krxj , σ

2
kr)
]
·

(3.16)

The EM algorithm for the MixHMMR model starts from an initial parameter Ψ (0) and alternates between
the two following steps until convergence:

The E-Step computes the expected complete-data log-likelihood given the responses y, the covariates
x and the current value of the parameter vector Ψ (q): Q(Ψ ,Ψ (q)) = E

[
logLc(Ψ)|{y,x};Ψ (q)

]
which is

given by:

Q(Ψ ,Ψ (q)) =
∑
k,i

τ
(q)
ik logαk +

∑
k

[∑
r,i

τ
(q)
ik

[
γ
(q)
i1r log πkr +

∑
j=2,`

ξ
(q)
ij`r logAk`r

]
+

mi∑
r,i,j

τ
(q)
ik γ

(q)
ijr logN (yij ;β

T
krxj , σ

2
kr)
]

(3.17)

and therefore only requires the computation of the posterior probabilities τ
(q)
ik , γ

(q)
ijr and ξ

(q)
ij`r defined as:

• τ (q)ik = P(Zi = k|yi,xi;Ψ
(q)) is the posterior probability that the ith curve belongs to the kth

mixture component;

• γ(q)ijr = P(Hij = r|yi,xi;Ψ
(q)
k ) is the posterior probability of the rth polynomial regime in the

mixture component (cluster) k;

• ξ(q)ij`r = P(Hij = r,Hi(j−1) = `|yi,xi;Ψ
(q)
k ) is the joint posterior probability of having the regime r

at time tj and the regime ` at time tj−1 in cluster k.

The E-step probabilities γ
(q)
ijr and ξ

(q)
ij`r for each time series yi (i = 1, . . . , n) are computed recursively

by using the forward-backward algorithm (see [C-11]Rabiner and Juang (1986); Rabiner (1989)). The

posterior cluster probabilities τ
(q)
ik are given by:

τ
(q)
ik =

α
(q)
k fk(yi|t;Ψ

(q)
k )∑K

k′=1 α
(q)
k′ fk′(yi|t;Ψ

(q)
k′ )

, (3.18)

where the conditional probability distribution fk(yi|t;Ψ
(q)
k ) is the one of an HMM regression likelihood

(given by (3.13) and is obtained after the forward procedure like in the standard HMM.

The M-Step computes the parameter vector update Ψ (q+1) by maximizing the expected complete-data
log-likelihood, that is Ψ (q+1) = arg maxΨ Q(Ψ ,Ψ (q)). The maximization w.r.t the mixing proportions is
the one of a standard mixture model and the updates are given by:

αk
(q+1) =

∑n
i=1 τ

(q)
ik

n
(k = 1, . . . ,K)·
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The maximization w.r.t the Markov chain parameters (πk,Ak) correspond to a weighted version of
updating the parameters of the Markov chain in a standard HMM where the weights in this case are the

posterior component membership probabilities τ
(q)
ik . The updates are given by:

π
(q+1)
kr =

∑n
i=1 τ

(q)
ik γ

(q)
i1r∑n

i=1 τ
(q)
ik

,

A
(q+1)
k`r ) =

∑n
i=1

∑mi
j=2 τ

(q)
ik ξ

(q)
ij`r∑n

i=1

∑mi
j=2 τ

(q)
ik γ

(q)
ijr

·

Finally, the maximization w.r.t the regression parameters βkr consists in analytically solving weighted
least-squares problems and the one w.r.t the noise variances σ2

kr consists in a weighted variant of the
problem of estimating the variance of a univariate Gaussian density. The weights consist in both the

posterior cluster probabilities τik and the posterior regime probabilities γ
(q)
ijr for each cluster k. The

parameter updates are given by:

β
(q+1)
kr =

[ n∑
i=1

τ
(q)
ik XT

i W
(q)
ikrXi

]−1 n∑
i=1

τ
(q)
ik XT

i W
(q)
ikryi, (3.19)

σ
2(q+1)
kr =

∑n
i=1 τ

(q)
ik ||
√

W
(q)
ikr(yi −Xiβ

(q+1)
kr )||2∑n

i=1 τ
(q)
ik trace(W

(q)
ikr)

, (3.20)

where W
(q)
ikr is an mi by mi diagonal matrix whose diagonal elements are the weights {γ(q)ijr ; j = 1, . . . ,mi}.

It can be seen that here, the parameters for each regime are updated from the whole curve weighted by
the posterior regime memberships {γijr}, while in the previously presented piecewise regression model,
they are only updated from the observations assigned to that regime, that is, in a hard way. This may
better take into account possible uncertainty regarding whether the regime change in abrupt or not.

Complexity of the algorithm The proposed EM algorithm includes forward-backward procedures at
the E-step to compute the joint posterior probabilities for the HMM states and the conditional distribution
(the HMM likelihood) for each time series. The complexity of the Forward-Backward procedure is the one
of a standard R state HMM for univariate n curves of size m. The complexity of this step is of O(R2nm)
per iteration. In addition, in this regression context, the calculation of the regression coefficients for each
regime and for each cluster in the M-step of the EM algorithm requires an inversion of a (p+ 1)× (p+ 1)
matrix and n multiplications associated with each curve of length m, which is done with a complexity of
O(p3nmRK). The proposed EM algorithm has therefore a time complexity of O(IEMKR

2p3nm) where
IEM is the number of EM iterations, K being the number of clusters.

curves approximation, segmentation and model selection Once the model parameters are es-
timated, a mean curve can be estimated for each cluster by relying on the so-called smoothed signal in
the context of HMMs, that is, the curve wighted by the posterior regime membership probabilities. An
approximated cluster “centroid‘” can be computed as a weighted empirical mean of its smoothed curves
as in [C-11]. For the segmentation, the most likely sequence hidden states can be inferred given the
observations and the estimated model, by using the Viterbi decoder (Viterbi, 1967) which is performed
in a complexity of O(mR2).

The model selection task consists in estimating the optimal values of the triplet (K,R, p). This
can be performed by maximizing for example the BIC Schwarz (1978) (which was used here) defined

by: BIC(K,R, p) = logL(Ψ̂) − ν(K,R,p)
2 log(n), where Ψ̂ is the maximum likelihood estimate of the

parameter vector Ψ provided by the EM algorithm, ν(K,R, p) = KR(R + p + 2) − 1 is the number of
free parameters of the MixHMMR model. For a left-right model, the number of free parameters reduces
to ν(K,R, p) = KR(R+1

2 + p+ 2)− 1

3.3.3 Experiments

The performance of the developed MixHMMR model was studied in [C-11][J-7] by comparing it to the
regression mixture model, the standard mixture of HMMs, as well as two standard multidimensional data
clustering algorithms: the EM for Gaussian mixtures and K-means.
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3.3 Mixture of hidden Markov model regressions

Simulation results The evaluation criteria are used in the simulations are the misclassification error
rate between the true simulated partition and the estimated partition and the intra-cluster inertia. From
the obtained results, it was clearly observed that the proposed approach provides more accurate clas-
sification results and smaller intra-class inertias compared to the considered alternatives. For example,
the MixHMMR provides a clustering error 3% less than the standard mixture of HMMs, which is the
most competitive model, and more than 10% compared to standard multivariate clustering alternatives.
Applying the MixHMMR for clustering time series with regime changes also provided accurate results in
terms of clustering and approximation of each cluster of time series. This is attributed to the fact that
the proposed MixHMMR model, thanks to its flexible generative formulation, addresses better both the
problem of time series heterogeneities by the mixture formulation and the dynamical aspect within each
homogeneous set of time series by the underlying Markov chain. It was also observed that the standard
EM for GMM and standard K-means are not well suitable for this kind of functional data.

Clustering the real time series of switch operations The model was also applied in [C-11][J-16]
to a real problem of clustering time series issued from a railway diagnosis application. The aim is to
discover non-normal time series for a diagnosis prospective. The data set contains 115 curves, each of
them results from a process of R = 6 operations electromechanical process. We used the model with cubic
polynomials (which was enough to approximate each regime) and applied it with K = 2 clusters in order
to separate curves that would correspond to a defective operating state and curves corresponding to a
normal operating state. Since the true class labels are unknown, we only considered the intra-class inertias
as wall as a graphical inspection by observing the obtained partitions and each cluster approximation.
The algorithm provided a partition of curves where the cluster shapes are clearly different (see Figure
3.3) and might correspond to two different states of the switch mechanism. According to the experts, one
cluster could correspond to a default in the measurement process. These results are also in concordance
with those obtained by the previously introduced piecewise regression mixture model; The partitions are
quasi-identical.
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Figure 3.3: Clustering results for switch operation time series obtained with the MixHMMR model.

3.3.4 Conclusion

The introduced mixture of polynomial regression models governed by hidden Markov chains is particu-
larly appropriate for clustering curves with various changes in regime and rely on a suitable generative
formulation. The experimental results demonstrated the benefit of the proposed approach as compared to
existing alternative methods, including the regression mixture model and the standard mixture of hidden
Markov models. It also represents a full generative alternative to the previously described mixture of
piecewise regressions. Also while the model in its current version only concerns univariate time series, I
think that its extension to the multivariate case could be done without a major effort. while only the
EM version is derived here, however, its extension to derive a CEM variant, for example to privilege the
classification rather than the density estimation, is obvious.
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3. LATENT DATA MODELS FOR FUNCTIONAL DATA ANALYSIS

Also while the model is a full generative one, one disadvantage is that as each hidden regime sequence
is a Markov chain, the regime residence time is geometrically distributed, which is not adapted especially
for long duration regimes, which might be the case for regimes of the analyzed functional data. However, I
notice that this issue is more pronounced for the standard mixture of HMMs. In the proposed MixHMMR
model, the fact that the conditional distribution rely on polynomial regressors, contribute to stabilize
this effect by providing well-structured regimes even when those are activated for a long time period.
For modeling different state length distributions, one might also use a non-homogeneous Markov chain
as (Diebold et al., 1994; Hughes et al., 1999), that is, a Markov chain with time-dependent transition
probabilities. The model proposed in the next section addresses the problem by using a logistic process
rather than a Markov chain which as it was seen in the previous chapter, provides a modeling with better
flexibility.

3.4 Mixture of hidden logistic process regressions

We saw in Section 3.2 that a first natural idea to cluster and segment complex functional data arising
in curves with regime changes is to use piecewise regression integrated into a mixture formulation. This
model however does not define a probability distribution over the change points and in practice may
be time consuming especially for large time series. A first full generative alternative is to use mixtures
of HMMs or the one more adapted for structured regimes in time series, that is, the proposed mixture
of HMM regressions, seen in the previous section. However, if we look at how are we dealing with the
quality of regime changes, that is, particularly regarding their smoothness, it appears that for the piece-
wise approach, it handles only abrupt changes, and for the HMM-based approach, while the posterior
regime probabilities can be seen as fuzzy partition for the regimes and hence in some sense accomo-
date smoothness, there is no however explicit formulation regarding the nature of transition points and
the smoothness of the resulting estimated functions. On the other hand, the regime residence time is
necessarily geometrically distributed in these HMM-based models which might result in the fact that a
transition may occur even within structured observations of the same regime. This what we saw in some
obtained results in Section 2.4 when applying the HMM models, especially the standard HMM. However,
using polynomial regressors for the state conditional density is a quite sufficient way to stabilize this
behavior. The modeling can however be further improved by adopting a process that explicitly takes into
account the smoothness of transitions in the process governing the regime changes.

Here, we attempt to overcome this by using a logistic process rather than a Markov process. The
resulting model is a mixture of regressions with hidden logistic processes (MixRHLP) [J-4][J-5].

3.4.1 The model

In the proposed mixture of regression models with hidden logistic processes (MixRHLP) [J-4][J-5], each
of the functional mixture components (3.1) is an RHLP [J-1][J-2]. That is, as seen in Chapter 2, the
conditional distribution of a curve is defined by an RHLP:

f(yi|Zi = k,xi;Ψk) =

mi∏
j=1

Rk∑
r=1

πkr(xj ; wk)N
(
yij ;β

T
krxj , σ

2
kr

)
(3.21)

whose parameter vector is Ψk = (wT
k ,β

T
k1, . . . ,β

T
kRk

, σ2
k1, . . . , σ

2
kRk

)T and where the distribution of the
discrete variable Hij governing the hidden regimes is assumed to be logistic, that is, in this segmental
case,

πkr(xj ; wk) = P(Hij = r|Zi = k, xj ; wk) =
exp (wkr0 + wkr1xj)∑Rk

r′=1 exp (wkr′0 + wkr′1xj)
, (3.22)

whose parameter vector is wk = (wT
k1, . . . ,w

T
kRk−1)T where wkr = (wkr0, wkr1)T being the 2-dimensional

coefficient vector for the rth logistic component with wkRk being the null vector. This choice is due to
the flexibility of the logistic function in both determining the regime transition points and accurately
modeling abrupt and/or smooth regimes changes. Indeed, as shown in [J-1][J-2], the logistic function
(3.22) parameters (wkr0, wkr1) control the regime transition points and the quality of regime (smooth or
abrupt). Remark that here we used a linear logistic function for contiguous regime segmentation.
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3.4 Mixture of hidden logistic process regressions

The resulting distribution of a curve is given by the following MixRHLP density:

f(yi|xi;Ψ) =

K∑
k=1

αk

mi∏
j=1

Rk∑
r=1

πkr(xj ; wk)N
(
yij ;β

T
krxj , σ

2
kr

)
(3.23)

with parameter vector Ψ = (α1, . . . , αK−1,Ψ
T
1 , . . . ,Ψ

T
K)T . Notice that the key difference between the

proposed MixRHLP and the standard regression mixture model is that the proposed model uses a gen-
erative hidden process regression model (RHLP) for each component rather than polynomial or spline
components; The RHLP is itself based on a dynamic mixture formulation. Thus, the proposed approach
is more adapted for accomodating the regime changes within curves during time.

3.4.2 Maximum likelihood estimation via a dedicated EM algorithm

The unknown parameter vector Ψ is estimated from an independent sample of unlabeled curves D =
((x1,y1), . . . , (xn,yn)) by monotonically maximizing the following observed-data log-likelihood

logL(Ψ) =

n∑
i=1

log

K∑
k=1

αk

mi∏
j=1

Rk∑
r=1

πkr(xj ; wk)N
(
yij ;β

T
krxj , σ

2
kr

)
via a dedicated EM algorithm. The EM scheme requires the definition of the complete-data log-likelihood.
The complete-data log-likelihood for the proposed MixRHLP model, given the observed data which we
denote byD, the hidden component labels Z, and the hidden process {Hk} for each of the K components,
is given by:

logLc(Ψ) =

n∑
i=1

K∑
k=1

Zik logαk +

n∑
i=1

mi∑
j=1

K∑
k=1

Rk∑
r=1

ZikHijr log
[
πkr(xj ; wk)N

(
yij ;β

T
krxj , σ

2
kr

)]
. (3.24)

The EM algorithm for the MixRHLP model (EM-MixRHLP) starts with an initial parameter Ψ (0) and
alternates between the two following steps until convergence:

The E-step computes the expected complete-data log-likelihood, given the observations D, and the
current parameter estimation Ψ (q) and is given by:

Q(Ψ ,Ψ (q)) = E
[
logLc(Ψ)

∣∣D;Ψ (q)
]

=

n∑
i=1

K∑
k=1

τ
(q)
ik logαk +

n∑
i=1

K∑
k=1

mi∑
j=1

Rk∑
r=1

τ
(q)
ik γ

(q)
ijr log

[
πkr(xj ; wk)N

(
yij ;β

T
krxj , σ

2
kr

)]
· (3.25)

As shown in the expression of Q(Ψ ,Ψ (q)), this step simply requires the calculation of each of the posterior
component probabilities, that is, the probability that the ith observed curve originates from component
k which is given by applying Bayes’ theorem:

τ
(q)
ik = P(Zi = k|yi,xi;Ψ

(q)
k ) =

α
(q)
k f(yi|Zi = k,xi;Ψ

(q)
k )∑K

k′=1 α
(q)
k′ f(yi|Zi = k′,xi;Ψ (q)

k′ )
(3.26)

where the conditional densities are given by (3.21), and the posterior regime probabilities given a mixture
component, that is, the probability that the observation yij , for example at time xj in a temporal context,
originates from the rth regime of component k, which is given by applying the Bayes’ theorem:

γ
(q)
ijr = P(Hij = r|Zi = k, yij , tj ;Ψ

(q)
k ) =

πkr(xj ; w
(q)
k )N (yij ;β

T (q)
kr xj , σ

2(q)
kr )∑Rk

r′=1 πkr′(xj ; w
(q)
k )N (yij ;β

T (q)
kr′ xj , σ

2(q)
kr′ )

· (3.27)

It can be seen that here the posterior regime probabilities are computed directly without need of a
forward-backward recursion as in the Markovian model.

35



3. LATENT DATA MODELS FOR FUNCTIONAL DATA ANALYSIS

The M-step updates the value of the parameter vector Ψ by maximizing the Q-function (3.25) w.r.r

Ψ , that is: Ψ (q+1) = arg maxΨ Q(Ψ ,Ψ (q)). The mixing proportions updates are given as in the case of
standard mixtures by:

α
(q+1)
k =

1

n

n∑
i=1

τ
(q)
ik , (k = 1, . . . ,K). (3.28)

The maximization w.r.t the regression parameters consists in separate analytic solutions of weighted least-

squares problems where the weights are the product of the posterior probability γ
(q)
ik of component k and

the posterior probability γ
(q)
ijr of regime r. Thus, the updating formula for the regression coefficients and

the variances are respectively given by (3.19) and (3.20). These updates are indeed the same those of the
MixHMMR model, the only difference in that posterior cluster and regime memberships are calculated
in a different way because of the different modeling for the hidden categorical variable H representing
the regime. It follows a Markov chain for the MixHMMR model and a logistic process for the MixRHLP
model.
Finally, the maximization w.r.t the logistic processes’ parameters {wk} consists in solving multinomial

logistic regression problems weighted by the posterior probabilities τ
(q)
ik γ

(q)
ijr which we solve with a multi-

class IRLS algorithm (see for example [C-14] for more detail on IRLS). The parameter update w
(q+1)
k is

then taken at convergence of the IRLS algorithm.

Algorithmic complexity The algorithmic complexity of the proposed EM algorithm depends on the
computation costs of the E- and M- steps. The complexity of the E-step is O(KRnmp), which mainly
comprises the calculation of the logistic probabilities πkr and the normal densities N (yij ;β

T
krxj , σ

2
kr) for

all k, r, i, j . For each k and r, the regression coefficients update requires the computation and inversion
of a (p + 1) × (p + 1) matrix which can be done in O(nmp3), and the variance update is computed
in O(nmp). Each iteration of the IRLS algorithm requires, in the case of contiguous segmentation, a
2(R− 1)× 2(R− 1) Hessian matrix to be computed and inverted, which is done in O(R3nm). From the
computation costs of the regression coefficients, the variances and the logistic functions coefficients, it can
be deduced that the M-step has complexity O(KRnmp3). Consequently, the computational complexity
of the proposed EM algorithm is O(IEMIIRLSKR

3nmp3), where IEM is the number of iterations of the
EM algorithm and IIRLS is the maximum number of iterations of the inner IRLS loops. Compared to
other clustering and segmentation algorithms such as the K-means type algorithm based on piecewise
polynomial regression (Hébrail et al., 2010), whose complexity is O(IKMKRnm

2p3) where IKM is the
number of iterations of the algorithm, our EM algorithm is computationally attractive for large values of
m and small values of R.

Curve approximation, segmentation and model selection Concerning the curves approximation,
each cluster k is summarized by approximating it by a single “mean” curve, which we denote by ŷk. Each
point ŷkj of this mean curve is defined by the conditional expectation ŷkj = E[yij |Zi = k, tj ; Ψ̂k] given

by: ŷkj =
∑Rk
r=1 πkr(xj ; ŵk)β̂

T

krxj which is a sum of polynomials weighted by the logistic probabilities
πkr that model the regime variability over time and which constitutes a smooth flexible approximation.

The number of mixture components K, the number regimes Rk and the polynomial degree p can
be estimated by maximizing some information criteria such the BIC. The number of free parameters of
the MixRHLP model νΨ = K − 1 +

∑K
k=1 νΨk with νΨk = (p + 4)Rk − 2 represents the number of free

parameters of each RHLP component.

3.4.3 Experiments

In [J-4], the clustering accuracy of the proposed algorithm was evaluated using experiments carried out on
simulated time series and real-world time series issued from a railway application. The obtained results
are compared with those provided by the standard mixture of regressions and the K-means-like clustering
approach based on piecewise regression Hébrail et al. (2010). To measure the clustering accuracy, two
criteria were used: the misclassification percentage between the true partition and the estimated partition,
and the intra-cluster inertia.
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3.5 Functional discriminant analysis

Simulation results The results in terms of misclassification error and intra-cluster inertia have shown
that the proposed EM-MixRHLP algorithm outperforms the EM when used with regression mixtures. Al-
though the misclassification percentages of the two approaches are close in particular in some situations,
particularly for a small noise variance, the intra-cluster inertia differs from about 104. The misclassifi-
cation provided by the regression mixture EM algorithm more rapidly increases with the noise variance
level, compared to the proposed EM-MixRHLP approach. When the noise variance increases, the intra-
cluster inertia obtained by the two approaches naturally increases, but the increase is less pronounced
for the proposed approach compared to the regression mixture alternative. In addition, the obtained
results showed that, as expected, contrary to the proposed model, the regression mixture model cannot
accurately model time series which are subject to changes in regime. For model selection using BIC, the
overall performance of the proposed algorithm is better than that of the regression mixture EM algorithm
and the K-means like approach.

Experiments using real railway time series We used 140 times series issued from a railway diagnosis
application. The specificity of the time series to be analyzed in this context as mentioned before is that
they are subject to various changes in regime as a result of the mechanical movements involved in a
switching operation. We accomplished this clustering task using our EM-MixRHLP algorithm, designed
for estimating the parameters of a mixture of hidden process regression models. We compared the
proposed EM algorithm to the regression mixture EM algorithm and the K-means like algorithm for
piecewise regression. The obtained results show that the proposed regression approach provides the
smallest intra-cluster error and misclassification rate.

3.4.4 Conclusion

In this section I presented a new mixture model-based approach for clustering and segmentation of
univariate functional data with changes in regime. This approach involves modeling each cluster using a
particular regression model whose polynomial coefficients vary across the range of the inputs, typically
during time, according to a discrete hidden process. The transition between regimes is smoothly controlled
by logistic functions. The model parameters are estimated by maximum likelihood method via a dedicated
EM algorithm. The proposed approach can also be regarded as a clustering approach which operates
by finding groups of time series having common changes in regime. The BIC is used to determine the
numbers of clusters and segments, as well as the regression order. We note that these computations of
the BIC for selecting three values (K,R, p) can be computationally more expensive compared the ones
in classical model selection namely for standard mixture where only the number of clusters has to be
selected. However, we notice that for small values of the dimensions to be selected, the computational
cost is around few minutes and is not dramatically high, compared to approaches involving dynamic
programming namely when using piecewise regression especially for large samples. The experimental
results, both from simulated time series and from a real-world application, show that the proposed
approach is an efficient means for clustering univariate time series with changes in regime. A CEM
derivation of the current version is direct and obvious, and consists in assigning the curves in a hard
way during the EM iterations, rather than in a soft way as what is done now via the posterior cluster
memberships. One can further extend this to the regimes, by assigning the observations to the regimes
also in a hard way, especially in the case where there are only abrupt change points in order to promote
the segmentation. Then, in the framework of model selection, in a such extension, as well as for the
current version of the model, it would be interesting to derive an ICL type criterion (Biernacki et al.,
2000) which is known to be suited to the clustering and segmentation objectives.

3.5 Functional discriminant analysis

The previous sections were dedicated to cluster analysis of functional data where the aim was to explore
a functional data set to automatically determine groupings of individuals described only by observations
from that functions, that is, where the group labels indicating from which group each individual is issued
are unknown. Here, I investigate the problem of prediction for functional data, specifically, the one of
predicting the group label Ci of new observed unlabeled individual (xi,yi) describing a function, based on
a training set of triplets of labeled individuals D = ((x1, y1, c1), . . . , (xn, yn, cn)) where ci ∈ {1, . . . , G}
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3. LATENT DATA MODELS FOR FUNCTIONAL DATA ANALYSIS

is the class label of the ith individual. I focused on probabilistic discriminant analysis in which the
discrimination task consists in estimating the class conditional density f(yi|Ci,xi;Ψg) and the prior
class probabilities P(Ci) from the training set, and predicting the class label Ci for new data (xi,yi) by
using the Bayes’ optimal allocation rule:

ĉi = arg max
1≤g≤G

wgf(yi|Ci = g,xi;Ψg)∑G
g′=1 wg′f(yi|Ci = g′,xi;Ψg′)

, (3.29)

where wg = P(Ci = g) is the proportion of group g in the training set and Ψg the parameter vector
of the conditional density. As in discriminant analysis for multivariate data, in this functional data
discrimination context, one can rely on discriminant analyses by adopting dedicated conditional densities
accounting for the functional aspect of the data. Two different ways are possible to accomplish the
discriminant task, depending on how to model this conditional density.

3.5.1 Functional linear discriminant analysis

The first one consists in functional linear discriminant analysis (FLDA), firstly proposed in James and
Hastie (2001) for irregularly sampled curves, and arises when we model each class conditional density
with a single component model, for example a polynomial, spline or a B-spline regression model, that is
in (3.29) f(yi|Ci = g,xi;Ψg) = N (xi; Xiβg, σ

2
gIm) with Xi is the design matrix of the chosen regression

type and Ψg = (βTg , σ
2
g)T the parameter vector of class g. However, for curves with regime changes, these

models are not adapted. In [J-2], the proposed FLDA with hidden process regression, in which each class
is modeled with the regression model with a hidden logistic process (RHLP) (as presented in Section
2.2.1) accounts for regime changes through the tailored the class-specific density given by:

f(yi|Ci = g,xi;Ψg) =

mi∏
j=1

Rg∑
r=1

πgr(tj ; wg)N
(
yij ;β

T
grxj , σ

2
gr

)
(3.30)

where Ψg = (wT
g ,β

T
g1, . . . ,β

T
gRg , σ

2
g1, . . . , σ

2
gRg

)T is the parameter vector of class g. In this FLDA con-
text, each class estimation itself involves an unsupervised task regarding the hidden regimes, which is
performed by the EM algorithm as described in [J-2]. However, the FLDA approaches are more adapted
to homogeneous classes of curves and are not adapted to deal with dispersed classes, that is, when each
class is itself composed of several sub-populations of curves.

3.5.2 Functional mixture discriminant analysis

The more flexible way in such a context of heterogeneous classes of functions is to rely on the idea of
mixture discriminant analysis (MDA) for dispersed groups, introduced by Hastie and Tibshirani (1996)
for multivariate data discrimination. Indeed, while the global discrimination task is supervised, in some
situations, it may include an unsupervised task which in general relates clustering possibly dispersed
classes into homogeneous sub-classes. In many areas of application of classification, a class may itself be
composed of several unknown (unobserved) sub-classes. For example, in handwritten digit recognition,
there are several characteristic ways to write a digit, and therefore a creation of several sub-classes within
the class of a digit itself, which may be modeled using a mixture density as in Hastie and Tibshirani (1996).
In complex systems diagnosis application, for example when we have to decide between two classes, say
without or wit defect, one would have only the class labels indicating just either with or without defect,
however no labels according to how a defect would happen, namely the type of defect, the degree of defect,
etc. Another example is the one of gene function classification based on time course gene expression data.
As stated in Gui and Li (2003) when considering the complexity of the gene functions, one functional class
may include genes which involve one or more biological profiles. Describing each class as a combination of
sub-classes is therefore necessary to provide realistic class representation, rather than providing a rough
representation through a simple class conditional density. Here I consider the classification of functional
data, particularly curves with regime changes, into classes arising in sub-populations. It is therefore
assumed that each class g (g = 1, . . . , G) has a complex shape arising in Kg homogeneous sub-classes.
Furthermore, each sub-class k (k = 1, . . . ,Kg) of class g is itself governed by Rgk unknown regimes
(r = 1, . . . , Rgk). In such a context, the global discrimination task includes a two-level unsupervised task.
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The first one is the one that attempts to automatically cluster possibly dispersed classes into several
homogeneous clusters (i.e., sub-classes), and the second aims at automatically determining the regime
locations of each sub-class, which is a segmentation task. A first idea on functional mixture discriminant
analysis, motivated by the complexity of the time course gene expression functional data was proposed
by Gui and Li (2003) and is based on B-spline regression mixtures. However, using polynomial or
spline regressions for class representation, as studied for example in [J-2] is more adapted for smooth
and stationary curves. In case of curves exhibiting a dynamical behavior through abrupt changes, one
may relax the spline regularity constraints, which leads to the previously developed MixPWR model
(see Section 3.2). Thus, in such context the generative functional mixture models presented previously
can also be used as class conditional densities, that is, the MiHMMR, and the MixRHLP presented
respectively in Sections 3.3 and 3.4. Here I only focus on the use of the mixture of RHLP since it is also
dedicated to clustering and is flexible and explicitly integrates the smooth and/or abrupt regime changes
via the logistic process. This leads to functional mixture discriminant analysis (FMDA) with hidden
logistic process regression [J-5][C-8][C-10], in which the class conditional density for a function is given
by a MixRHLP (3.23):

f(yi|Ci = g,xi;Ψg) =

Kg∑
k=1

P(Zi = k|Ci = g)f(yi|Ci = g, Zi = k,xi;Ψgk)
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)
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where Ψg = (αg1, . . . , αgKg ,Ψ
T
g1, . . . ,Ψ

T
gKg )T is the parameter vector for class g, with αgk = P(Zi =

k|Ci = g) is the proportion of component k of the mixture for group g and Ψgk the parameter vector

of its RHLP component density. Then, once we have an estimate Ψ̂g of the parameter vector of the
functional mixture density MixRHLP (provided by the EM algorithm described in the previous section)
for each class, a new curve (yi,xi) is then assigned to the class maximizing the posterior probability,
that is, the Bayes’ optimal allocation rule, using Equation (3.29).

3.5.3 Experiments

The proposed FMDA approach was evaluated in [J-5] on simulated data and real-world data issued from
a railway diagnosis application. We performed comparisons with alternative functional discriminant anal-
ysis approaches using polynomial regression (FLDA-PR) or a spline regression (FLDA-SR) model (James
and Hastie, 2001), and the FLDA one that uses a single RHLP model per class (FLDA-RHLP) as in [J-2].
I also performed comparisons with alternative FMDA approaches that use polynomial regression mixtures
(FMDA-PRM), and spline regression mixtures (FMDA-SRM) as in Gui and Li (2003). Two evaluation
criteria were used: the misclassification error rate computed by a 5-fold cross-validation procedure, which
evaluates the discrimination performance, and the mean squared error between the observed curves and
the estimated mean curves, which is equivalent to the intra-class inertia, and evaluates the performance
of the approaches with respect to the curves modeling and approximation.

Simulation results The obtained results have shown that the proposed FMDA-MixRHLP approach
accurately decomposes complex shaped classes into homogeneous sub-classes of curves and account for
underlying hidden regimes for each sub-class. Furthermore, the flexibility of the logistic process used to
model the hidden regimes allows for accurately approximating both abrupt and/or smooth regime changes
within each sub-class. We also notice that the FLDA approach with spline or polynomial regression, pro-
vide rough approximations in the case of non-smooth regime changes compared to alternatives. The
FLDA with RHLP accounts better for the regime changes, however, not surprising, for complex classes
having sub-classes, it provides unsatisfactory results. This is confirmed on the obtained intra-class in-
ertia results. Indeed, the smallest intra-class inertia is obtained for the proposed FMDA-MixRHLP
approach which outperforms the alternative FMDA based on polynomial regression mixtures (FMDA-
PRM) and spline regression mixtures (FMDA-SRM). This performance is attributed to the flexibility of
the MixRHLP model thanks to the logistic process which is well adapted for modeling the regime changes.
Also in terms of curve classification, the FMDA approaches provide better results compared to FLDA
approaches. This is due to the fact that using a single model for complex-shaped classes (i.e., when using
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FLDA approaches) is not adapted as it does not take into account the class dispersion when modeling
the class conditional density. On the other hand, the proposed FMDA-MixRHLP approach provides a
better modeling which results into a more accurate class prediction. The percentage of choosing the best
model is also satisfactory and high (around 91%).

Experiments on real data Here the used data are issued from a railway diagnosis application as
studied in [J-1][J-2][J-4]. The used data are the curves of the instantaneous electrical power consumed
during the switch actuation period. The used database is composed of 120 labeled real switch operation
curves. Each curve consists of 564 points. Two classes were considered where the first one is composed
by the curves with no defect and with a minor defect and the second one contains curves without defect.
The goal is therefore to provide an accurate automatic modeling especially for the first class which is
henceforth dispersed into two sub-classes. The proposed method ensure both an accurate decomposition
of the complex shaped class into sub-classes and at the same time, a good approximation of the underlying
regimes within each homogeneous set of curves. The logistic process probabilities are close to 1 when the
regression model seems to be the best fit for the curves and vary over time according to the smoothness de-
gree of regime transition. Figure 3.4 shows modeling results provided by the proposed FMDA-MixRHLP
for each of the two classes. We see that the proposed method ensure both an accurate decomposition of
the complex shaped class into sub-classes and at the same time, a good approximation of the underlying
regimes within each homogeneous set of curves. This also illustrates the clustering and segmentation
using the MixRHLP presented in the previous section. The obtained classification results, while they
were similar for the FMDA approaches, the difference in terms of curves modeling (approximation) is
significant, for which the proposed FMDA-MixRHLP approach clearly outperforms the alternative ones.
This is attributed to the fact that the use of polynomial regression mixtures for FMDA-PRM or spline
regression mixtures (FMDA-SRM) does not fit at best the regime changes compared to the proposed
model. The proposed approach provides the better results, but also has more parameters to estimate
compared to the alternatives. But note that, for this real data, in terms of required computational effort
to train each of the compared methods, the FLDA approaches are faster than the FMDA ones. In FLDA,
both the polynomial regression and the spline regression approaches are analytic and does not require a
numerical optimization scheme. The FLDA-RHLP is based on an EM algorithm which, therefore per-
forms in an iterative way, but the learning scheme is quite fast and the computing time is in mean around
one minute for the described real data, and is less demanding compared to the alternative piecewise
regression using dynamic programming. On the other hand, the alternative FMDA approaches, that is
the regression mixture and the spline regression mixture-based approaches still more fast and their EM
algorithm requires only few seconds to converge. However, these approaches are clearly not adapted for
the regime changes problem; to do that, one needs to built a piecewise regression-based model which
requires dynamic programming and therefore may need a significant computational time especially for
large curves, and is mainly adapted to abrupt regime changes. The training procedure for the proposed
MixFRHLP-FMDA approach is not dramatically time consuming, the training for the data of class 1
(which is the more complex class), requires a mean computational time of around up to few minutes on
a Matlab software using a laptop CPU of 2Ghz and 8GB of memory.

3.5.4 Conclusion

The presented mixture model-based approach for functional data discrimination includes unsupervised
tasks that relate clustering dispersed classes and determining possible underlying unknown regimes for
each sub-class. It is therefore suggested for the classification of curves organized in sub-groups and
presenting a non-stationary behaviour arising in regime changes. Furthermore, the proposed functional
discriminant analysis approach, as it uses a hidden logistic process regression model for each class, is
particularly adapted for modeling abrupt and smooth regime changes. Each class is trained in an unsu-
pervised way by a dedicated EM algorithm and a model selection using the BIC may be suggested as it
provides satisfactory results.

Another possible direction is to train the MixRHLP of each class by maximizing the classification
likelihood criterion, in which one will mainly be interested into classification, rather than maximizing a
likelihood criterion as in this approach where we mainly focus on model estimation. This is direct and
will rely on the CEM algorithm (Celeux and Govaert, 1992). In such context, the model selection relying
on ICL (Biernacki et al., 2000) could also be used.
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Figure 3.4: Results obtained with the proposed FMDA-MiXRHLP for the real switch operation curves.

The estimated clusters (sub-classes) for class 1 and the corresponding mean curves (a); Then, we show

separately each sub-class of class 1 with the estimated mean curve presented in a bold line (c,d), the

polynomial regressors (degree p = 3) (f,g) and the corresponding logistic proportions that govern the

hidden processes (i,j). Similarly, for class 2, we show the estimated mean curve in bold line (b), the

polynomial regressors (e) and the corresponding logistic proportions (h).
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Chapter 4

Bayesian regularization of mixtures

for functional data
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This research direction I initiated in 2013 is two-fold. First, I attempt to learn regression mixture
models from univariate functional data, in a full unsupervised way, so that to provide an alternative to
standard EM fitting which uses external information criteria for model selection. I am therefore interested
in constructing on what can be seen as a non-parametric approach to simultaneously learn the model
structure characterized by the number of mixture components, the model density, and the data partition.
This is performed by regularizing the standard MLE of the regression mixtures and has lead to the
following contribution [J-8][C-5].
On the other hand, I investigate regression mixtures, with mixed effects, the angle of approach and the
type of data are different tough, compared to the previously studied mixtures with ML fitting, since here
I am placed fully in the Bayesian inference framework by using Markov Chain Monte Carlo sampling. In
addition, I consider mixture models dedicated to spatial functional data. The pre-publication [J-11] is
issued from this work.

4.1 Introduction

In the previous Chapter, I investigated the problem of functional data analysis and I proposed latent
data models, particularly functional mixture models, for such analysis which involve the construction
of maximum likelihood estimators. Among the previously discussed models, there is the regression
mixtures and their use in model-based cluster and discriminant analyses of functional data. The maximum
likelihood estimation of the mixture density is mainly performed by using the EM algorithm thanks to
its good desirable properties of stability and reliable convergence. In this chapter, I focus on regression
mixtures and their use in model-based functional data clustering, particularly for univariate smooth
functions and for spatial functional data (2D surfaces).

First, I revisit these mixture models and their estimation from another prospective by considering
regularized MLE rather than standard MLE. This particularly attempts to address the issue of the ML
fitting with the EM which requires careful initialization, and the one of model selection, from another
point of view, say regularization. Indeed, it is well-known that the initialization is crucial for EM. The EM
algorithm also requires the number of mixture component to be given a priori. The problem of selecting
the number of mixture components in this case can be addressed by using, in an afterward step, some
model selection criteria (e.g. AIC, BIC, and ICL as seen before) to choose one from a set of pre-estimated
candidate models. Here I propose a penalized MLE approach carried out via a robust EM-like algorithm
which simultaneously infers the model parameters, the model structure and the partition [J-8][C-5], and
in which the initialization is simple.

On the other hand, these regression models seen until now have been constructed by relying of
deterministic parameters which account for fixed effects that model the mean behavior of a population of
homogeneous curves. However, in some situations, it is necessary to take into account possible random
effects governing the inter-individual behavior. This is in general achieved by random effects regression
or mixed effects regressions (?), that is, a regression model accounting for fixed effects, to which is added
a random effects part. In a model-based clustering context, this is achieved by deriving mixtures of
these models, for example the mixture of linear mixed models (Celeux et al., 2005). Despite the growing
investigation for adapting multivariate mixture to the framework of FDA, for example as in (Devijver,
2014; Jacques and Preda, 2014; Bouveyron and Jacques, 2011; Chamroukhi, 2010a; Liu and Yang, 2009;
Gaffney and Smyth, 2004; Gaffney, 2004; James and Sugar, 2003; James and Hastie, 2001), the most
investigated type of data however is univariate or multivariate functions. The problem of learning from
spatial functional data, that is, surfaces, is still less well studied. For example, one can cite the following
quite recent approaches on the subject (Malfait and Ramsay, 2003; Ramsay et al., 2011; Sangalli et al.,
2013; Nguyen et al., 2014). In particular, the very recent approach proposed by Nguyen et al. (2014) for
clustering and classification of surfaces is based on the regression spatial spline regression as in Sangalli
et al. (2013) in a mixture of linear mixed-effects model framework as in Celeux et al. (2005). The model
estimation tool is the usual maximum likelihood estimation (MLE) by using the EM algorithm (Dempster
et al., 1977; McLachlan and Krishnan, 2008). While the MLE via the EM algorithm is the standard way
to fit finite mixture-based models, a common alternative is the Bayesian inference, that is, the maximum
a posteriori (MAP) estimation. It is promoted to avoid singularities and degeneracies of the MLE as
highlighted namely in Stephens (1997); Snoussi and Mohammad-Djafari (2001, 2005); Fraley and Raftery
(2005) and Fraley and Raftery (2007) by regularizing it through a prior distribution over the model.
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The MAP estimator is in general constructed by using Markov Chain Monte Carlo (MCMC) sampling,
such as the Gibbs sampler (e.g., see Neal (1993); Raftery and Lewis (1992); Bensmail et al. (1997);
Marin et al. (2005); Robert and Casella (2011)). For the Bayesian analysis of regression data, Lenk and
DeSarbo (2000) introduced a Bayesian inference for finite mixtures of generalized linear models with
random effects. Int their mixture model, each component is a regression model with a random-effects
parts and the model is dedicated to multivariate regression data.

So in the second axis of this part of my research I first introduce the Bayesian spatial spline regression
with mixed-effects (BSSR) for fitting a population of homogeneous surfaces. Then, I introduce the
Bayesian mixtures of SSR (BMSSR) for fitting populations of heterogeneous surfaces organized in groups.
The BSSR model is applied in surface approximation and the BMSSR model is applied in model-based
surface clustering by considering real-world handwritten digits from the MNIST data set (LeCun et al.,
1998).

4.1.1 Personal contribution

My personal contribution in this reach theme is two-fold. First, I proposed in [J-8][C-5][C-1] a new fully
unsupervised learning algorithm to fit regression mixture models with unknown number of components.
The developed approach consists in a penalized maximum likelihood estimation carried out by a robust
EM-like algorithm. I derive it for polynomial, spline, and B-spline regression mixtures. i) it simul-
taneously infers the model parameters and the optimal number of the regression mixture components
from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based
clustering using afterward model selection criteria, and ii) its initialization is simple unlike the standard
EM for regression mixtures which requires careful initialization. I validated the proposed algorithm on
simulations and, the obtained results on real-world data covering three different application area, that
is, phoneme recognition, clustering gene expression time course data for bio-informatics and clustering
radar waveform data, confirm its benefit for practical applications.

Second, in [J-11], I investigated the problem of regression models with mixed effects and their use
in FDA, particularly in model-based clustering of spatial functional data. I first introduced a Bayesian
spatial spline regression model with mixed-effects (BSSR) for modeling spatial function data. The BSSR
model is based on Nodal basis functions for spatial regression and accommodates both common mean
behavior for the data through a fixed-effects part, and variability inter-individuals thanks to a random-
effects part. Then, in order to model populations of spatial functional data issued from heterogeneous
groups, I introduced a Bayesian mixture of spatial spline regressions with mixed-effects (BMSSR) used for
density estimation and model-based surface clustering. The models, through their Bayesian formulation,
allow to integrate possible prior knowledge on the data structure and constitute a good alternative to
recent mixture of spatial spline regressions model estimated in a maximum likelihood framework via the
EM algorithm. I derived MCMC sampling technique to infer each of the two model and applied them
on simulated surfaces and a real problem of handwritten digit recognition using the MNIST data set.
The obtained results highlight the potential benefit of the proposed Bayesian approaches for modeling
surfaces possibly dispersed in particular in clusters.

The remainder of the chapter is organized as follows. After giving a brief background on regression
mixtures and their use in model-based curve clustering in Section 4.1.2, I present in section 4.2, the
proposed regularization of the mixture model and the fully unsupervised EM-like algorithm for fitting
the resulting model. An experimental study is performed on numerous simulations and real-world data
sets to apply and assess the proposed approach. Then, Section 4.3.2 describes recent related work on
mixture of spatial spline regressions, and some formulation necessary to derive the proposed BSSR model,
which I present in Section 4.3.3 where I also present its inference technique using Gibbs sampling. Then,
in Section 4.3.4 I present the Bayesian mixture model for spatial functional data, that is, the BMSSR
model, and show how to apply it in model-based clustering of surfaces. A Gibbs sampler is derived to
estimate the BMSSR model parameters.

4.1.2 Regression mixtures

Modeling with regression mixtures is an important topic in the general family of mixture models. The
finite regression mixture model (Quandt, 1972; Quandt and Ramsey, 1978; Veaux, 1989; Jones and
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McLachlan, 1992; Gaffney and Smyth, 1999; Viele and Tong, 2002; Faria and Soromenho, 2010; Cham-
roukhi, 2010a; Young and Hunter, 2010; Hunter and Young, 2012) provides a way to model data aris-
ing from a number of unknown classes of conditionally dependent observed data. Let us denote by
D = ((x1,y1), . . . , (xn,yn)) an observed independently and identically distributed (i.i.d) sample where
each individual is a couple of a response yi and its corresponding covariate xi. For example, in the case
of temporal curves, the response consists of mi observations yi = (yi1, . . . , yimi) (regularly) observed
at the inputs xi = (xi1, . . . , ximi) for all i = 1, . . . , n (e.g., x may represent the sampling time in a
temporal context). The finite regression mixture model assumes that each individual (xi,yi) is drawn
from a mixture density of K (possibly unknown) components, whose mixing proportions are (π1, . . . , πK)
where πk = P(Zi = k) is the prior probability of component k, Zi ∈ {1, . . . ,K} being the hidden variable
representing the class label of the ith individual. A common way to model the conditional dependence in
the observed data is to use regression functions. The regression mixture model assumes that each mixture
component k is a conditional component density fk

(
yi|xi;θk

)
of a regression model with parameters θk.

This includes polynomial, spline, and B-spline regression mixtures, see for example DeSarbo and Cron
(1988); Jones and McLachlan (1992); Gaffney (2004). These three models are considered here and the
global Gaussian regression mixture is defined by the following conditional mixture density:

f(yi|xi;θ) =

K∑
k=1

πk N (yi; Xiβk, σ
2
kImi) (4.1)

where Xi is the regression matrix constructed according to the chosen bases for the model, that is poly-
nomial, spline, etc, βk is the vector of regression coefficients for component k, and σ2

k is the noise variance
with Imi denotes the mi ×mi identity matrix. The regression matrix construction depends on the cho-
sen type of regression, it may be Vandermonde for polynomial regression or a spline regression matrix
for splines (Deboor, 1978)(Ruppert and Carroll, 2003) which are widely used for function approxima-
tion based on constrained piecewise polynomials, or the one of B-splines, which allow for more efficient
computations compared to splines Ruppert and Carroll (2003)

The regression mixture model parameter vector is given by θ = (π1, . . . , πK−1,θ
T
1 , . . . ,θ

T
K)T where

θTk = (βTk , σ
2
k) represents the parameter vector of component k composed of the regression coefficients

vector and the noise variance. The use of regression mixtures for density estimation as well as for
cluster and discriminant analyses, requires the estimation the mixture parameters. The problem of
fitting regression mixture models is a widely studied problem in statistics, machine learning and data
analysis, particularly for cluster analysis. It is usually performed by maximum likelihood

logL(θ) =

n∑
i=1

log

K∑
k=1

πk N (yi; Xiβk, σ
2
kImi) (4.2)

by using the EM algorithm (Jones and McLachlan, 1992; Dempster et al., 1977; Gaffney and Smyth,
1999; Gaffney, 2004; McLachlan and Krishnan, 2008).

4.2 Regularized regression mixtures for functional data

4.2.1 Introduction

It is however well-known that the initialization is crucial for EM. If the initialization is not appropriately
performed, the EM algorithm may lead to unsatisfactory results see for example Biernacki et al. (2003);
Reddy et al. (2008); Yang et al. (2012). Thus, these regression mixture models when trained with the
standard EM algorithm are sensitive to initialization since it might yield poor estimations if the regression
mixture parameters are not initialized properly. The EM initialization in general can be performed from a
randomly chosen partition of the data or by computing a partition from another clustering algorithm such
as K-means, Classification EM (Celeux and Diebolt, 1985), Stochastic EM (Celeux and Govaert, 1992),
etc or by initializing EM with a few number of iterations of EM itself. Several works have been proposed
in the literature in order to overcome this drawback and making the EM algorithm for Gaussian mixtures
robust with regard initialization, see for example Biernacki et al. (2003); Reddy et al. (2008); Yang et al.
(2012). Further details about choosing starting values for the EM algorithm for Gaussian mixtures can
be found for example in Biernacki et al. (2003). In addition to the sensitivity regarding the initialization,
the EM algorithm requires the number of mixture components (clusters in a clustering context) to be
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known. While the number of components can be chosen by some model selection criteria such as the BIC
Schwarz (1978), the AIC Akaike (1974) or the ICL Biernacki et al. (2000), or resampling methods such as
bootstrap McLachlan (1978), this requires performing an afterward model selection procedure, to choose
one from a set of pre-estimated candidate models. Some authors have considered this issue in order to
estimate the unknown number of mixture components in Gaussian mixture models, for example by an
adapted EM as in Figueiredo and Jain (2000) and Yang et al. (2012) or from a Bayesian prospective
Richardson and Green (1997) by reversible jump MCMC. However, in general, these two issues have been
considered each separately. Among the approaches that consider the problem of robustness with regard
to initial values and the one of estimating the number of mixture components, in the same algorithm,
one can cite the EM algorithm proposed by Figueiredo and Jain (2000). This EM algorithm is capable
of selecting the number of components and attempts to be not sensitive with regard to initial values by
optimizing a minimum message length (MML) criterion, which is a penalized log-likelihood, rather than
the observed-data log-likelihood. It starts by fitting a mixture model with a large number of clusters
and discards invalid clusters as the learning proceeds. The degree of validity of each cluster is measured
through the penalization term which includes the mixing proportions to know if the cluster is small
or not to be discarded, and therefore to reduce the number of clusters. More recently, in Yang et al.
(2012), the authors developed a robust EM-like algorithm for model-based clustering of multivariate data
using Gaussian mixture models that simultaneously addresses the problem of initialization and the one of
estimation of the number of mixture components. This algorithm overcomes some initialization drawback
of the EM algorithm proposed in Figueiredo and Jain (2000). As shown in Yang et al. (2012), this problem
regarding initialization can become more serious especially for a data set with a large number of clusters.
However, these presented model-based clustering approaches, including those in Yang et al. (2012) and
Figueiredo and Jain (2000), are concerned with vectorial data where the observations are assumed to
be vectors of reduced dimension. When the data are rather curves or functions, they are not adapted.
Indeed, when the data are functional described by individuals presented as curves or surfaces they are in
general very structured and approaches relying on standard multivariate mixture analysis may therefore
lead to unsatisfactory results in terms of modeling and classification accuracy since in that case we ignore
the structure of the individuals[J-1][J-2][J-4][J-5]. However, addressing the problem from a functional
data analysis prospective, that is formulating “functional” mixture models, allows to overcome these
limitations, e.g., as in [J-1][J-2][J-4]Gaffney (2004). So here we attempt to overcome the limitations of
the EM algorithm in the case of regression mixtures and their use in model-based curve clustering by
regularizing the model and proposing an EM-like algorithm for the inference, which is robust with regard
initialization and automatically estimates the optimal number of clusters as the learning proceeds.

The presented approach as developed in [J-8][C-5] is in the same spirit of the EM-like algorithm
presented in Yang et al. (2012), but by extending the idea to the case of functional data (curve) clustering,
rather than multivariate data clustering. This leads to fitting regression mixture models (including splines
or B-splines) of the form (4.1). For estimating the regression mixture model (4.1), rather than maximizing
the standard observed-data log-likelihood (4.2), we attempt to maximize a penalized version of it. The
penalized log-likelihood function we propose to maximize is thus constructed by penalizing the observed-
data log-likelihood by a regularization term related as we will see to the model complexity, and is defined
by:

J (λ,θ) = logL(θ)− λH(Z), λ ≥ 0 (4.3)

where logL(θ) is the observed-data log-likelihood maximized by the standard EM algorithm for regression
mixtures (see Eq. (4.2)) and λ ≥ 0 is a parameter that controls the complexity of the fitted model. This
penalized log-likelihood function allows to control the complexity of the model fit through the roughness
penalty H(Z) accounting for the model complexity. As the model complexity is related to particularly
the number of mixture components and therefore the structure of the hidden variables Zi (recall that
Zi represents the class label of the ith curve), we chose to use the entropy of the hidden variable Zi as
penalty. The penalized log-likelihood criterion is therefore derived as follows. The (differential) entropy
of Zi is defined by:

H(Zi) = −
K∑

k=1

P(Zi = k) log P(Zi = k) = −
K∑

k=1

πk log πk· (4.4)

By assuming that the variables Z = (Z1, . . . , Zn) are i.i.d, which is in general the assumption in clus-
tering using mixtures where the cluster labels are assumed to be distributed according to a Multinomial
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distribution, the whole entropy for Z is therefore additive and we have

H(Z) = −
n∑

i=1

K∑
k=1

πk log πk, (4.5)

which leads to the following penalized log-likelihood criterion:

J (λ,θ) =

n∑
i=1

log

K∑
k=1

πkN (yi; Xiβk, σ
2
kImi) + λn

K∑
k=1

πk log πk· (4.6)

This penalized log-likelihood function (4.6) we attempt to optimize allows to control the complexity of

the model fit through the roughness penalty λn
∑K
k=1 πk log πk. The entropy term −n

∑K
k=1 πk log πk in

the penalty measures the complexity of a fitted model for K clusters. When the entropy is large, the
fitted model is rougher, and when it is small, the fitted model is smoother. The non-negative smoothing
parameter λ is for establishing a trade-off between closeness of fit to the data and a smooth fit. As
λ decreases, the fitted model tends to be less complex, and we get a smoother fit. However, when λ
increases, the result is a rougher fit.

The next section presents the proposed robust EM-like algorithm to maximize the penalized observed-
data log-likelihood J (λ,θ) for regression mixture density estimation and model-based curve clustering.

4.2.2 Regularized maximum likelihood estimation via a robust EM-like algo-

rithm

Given an i.i.d sample of n curves D = ((x1,y1), . . . , (xn,yn)), the penalized log-likelihood (4.6) is
iteratively maximized by using the following robust EM-like algorithm. Before giving the EM steps,
we give the penalized complete-data log-likelihood, on which the algorithm formulation is based. The
complete-data log-likelihood, in this penalized case, is given by:

Jc(λ,θ)=

n∑
i=1

K∑
k=1

Zik log
[
πkN (yi; Xiβk, σ

2
kImi)

]
+ λn

K∑
k=1

πk log πk (4.7)

where Zik is an indicator binary-valued variable such that Zik = 1 if Zi = k (i.e., if the ith curve (xi,yi)
is generated from the kth regression mixture component) and Zik = 0 otherwise. After starting with an
initial solution (see section 4.2.2 for the initialization strategy and stopping rule), the proposed algorithm
alternates between the two following steps until convergence.

E-step This step computes the expectation of the penalized complete-data log-likelihood (4.7), given

the observed data D and a current parameter vector θ(q):

Q(λ,θ;θ(q)) = E
[
Jc(λ,θ)|D;θ(q)

]
=

n∑
i=1

K∑
k=1

τ
(q)
ik log

[
πkN (yi; Xiβk, σ

2
kImi)

]
+ λn

K∑
k=1

πk log πk (4.8)

where

τ
(q)
ik = P(Zi = k|yi,xi;θ

(q)) =
π
(q)
k N

(
yi; Xiβ

T (q)
k , σ

2(q)
k Imi

)∑K
h=1 π

(q)
h N (yi; Xiβ

(q)
h , σ

2(q)
h Imi)

(4.9)

is the posterior probability that the curve (xi,yi) is generated by the kth cluster. This step therefore

only requires the computation of the posterior component memberships τ
(q)
ik (i = 1, . . . , n) for each of the

K components.

M-step This step updates the value of the parameter vector θ by maximizing the Q-function (4.8)

with respect to θ, that is by computing the parameter vector update θ(q+1) = arg maxθ Q(λ,θ;θ(q)).
The mixing proportions updates are given by (see for example Appendix B in [J-8] for more calculation
details):

π
(q+1)
k =

1

n

n∑
i=1

τ
(q)
ik + λπ

(q)
k

(
log π

(q)
k −

K∑
h=1

π
(q)
h log π

(q)
h

)
· (4.10)
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We can remark here that the update of the mixing proportions (4.10) is close to the standard EM update(
1
n

∑n
i=1 τ

(q)
ik

)
for very small value of λ. However, for a large value of λ, the penalization term will play its

role in order to make clusters competitive and thus allows for discarding invalid clusters and enhancing
actual clusters. Indeed, in the updating formula (4.10), we can see that for cluster k if

log π
(q)
k −

K∑
h=1

π
(q)
h log π

(q)
h > 0, (4.11)

that is, for the (logarithm of the) current proportion log π
(q)
k , the entropy of the hidden variables is

decreasing, and therefore the model complexity tends to be stable, the cluster k has therefore to be

enhanced. This explicitly results in the fact that the update of the kth mixing proportion π
(q+1)
k in (4.10)

will increase. On the other hand, if (4.11) is less than 0, the cluster is not informative its proportion will
decrease. Furthermore, the penalization coefficient λ can be set in an adaptive way (see [J-8]) in such
a way to be large for enhancing competition when the proportions are not increasing enough from one
iteration to another. In that case, the robust algorithm plays its role for estimating the number of clusters
(which is decreasing in such a situation, by discarding small invalid clusters). In practice a cluster k can

be discarded if its proportion is not significant, e.g. less than 1
n , that is π

(q)
k < 1

n . On the other hand,
λ has to become small when the proportions are sufficiently increasing as the learning proceeds and the
partition can therefore be considered as stable. In this case, the robust EM-like algorithm tends to have
the same behavior as the standard EM. The regularization coefficient λ is also set in [0, 1] to prevent very
large values.

Then, the regression parameters (βk, σ
2
k) are updated by analytically solving weighted least-squares

problems where the weights are the posterior probabilities τ
(q)
ik and the updates are given by:

β
(q+1)
k =

[ n∑
i=1

τ
(q)
ik XT

i Xi

]−1
n∑

i=1

τ
(q)
ik XT

i yi, (4.12)

σ
2(q+1)
k =

1∑n
i=1 τ

(q)
ik mi

n∑
i=1

τ
(q)
ik ||yi −Xiβ

(q+1)
k ||2, (4.13)

where the posterior cluster probabilities τ
(q)
ik given by (4.9) are computed using the updated mixing

proportions derived in (4.10).
Finally, once the model parameters have been estimated, a fuzzy partition of the data into K clusters,

represented by the estimated posterior cluster probabilities τ̂ik, is obtained. A hard partition can also
be computed according to the Bayes’ optimal allocation rule, that is, by assigning each curve to the
component having the highest posterior probability (4.9).

Initialization strategy and stopping rule The initial number of clusters is K(0) = n, n being the

total number of curves and the initial mixing proportions are π
(0)
k = 1

K(0) , (k = 1, . . . ,K(0)). Then, to

initialize the regression parameters βk and the noise variances σ2
k (k = 1, . . . ,K(0)), we fitted a polynomial

regression model on each curve k, (k = 1, . . . ,K(0)); The initial values of the regression parameters are

thus given by β
(0)
k =

(
XT
kXk

)−1
Xkyk and the noise variance can be deduced as σ

2(0)
k = 1

mk
||yk−Xkβ

(0)
k ||2.

To avoid singularities at the starting point, we set σ
2(0)
k as a middle value in the following sorted range

||yk−Xkβ
(0)
k ||2 for k = 1, . . . , n. The algorithm is stopped when the maximum variation of the estimated

regression parameters between two iterations max1≤k≤K(q) ||β(q+1)
k −β(q)

k || was less than a fixed threshold
υ (e.g., 10−6).

Choosing the order of regression and spline knots number and locations For a general use of
the proposed algorithm for the polynomial regression mixture, the order of regression can be chosen by
cross-validation techniques as in Gaffney (2004). In our experiments, we report the results corresponding
to the degree for which the polynomial regression mixture provides the best fit. However, in some
situations, the PRM model may be too simple to capture the full structure of the data, in particular
for curves with high non-linearity or with regime changes, even if it can be seen as providing a useful
first-order approximation of the data structure. The (B-)spline regression models in such case are more
adapted. For these models, one may need to choose the spline order as well as the number of knots and
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their locations. For the order of regression in (B-)splines, we notice that, in practice, the most widely used
orders are M = 1,2, and 4 (Hastie et al., 2010). For smooth function approximation, cubic (B-)splines,
which correspond to a (B-)spline of order 4 and thus with twice continuous derivatives, are sufficient
to approximate smooth functions. When the data present irregularity, such as a kind of piecewise non
continuous functions, a linear spline (of order 2) is more adapted. This was namely used for the satellite
data set. The order 1 can be chosen for piecewise constant data. Concerning the choice of the number
of knots and their locations, a common choice is to place a number of knots uniformly spaced across the
range of x. In general more knots are needed for functions with high non-linearity or regime changes.
One can also use automatic techniques for the selection of the number of knots and their locations as
reported in Gaffney (2004). For example, this can be performed by using cross validation as in Ruppert
and Carroll (2003). In Kooperberg and Stone (1991), the knots are placed at selected order statistics
of the sample data and the number of knots is determined including by minimizing a variant of AIC.
The general goal is to use a sufficient number of knots to fit the data while at the same time to avoid
over-fitting and to not make the computation excessive. The current algorithm can be easily extended
to handle this type of automatic selection of spline knots placement, but as the unsupervised clustering
problem itself requires much attention and is difficult, it is wise to fix the number and location of knots.
In this proposal knot sequences uniformly spaced across the range of x are used. The studied problems
are not very sensitive to the number and location of knots; Few number of equispaced knots (less than
ten for the data studied here) are sufficient to provide a reasonable fit of the data.

4.2.3 Experiments

The proposed unsupervised algorithm was evaluated in [J-8][C-5] for the three regression mixture models,
that is, polynomial, spline, and B-spline regression mixtures, respectively abbreviated as PRM, SRM, and
bSRM by performing numerous experiments carried on simulations, the Breiman wavefrom Benchmark
(Breiman et al., 1984) and three real-world data sets covering three different application area: phoneme
recognition in speech recognition, clustering gene expression time course data for bio-informatics and
clustering radar waveform data. The evaluation is performed in terms of estimating the actual partition
by considering the estimated number of clusters and the clustering accuracy (misclassification error) when
the true partition is known.

Simulation results In summary, the number of clusters is correctly estimated by the proposed algo-
rithm for three models. The spline regression models provide slightly better results in terms of clusters
approximation than the polynomial regression mixture. On the other hand, the regression mixture mod-
els with the proposed EM-like algorithm outperform the standard K-means and EM-GMM clustering
algorithms.

Different simulations scenarios were also designed to assess the behavior of the proposed approach in
terms of the number of observations, the dimension of each observation, as well as the number of clusters
in the data, the cluster and the cluster proportions. Simulations S1 were designed to assess the capacity
of the proposed approach to retrieve partitions with a small number of clusters while simulations S2 were
designed to retrieve partitions with a large number of clusters. Bot include well separated clusters as well
as poorly separated clusters. The true partition is correctly estimated in most cases. The clusters which
are not well separated (merged) are also retrieved with success. The model indeed takes into account
mixture components with different noise variances (heteroskedastic model) which allow to recover merged
functions with only different noise variances.

Phonemes data The phonemes data set used in Ferraty and Vieu (2003)1 is a part of the original
one available at http://www-stat.stanford.edu/ElemStatLearn and was described and used namely in
Hastie et al. (1995). The application context related to this data set is a phoneme classification problem.
The phonemes data correspond to log-periodograms y constructed from recordings available at different
equispaced frequencies x for different phonemes. The data set contains five classes corresponding to the
following five phonemes: “sh” as in “she”, “dcl” as in “dark”, “iy” as in “she”, “aa” as in “dark”, and
“ao” as in “water”. For each phoneme we have 400 log-periodograms at a 16-kHz sampling rate. We
only retain the first 150 frequencies from each subject as in Ferraty and Vieu (2003). This data set has

1Data from http://www.math.univ-toulouse.fr/staph/npfda/
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been considered in a phoneme discrimination problem as in Hastie et al. (1995) and Ferraty and Vieu
(2003) where the aim is to predict the phoneme class for a new log-periodogram. Here we reformulate
the problem into a clustering problem where the aim is to automatically group the phonemes data into
classes. We therefore assume that the cluster labels are missing. We also assume that the number of
clusters is unknown. Thus, the proposed algorithm will be assessed in terms of estimating both the
actual partition and the optimal number of clusters from the data. The number of phoneme classes
(five) is correctly estimated by the three models. The spline regression mixture (SRM) results are closely
similar to those provided by the bSRM model. The spline regression models provide better results in
terms of classification error (14.2 %) and clusters approximation than the polynomial regression mixture.
In functional data modeling, splines are indeed more adapted than simple polynomial modeling. The
number of clusters decreases very rapidly from 1000 to 51 for the polynomial regression mixture model,
and to 44 for the spline and B-spline regression mixture models. The grand majority of invalid clusters
is discarded at the beginning of the learning process. Then, the number of clusters gradually decreases
from one iteration to another for the three models and the algorithm converges toward a partition with
the actual number of clusters for the three models after at most 43 iterations. Figure 4.1 shows the
used 1000 phonemes log-periodograms (upper-left) and the clustering partition obtained by the proposed
unsupervised algorithm with the B-spline regression mixture (bSRM).
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Figure 4.1: Phonemes data and clustering results obtained by the proposed robust EM-like algorithm

and the bSRM model with a cubic B-spline of seven knots for the phonemes data. The five sub-figures

correspond to the automatically retrieved clusters which correspond to the phonemes “ao”, “aa”, “yi”,

“dcl”, “sh”.

Yeast cell cycle data In this experiment, we consider the yeast cell cycle data set Cho et al.
(1998). The original yeast cell cycle data represent the fluctuation of expression levels of approximately
6000 genes over 17 time points corresponding to two cell cycles Cho et al. (1998). This data set has been
used to demonstrate the effectiveness of clustering techniques for time course Gene expression data in
bio-informatics such as model-based clustering as in Yeung et al. (2001). We used the standardized subset
constructed by Yeung et al. (2001) available in http://faculty.washington.edu/kayee/model/1. This
data set referred to as the subset of the 5-phase criterion in Yeung et al. (2001) contains n = 384 gene
expression levels over m = 17 time points. The usefulness of the cluster analysis in this case is therefore
to automatically reconstruct this five class partition. Both the PRM and the SRM models provide similar
partitions with four clusters with two clusters which are merged into one cluster. Note that some model
selection criteria in Yeung et al. (2001) also provide four clusters in some situations. However, the bSRM

1The complete data are from http://genome-www.stanford.edu/cellcycle/.
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model correctly infers the actual number of clusters. The Rand index (RI)1 for the obtained partition
equals 0.7914 which indicates that the partition is quite well defined.

Topex/Poseidon data set The last considered real data set is the Topex/Poseidon radar satellite
data set2 namely used in Dabo-Niang et al. (2007) and Hébrail et al. (2010). This data set was registered
by the satellite Topex/Poseidon around an area of 25 kilometers upon the Amazon River. The data
contain n = 472 waveforms of the measured echoes, sampled at m = 70 number of echoes. The actual
number of clusters and the actual partition are unknown for this data set. The provided solution for
the polynomial regression mixture (PRM) is rather an overall rough approximation and provides three
clusters. The polynomial fitting for this type of curves is not adapted. This is because the curves present
in particular peaks and transitions. The solutions provided by the proposed algorithm with the spline
regression mixture (SRM) and the B-spline regression mixture (bSRM) are very close and are more
informative about the underlying structure of this data set. We used a linear (B-)spline for this data set
in order to allow piecewise linear function approximation and thus to better recover the possible peaks
and transitions in the curves. As a result, both the SRM and the bSRM provide a five class partition.
The partitions are quasi-identical and contain clearly informative clusters with different shapes of waves
that summarize the general underlying structure governing this dataset. In addition, the found number
of clusters (five) also equals the one found by Dabo-Niang et al. (2007) by using another hierarchical
nonparametric kernel-based unsupervised classification technique. The mean curves for the five groups
provided by the proposed approach for both the SRM and the bSRM are similar to those in Dabo-Niang
et al. (2007). On the other hand, this result is similar to the one found in Hébrail et al. (2010); Most
of the profiles are indeed present in the two results. There is a slight difference which can be attributed
to the fact that the results in Hébrail et al. (2010) are provided from a two-stage scheme which includes
an additional pre-clustering step using the Self Organizing Map (SOM), rather by directly applying the
piecewise regression model to the raw data. We also notice that, in the study of Hébrail et al. (2010),
the number of clusters was set to twenty and the clustering procedure was two-fold. The authors first
performed a topographic clustering step using the SOM, and then applied a K-means-like approach to
the results of the SOM. However, in our approach, we directly apply the proposed algorithm to the raw
satellite data without a preprocessing step. In addition, the number of clusters is automatically inferred
from the data. The found five clusters here do summarize the general behavior of the twenty clusters in
Hébrail et al. (2010) which can be summarized in clusters with one narrow shifted peak, less narrow peak,
two large peaks, and finally a cluster containing curves with sharp increase followed by a slow decrease.

For this dataset, the algorithm converged after at most 35 iterations. After starting with n = 472
clusters, the number of clusters rapidly decreases to 59 for the PRM and to 95 for both the SRM and
the bSRM models. Then it gradually decreases until the number of clusters is stabilized. The variation
of the value of the objective function during the iterations of the algorithm also shows that it becomes
horizontal at convergence which corresponds to the stabilization of the partition.

4.2.4 Conclusion

Here I presented a new robust EM-like algorithm for fitting regression mixtures and model-based curve
clustering. It optimizes a penalized observed-data log-likelihood and overcomes both the problem of
sensitivity to initialization and determining the optimal number of clusters for standard EM for regression
mixtures. Note that the proposed algorithm, as it proceeds to the estimation of the number of components,
does not guarantee the ascent property of the objective function, and, thus, is not a true EM algorithm.
Note that even if this property is not established, in practice the algorithm works very well and does
converged towards very satisfactory solutions for the several data on which it was applied. Compared
to standard EM fitting, this constitutes an interesting fully unsupervised alternative that simultaneously
infers the model and its optimal number of components. The experimental results on simulated data and
real-world data demonstrate the benefit of the proposed approach for applications in curve clustering.
The obtained clustering results are quite precise and the number of clusters was always correctly selected.
For the phonemes data and the yeast cell cycle data, the polynomial degree with the best solution was

1The Rand Index measures the similarity between two data clusterings. It has a value between 0 and 1, with 0 indicating

that the two partitions do not agree on any pair of observations and 1 indicating that the data clusters are exactly the

same. For more details on the RI, see Rand (1971).
2Available at http://www.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html.
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retained. However, for a more general use in functional data clustering and approximation, the splines
are clearly more adapted. In practice, for the spline and B-spline regression mixtures, we used cubic
(B-)splines because cubic splines, which correspond to a spline of order 4 which are are sufficient to
approximate smooth functions. However, when the data present irregularity, such as a kind of piecewise
non continuous functions, which is the case of the Topex/Poseidon satellite data, we use a linear (B-
)spline approximation. We also note that the algorithm is fast for the three models. It converged after
a few number of iterations, and took at most less than 45 seconds for the phonemes data. For the other
data, it took only few seconds. This makes it useful for real practical situations.

Here, I considered the problem of unsupervised fitting of regression mixtures with unknown number
of components. One interesting future direction is to extend the proposed approach to the problem
of fitting hidden process regression (e.g. those seen in Chapter 2) or mixture of experts Jacobs et al.
(1991) and hierarchical mixture of experts Jordan and Jacobs (1994) with unknown number of experts. A
further challenging extension might consist in extending this approach to the unsupervised simultaneous
clustering and segmentation of functional data, say the models seen in Chapter 3.

4.3 Bayesian mixtures of spatial spline regressions

The previous section was dedicated to regression mixtures for univariate functional data with a kind
of regularization. In this section, I investigate regression mixtures, but with three additional features:
the first relates regression mixtures extended by including random effects, the second one relates further
formulating the model for spatial functional data, and the third one is the full Bayesian inference of the
proposed models. This sub-axis therefore relates the framework of Bayesian regression mixture modeling
for spatial functional data where the data are surfaces. I present a probabilistic Bayesian formulation to
model spatial functional data by extending the approaches of Nguyen et al. (2014) and apply the proposal
to surface approximation and clustering. The model is also related to the random-effects mixture model
of Lenk and DeSarbo (2000) in which I explicitly add mixed-effects and derive it for spatial functional
data by using the Nodal basis functions (NBFs). The NBFs (Malfait and Ramsay, 2003) used in Ramsay
et al. (2011), Sangalli et al. (2013), and Nguyen et al. (2014), represent an extension of the univariate
B-spline bases to bivariate surfaces. I thus first introduce a Bayesian spatial spline regression model with
mixed-effects (BSSR) for fitting a population of homogeneous surfaces. The BSSR model accommodates
both common mean behavior for the data through a fixed-effects part, and variability inter-individuals
thanks to a random-effects part. Then, in order to model populations of spatial functional data issued
from heterogeneous groups, I integrate the BSSR model into a mixture framework. The resulting model is
a Bayesian mixture of spatial spline regressions with mixed-effects (BMSSR) used for density estimation
and model-based surface clustering. The models, through their Bayesian formulation, allow to integrate
possible prior knowledge on the data structure and constitute a good alternative to the recent mixture
of spatial spline regressions model of Nguyen et al. (2014) estimated in a maximum likelihood framework
via the expectation-maximization (EM) algorithm. The inference of the proposed Bayesian modeling is
performed by Markov Chain Monte Carlo (MCMC) sampling and I derive two Gibbs samplers to infer
the BSSR and the BMSSR models. The BSSR model is first applied in surface approximation. Then,
the BMSSR model is applied in model-based surface clustering by considering the real-world handwritten
digits from the MNIST data set (LeCun et al., 1998). The obtained results highlight the potential benefit
of the proposed Bayesian approaches for modeling surfaces possibly dispersed in particular in clusters.

4.3.1 Bayesian inference by Markov Chain Monte Carlo (MCMC) sampling

In this section I open a parenthesis to introduce the principle of Bayesian inference using MCMC sampling
and its use for latent data models. I will use p(.) as a generic notation for a density function. In the
Bayesian inference framework, the estimation of the parameter vector Ψ of a model is performed by
maximizing the posterior distribution p(Ψ |X) for a given prior distribution p(Ψ) and a likelihood function
L(X|Ψ). By using Bayes’ theorem, the posterior distribution of the model parameters is defined, up to
a constant, by

p(Ψ |X) ∝ p(Ψ)L(X|Ψ)· (4.14)

Often this posterior distribution is difficult to calculate directly. In such situations, we use techniques
to simulate realizations from this distribution. These techniques, known as sampling techniques, are
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grouped under the generic name of Markov Chain Monte Carlo (MCMC) (see for example Gilks et al.
(1996); Robert and Casella (1999); Neal (1993)).

Markov Chain Monte Carlo The general principle of MCMC algorithms is to construct, from a
target distribution p(y), an ergodic Markov chain (Y (1), . . . , Y (M)) with stationary distribution equal to
the target distribution, if we can sample from the conditional distributions p(yi|y\i) (i.e. as in Gibbs

sampling) or more generally when we can calculate p(yi)
p(yj)

(i.e., as in Metropolis-Hasting). This is par-

ticularly useful when we can’t directly sample from the target distribution p(y), say as in inference in
latent data models, particularly in mixture models. The, Y (M), for a sufficiently large value of M , can
be considered as an approximate sample from the target distribution p(y) (convergence in law). This
principle of MCMC can also be used to approximate the expectation of any function g(Y ) by the ergodic
mean

E[g(Y )] = lim
x→+∞

1

M

M∑
t=1

g(y(t)) (4.15)

and hence in practice the expectation can be approximated by

E[g(Y )] ≈ 1

M −M0

M∑
t=M0+1

g(y(t)) (4.16)

that is, after removing M0 burn-in samples.
One of the most used MCMC algorithms is the Gibbs sampler, which will be considered frequently

in the manuscript. The first form of Gibbs sampler goes back to Geman and Geman (1984) and was
proposed in a framework of Bayesian image restoration. A very close to it was introduced by Tanner and
Wong (1987) under the name of “data augmentation” for missing data data problems, and also presented
in Gelfand and Smith (1990) and Diebolt and Robert (1994). The Gibbs sampler simulates successively
realizations from the distribution of yi from y, conditional on the other components, that is:

y
(t+1)
i ∼ p(yi|y(t+1)

1 , . . . , y
(t+1)
i−1 , y

(t)
i+1, . . . , y

(t)
n )

and we then cycle iteratively until we have a sufficiently large number of samples. Of course one issue is
how to determine the sufficient number of samples.

In Bayesian inference, the target distribution is the posterior distribution of the model parameters to
be estimated Ψ , that is, p(Ψ |X) given in (4.14). The sampling hence consists in drawing (Ψ (1), . . . ,Ψ (M))
from the Markov chain to approximate the posterior.

However, in the latent data models, for example in mixture models, the unknown parameters are
augmented by the hidden components labels z and thus the target distribution in this case corresponds
to the posterior joint distribution of the model parameters Ψ and the component indicators z. The
sampling then consists in alternating between generating the missing labels z given the observations and
the current parameter vector, that is, according to p(z|X,Ψ (t)), and the parameter vector Ψ given the
observations and the current component labels, that is, according to p(Ψ |X, z(t)), to finally produce a
Markov chain on the model parameters and another one on the missing labels. The posterior inference of
mixtures with MCMC goes back to the first works of Tanner and Wong (1987) and Gelfand and Smith
(1990). Other key initial papers on Bayesian inference of mixtures using MCMC include Diebolt and
Robert (1994); Escobar and West (1994) as well as some more recent papers in the broad literature such
as Richardson and Green (1997); Bensmail et al. (1997); Stephens (2000a); Celeux et al. (2000).
In the next sections, I introduce the two Bayesian models and their Bayesian inference using MCMC
(Gibbs) sampling.

4.3.2 Mixtures of spatial spline regressions with mixed-effects

Before introducing the proposed Bayesian modeling, this section is dedicated to related work on mixture
of spatial spline regressions (SSR) with mixed-effects (MSSR), introduced by Ng and McLachlan (2014),
since the key difference between the two approaches resides in the added prior distributions on the model
parameters and the resulting posterior inference. I first describe the regression model with linear mixed-
effects and its mixture formulation, in the general case, and then describe the models for spatial regression
data.
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Regression with mixed-effects

The mixed-effects regression models (see for example Laird and Ware (1982), Verbeke and Lesaffre (1996)
and Xu and Hedeker (2001)), are appropriate when the standard regression model (with fixed-effects) can
not sufficiently explain the data. For example, when representing dependent data arising from related
individuals or when data are gathered over time on the same individuals. In that case, the mixed-effects
regression model is more appropriate as it includes both fixed-effects and random-effects terms. In the
linear mixed-effects regression model, the mi × 1 response yi = (yi1, . . . , yimi)

T is modeled as:

yi = Xiβ + Tibi + ei (4.17)

where the p × 1 vector β is the usual unknown fixed-effects regression coefficients vector describing the
population mean, bi is a q× 1 vector of unknown subject-specific regression coefficients corresponding to
individual effects, independently and identically distributed (i.i.d) according to the normal distribution
N (µi,Ri) and independent from the mi × 1 error terms ei which are distributed according to N (0,Σi),
and Xi and Ti are respectively mi × p and mi × q known covariate matrices. A common choice for the
noise covariance-matrix is to take a diagonal matrix Σi = σ2Imi where Imi denotes the mi×mi identity
matrix. Thus, under this model, the joint distribution of the observations yi and the random effects bi
is the following joint multivariate normal distribution (see for example Xu and Hedeker (2001)):[

yi
bi

]
∼ N

([
Xiβ + Tiµi

µi

]
,

[
σ2Imi + TiRiT

T
i TiRi

RiX
T
i Ri

])
. (4.18)

Then, from (4.18) it follows that the observations yi are marginally distributed according to the following
normal distribution (see Verbeke and Lesaffre (1996) and Xu and Hedeker (2001)):

f(yi|Xi,Ti;Ψ) = N (yi; Xiβ + Tiµi, σ
2Imi + TiRiT

T
i ). (4.19)

Mixture of regressions with mixed-effects

The regression model with mixed-effects (4.17) can be integrated into a finite mixture framework to deal
with regression data arising from a finite number of groups. The resulting mixture of regressions model
with linear mixed-effects (Verbeke and Lesaffre, 1996; Xu and Hedeker, 2001; Celeux et al., 2005; Ng
et al., 2006) is a mixture model where every component k (k = 1, . . . ,K) is a regression model with
mixed-effects given by (4.17), K being the number of mixture components. Thus, the observation yi
conditionally on each component k is modeled as:

yi = Xiβk + Tibik + eik (4.20)

where βk, bik and eik are respectively the fixed-effects regression coefficients, the random-effects regres-
sion coefficients for individual i, and the error terms, for component k. The random-effect coefficients
bik are i.i.d according to N (µki,Rki) and are independent from the error terms eik which follow the
distribution N (0, σ2

kImi). Let Zi denotes the categorical random variable representing the component
memebership for the ith observation. Thus, conditional on the component Zi = k, the observation yi
and the random effects bi have the following joint multivariate normal distribution:[

yi
bi

] ∣∣∣∣∣
Zi=k

∼ N
([

Xiβ + Tiµk
µk

]
,

[
σ2
kImi + TiRkiT

T
i TiRki

RkiX
T
i Rki

])
(4.21)

and thus the observations yi are marginally distributed according to the following normal distribution :

f(yi|Xi,Ti, Zi = k;Ψk) = N (yi; Xiβk + Tiµki,TiRkiT
T
i + σ2

kImi). (4.22)

The unknown parameter vector of this component-specific density is given by:
Ψk = (βTk , σ

2
k,µ

T
k1, . . . ,µ

T
kn, vech(Rk1)T , . . . , vech(Rkn)T )T . Thus, the marginal distribution of yi un-

conditional on component memberships is given by the following mixture distribution:

f(yi|Xi,Ti;Ψ) =

K∑
k=1

πkN (yi; Xiβk + Tiµki,TiRkiT
T
i + σ2

kImi) (4.23)
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4.3 Bayesian mixtures of spatial spline regressions

where the πk’s are the usual mixing proportions. The unknown mixture model parameters given by the
parameter vector Ψ = (π1, . . . , πK−1,Ψ

T
1 , . . . ,Ψ

T
K)T where Ψk is the parameter vector of component

k, are usually estimated, given an i.i.d sample of n observations, by maximizing the observed-data log-
likelihood

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πkN (yi; Xiβk + Tiµki,TiRkiT
T
i + σ2

kImi) (4.24)

via the EM algorithm as in (Verbeke and Lesaffre, 1996; Xu and Hedeker, 2001; Celeux et al., 2005; Ng
et al., 2006).

Mixtures of spatial spline regressions with mixed-effects

For spatial regression data, Nguyen et al. (2014) introduced the spatial spline regression with liner mixed-
effects (SSR). The model is given by (4.17) where the covariate matrices, which are assumed to be identical
in Nguyen et al. (2014), that is, Ti = Xi and denoted by Si, in this spatial case, represent a spatial
structure and are calculated from the Nodal Basis Functions (NBF) (Malfait and Ramsay, 2003). Note
that in what follows I will denote the number of columns of Si by d. The NBF idea is an extension of the
B-spline bases used in general for univariate or multivariate functions, to bivariate surfaces and was first
introduced by Malfait and Ramsay (2003) and then used namely in Ramsay et al. (2011) and Sangalli
et al. (2013) for surfaces. As in Nguyen et al. (2014), it is assumed that the random-effects are centered
with isotropic covariance matrix common to all the individuals, that is bi ∼ N (0, ξ2Imi). Thus, from
(4.22) it follows that under the spatial spline regression model with linear mixed-effects, the density of
the observation yi is given by

f(yi|Si;Ψ) = N (yi; Siβ, ξ
2SiS

T
i + σ2Imi). (4.25)

Then, under the mixture of spatial spline regression models with linear mixed-effects, the density of a
surface is given by:

f(yi|Si;Ψ) =

K∑
k=1

πkN (yi; Siβk, ξ
2
kSiS

T
i + σ2

kImi) (4.26)

where Ψ = (π1, . . . , πK−1,β
T
1 , . . . ,β

T
K , σ

2
1 , . . . , σ

2
K , ξ

2
1 , . . . , ξ

2
K)T is the model parameter vector. Both of

models are fitted by using the EM algorithm (Nguyen et al., 2014). In particular, for the mixture of
spatial spline regressions, the EM algorithm maximizes the following observed-data log-likelihood:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πkN (yi; Siβk, ξ
2
kSiS

T
i + σ2

kImi). (4.27)

More details on the EM developments for the two models can be found in detail in Nguyen et al. (2014).
Note that Nguyen et al. (2014) assumed a common noise variance σ2 for all the mixture components in
(4.26) and hence in (4.27).

4.3.3 Bayesian spatial spline regression with mixed-effects

I introduce a Bayesian probabilistic approach to the spatial spline regression model with mixed-effects
presented in Nguyen et al. (2014) in a maximum likelihood context. The proposed model is thus the
Bayesian spatial spline regression with linear mixed-effects (BSSR) model. I first present the model, the
parameter distributions and then derive the Gibbs sampler for parameter estimation.

The model

The Bayesian spatial spline regression with mixed-effects (BSSR) model is defined by:

yi = Si(β + bi) + ei (4.28)

where the model parameters in this Bayesian framework are assumed to be random variables with specified
prior distributions, and the spatial covariates matrix Si is computed from the Nodal basis functions.
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4. BAYESIAN REGULARIZATION OF MIXTURES FOR FUNCTIONAL DATA

Introduced by Malfait and Ramsay (2003), the idea of Nodal basis functions (NBFs) extends the use of
B-splines for univariate function approximation (Ramsay and Silverman, 2005), to the approximation of
surfaces. For a fixed number of basis functions d, defined on a regular grid with regularly spaced points
c(l) (l = 1, . . . , d) of the domain we are working on, with d defined as d = d1d2 where d1 and d2 are
respectively the columns and rows number of nodes, the ith surface can be approximated using piecewise
linear Lagrangian triangular finite element NBFs constructed as in Sangalli et al. (2013) and Nguyen
et al. (2014) (see also [J-11]). Thus, this construction leads to the following mi × d spatial covariates
matrix:

Si =


s(x1; c1) s(x1; c2) · · · s(x1; cd)
s(x2; c1) s(x2; c2) · · · s(x2; cd)

...
...

. . .
...

s(xmi ; c1) s(xmi ; c2) · · · s(xmi ; cd)

 (4.29)

where s(x; c) is a shortened notation of the NBF s(x, c, δ1, δ2) with xij = (xij1, xij2) the two spatial
coordinates of yij and c = (c1, c2) is a node center parameter, δ1 and δ1 being respectively the vertical and
horizontal shape parameters representing the distances between two consecutive centers. An example of
a NBF function defined on the rectangular domain (x1, x2) ∈ [−1, 1]× [−1, 1] with a single node c = (0, 0)
and δ1 = δ2 = 1 is presented in the Figure 4.2.
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Figure 4.2: Nodal basis function s(x, c, δ1, δ2), where c = (0, 0) and δ1 = δ2 = 1.

The model parameters of the proposed Bayesian model, which are given by the parameter vector
Ψ = (βT , σ2,b1, . . . ,bn, ξ

2)T are assumed to be unknown random variables with the following prior
distributions. I use conjugate priors for ease of calculation as those mostly used priors in the literature
for example as in Diebolt and Robert (1994), Richardson and Green (1997) ,and Stephens (2000a). The
used priors for the parameters are as follows:

β ∼ N (µ0,Σ0)
bi|ξ2 ∼ N (0d, ξ

2Id)
ξ2 ∼ IG(a0, b0)
σ2 ∼ IG(g0, h0)

(4.30)

where (µ0,Σ0) are the hyper-parameters of the normal prior over the fixed-effects coefficients, ξ2 is the
variance of the normal distribution over the random-effect coefficients, a0 and b0 (respectively g0 and h0)
are respectively the shape and scale parameters of the Inverse Gamma (IG) prior over the variance ξ2

(respectively σ2).

Bayesian inference using Gibbs sampling

I use MCMC sampling for the Bayesian inference of the BSSR model. As seen before, MCMC sampling is
indeed one of the most commonly used inference techniques in Bayesian analysis of mixtures, in particular
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4.3 Bayesian mixtures of spatial spline regressions

the Gibbs sampler (e.g see Diebolt and Robert (1994)). The Gibbs sampler is implemented by deriving the
full conditional posterior distributions of the model parameters. Due to the chosen conjugate hierarchical
prior (4.30) presented in the previous section, the full conditional posterior distributions can then be
calculated analytically (see [J-11] for more detail). Applying the Bayes theorem to the joint distribution
leads to the following posterior distributions used in the Gibbs sampler (see [J-11] for details). In what
follows the notation |... is used to denote a conditioning of the parameter in question on all the other
parameters and the observed data.

β|... ∼ N (ν0,V0) with V−1
0 = Σ−1

0 +
1

σ2

n∑
i=1

ST
i Si, ν0 = V0

(
1

σ2

n∑
i=1

(yi − Sibi)−Σ−1
0 µ0

)
,(4.31)

bi|... ∼ N (ν1,V1) with V−1
1 =

1

σ2
ST
i Si +

1

ξ2
, ν1 = V1

( 1

σ2
ST
i (yi − Siβ)

)
, (4.32)

σ2|... ∼ IG(g1, h1) with g1 = g0 +
n

2
, h1 = h0 +

∑n
i=1 (yi − Siβ − Sibi)

T (yi − Siβ − Sibi)

2
, (4.33)

ξ2|... ∼ IG (a1, b1) with a1 = a0 +
n

2
, b1 = b0 +

∑n
i=1 bT

i bi

2
· (4.34)

The Gibbs sampler for the BSSR model then cycles by sampling from each of the above posterior
distributions until a sufficiently large number of samples is reached.

4.3.4 Bayesian mixture of spatial spline regressions with mixed-effects

The BSSR model presented previously is dedicated to learn from a single surface or a set of homogeneous
surfaces. However, when the data exhibit a grouping aspect, this may be restrictive, and its extension to
accommodate clustered data is needed. I therefore integrate the BSSR model into a mixture framework.
This is mainly motivated by a clustering prospective. The resulting model is therefore a Bayesian mixture
of spatial spline regression with mixed-effects (BMSSR) and is described in the following section.

The model

Consider that there are K sub-populations within the n surfaces, that is the responses Y = (y1, . . . ,yn)
and their corresponding spatial covariates (S1, . . . ,Sn). The proposed BMSSR model has the following
stochastic representation. Conditional on component k, the individual yi given Si is modeled by a BSSR
model as:

yi = Si(βk + bik) + eik. (4.35)

Thus, a K component Bayesian mixture of spatial spline regression models with mixed-effects (BMSSR)
has the following density:

f(yi|Si;Ψ) =

K∑
k=1

πk N
(
yi; Si(βk + bik), σ2

kImi
)

(4.36)

where Ψ = (π1, . . . , πK−1,β
T
1 , . . . ,β

T
K ,B

T
1 , . . . ,B

T
K , σ

2
1 , . . . , σ

2
K , ξ

2
1 , . . . , ξ

2
K)T is the parameter vector of

the model, Bk = (bT1k, . . . ,b
T
nk)T being the vector of the random-effect coefficients of the kth BSSR

component. The BMSSR model is indeed composed of BSSR components, each of them is described
by the parameters Ψk = (βTk ,B

T
k , σ

2
k, ξ

2
k)T and a mixing proportion πk. Therefore, conditional on the

mixture component k, the parameter priors are defined similarly as in the BSSR model (4.30) presented
in the previous section. For the BMSSR model, we therefore just need to specify the distribution on the
mixing proportions π = (π1, . . . , πK) which follow the Multinomial distribution in the generative model
of the non-Bayesian mixture. I use a conjugate prior as for the other parameters, thats is, a Dirichlet prior
with hyper-parameters α = (α1, . . . , αK). The hierarchical prior from for the BMSSR model parameters
is therefore given by:

π ∼ D(α1, . . . , αK)
βk ∼ N (βk|µ0,Σ0)
bik|ξ2k ∼ N (bik|0d, ξ2kId)
ξ2k ∼ IG(ξ2k|a0, b0)
σ2
k ∼ IG(σ2

k|g0, h0).

(4.37)
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Bayesian inference using Gibbs sampling

Once the model prior is defined, here I derive the full conditional posterior distributions needed for the
Gibbs sampler to infer the model parameters. Further mathematical calculation details for these posterior
distributions are given in [J-11]. Consider the vector of augmented parameters, which is the vector of

parameters (πT ,βT ,BT ,σ2T , ξ2
T

)T where π = (π1, . . . , πK)T , β = (βT1 , . . . ,β
T
K)T , σ2 = (σ2

1 , . . . , σ
2
K)T ,

and ξ2 = (ξ21 , . . . , ξ
2
K)T , augmented by the unknown components labels z = (z1, . . . , zn) and the observed

data {Si,yi}. Let us also introduce the binary latent component-indicators Zik such that Zik = 1 iff
Zi = k, Zi being the hidden label of the mixture component from which the ith individual is generated.
Then, the full conditional distributions are given as follows:

Zi|... ∼M(1; τi1, . . . , τiK) with τik(1 ≤ k ≤ K) = P(Zi = k|yi,Si;Ψ) =
πk N

(
yi|Si(βk + bik), σ2

kImi
)∑K

l=1 πl N (yi|Si(βl + bil), σ2
l Imi)

,(4.38)

π|... ∼ D (α1 + n1, . . . , αK + nK) with nk =

n∑
i=1

Zik (4.39)

βk|... ∼ N (ν0,V0) with V−1
0 = Σ−1

0 +
1

σ2
k

n∑
i=1

Zik ST
i Si, ν0 = V0

(
1

σ2
k

n∑
i=1

Zik ST
i (yi − Sibik)−Σ−1

0 µ0

)
(4.40)

bik|... ∼ N (ν1,V1) with V−1
1 =

1

σ2
k

ST
i Si +

1

ξ2k
I, ν1 = V1

(
1

σ2
k

ST
i (yi − Siβk)

)
, (4.41)

σ2
k|... ∼ IG(g1, h1) with g1 = g0 +

1

2

n∑
i=1

Zik, h1 = h0 +

∑n
i=1 Zik (yi − Siβk − Sibik)T (yi − Siβk − Sibik)

2
(4.42)

ξ2k|... ∼ IG (a1, b1) with a1 = a0 +
n

2
, b1 = b0 +

∑n
i=1 bT

ikbik

2
· (4.43)

The Gibbs sampler for the BMSSR then cycles by sampling from each of the above posterior distributions
until a sufficiently large number of samples is reached.

The label switching problem

Here I open a parenthesis to discuss a well-known problem encountered in Bayesian inference of mixtures,
that is, the one of label switching. The statistical inference is meaningful if the notion of identifiability is
established. The estimation of Ψ is therefore meaningful if the model f(.|Ψ) is identifiable, that is, when
f(yi|Ψ) = f(yi|Ψ

?) if and only if Ψ = Ψ?. It is well known that mixture models are not identifiable
in the strict sense, but a weak identifiability can be established for them, that is, identifiability up to
a permutation. As discussed for example in (McLachlan and Peel., 2000, Section 1.14), this problem is
not of concern in maximum likelihood fitting of mixtures via the EM algorithm. However, identifiably in
mixtures is of concern in the Bayesian framework where in the posterior simulation the mixture component
labels can be interchanged from one sample to another. This problem is known as the label-switching
problem. Different strategies were proposed in the literature to deal with this problem. One simple way
to deal with label switching is to impose constraints on the model parameters to force an unique labeling
in the MCMC sampling, and hence ensure identifiability. For example one may use ordering constrains
on the parameters as in Richardson and Green (1997) for the case of univariate Gaussian mixtures, e.g.,
constraints on the means, the variances, or the mixing proportions. This was also discussed in Marin
et al. (2005). However, Celeux (1999); Celeux et al. (2000) showed that this strategy of forcing constrains
on the model parameters is not efficient and, if it works, does not scale to higher dimensions. Another
approach is to post-process the posterior parameter samples by searching for the labels permutation that
minimizes some loss function as in Stephens (2000b). As discussed in Celeux (1999) and Celeux et al.
(2000), while this procedure works well, it can be numerically demanding as it is an offline algorithm
needing storing significant amount of data samples, and it is also restricted to the limited framework of
Bayesian analysis of latent structure models with conjugate prior distributions. Celeux (1999); Celeux
et al. (2000) proposed a better solution in the same spirit of the one of Stephens which consists of a
sequential k-means like algorithm to cluster the posterior samples and which has several advantages. It
is quite simple, not specific to Bayesian analysis with conjugate prior distributions or to the mixture
context, and it is not numerically demanding. So what is suggested here is to relabel the obtained
posterior parameter samples when the label switching happens by the K-means-like algorithm of Celeux
(1999); Celeux et al. (2000).
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4.3 Bayesian mixtures of spatial spline regressions

Model-based surface clustering using the BMSSR

In addition to Bayesian density estimation, The previously presented BMSSR model can also be used for
Bayesian model-based surface clustering to provide a partition of the data into K clusters. Model-based
clustering using the BMSSR model consists in assuming that the observed data {Si,yi}ni=1 are generated
from a K component mixture of spatial spline regressions with mixed-effects with parameter vector
Ψ . The mixture components can be interpreted as clusters and hence each cluster can be associated
with a mixture component. The problem of clustering therefore becomes the one of estimating the
BMSSR parameters Ψ . This is performed here by Gibbs sampling which provides a MAP estimator
Ψ̂MAP, which can be obtained by averaging the Gibbs posterior sample after removing some initial
samples corresponding to a burn-in period. A partition of the data can then be obtained from the
posterior memberships by applying the Bayes’ optimal allocation rule, that is, by maximizing the posterior
component probabilities to assign each surface to a component (cluster): ẑi = arg maxKk=1 τik(Ψ̂MAP)
where ẑi represents the estimated cluster label for the ith surface.

4.3.5 Experiments

Two proposed Bayesian models were experimented in [J-11] on simulated surfaces and real surfaces issued
from a handwritten character recognition problem by considering real images from the MNIST data set
(LeCun et al., 1998) to test it in terms of surface approximation and clustering. I first considered bi-
dimensional arbitrary non-linear functions and I attempted to approximate it from a sample of simulated
noisy surfaces generated on a square domain in order to test the model in terms of surface approximation.
The simulated data include mixed effects. The fitted mean surfaces using a reasonable number of basis
functions, is very close to the true one. This is confirmed by the obtained small values (i.e 0.0865) of the
empirical sum of squared error (SSE) between the true surface and the fitted one.

Figure 4.3 shows an example of actual arbitrary mean function before the noise and the random effects
are added, an example of simulated surface the fitted mean surface µ̂(x) = Siβ̂ from a set of 100 surfaces
with d = 15× 15 NBFs.

−10

−5

0

5

10

−10

−5

0

5

10

−0.5

0

0.5

1

 

x1

True mean surface

x2

 

µ

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−10

−5

0

5

10

−10

−5

0

5

10
−0.5

0

0.5

1

 

x1

Simulated surface y

x2
 

Y

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−10

−5

0

5

10

−10

−5

0

5

10

−0.5

0

0.5

1

 

x1

Estimated mean surface

x2

 

E
s
ti
m

a
te

d
 µ

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.3: True mean surface (left), an example of noisy surface (middle), A BSSR fit from 100 surfaces

using 15× 15 NBFs (right).

Then, the second model, that is the BMSSR, was applied on a subset of the ZIPcode data set Hastie
et al. (2010), which is issued from the MNIST data set. The data set contains 9298 16 by 16 pixel gray
scale images of Hindu-Arabic handwritten numerals. Each individual yi contains mi = 256 observations
and the Gibbs sampler is run with different numbers of clusters on a subset of 1000 digits randomly
chosen from the Zipcode testing set. The best solution is selected in terms of the Adjusted Rand Index
(ARI) values, which promotes a partition with K = 12 clusters. The cluster means for the partition
obtained by the proposed Bayesian model (BMSSR) clearly shows that the model is able to recover the
ten digits, and not surprisingly has revealed subgroups of some digits (0 and 5).

Figure 4.4 shows the cluster means for the obtained clusters by the proposed Baysian model (BMSSR).
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4. BAYESIAN REGULARIZATION OF MIXTURES FOR FUNCTIONAL DATA

Figure 4.4: Cluster mean images obtained by the proposed BMSSR model on an MNIST set with 12

mixture components.

4.3.6 Conclusion

In this section I first presented a probabilistic Bayesian model for homogeneous spatial data based on
spatial spline regression with mixed-effects (BSSR). The model is able to accommodate individuals with
both fixed and random effect variability. Then, motivated by a model-based surface clustering perspective,
I introduced the Bayesian mixture of spatial spline regressions with mixed-effects (BMSSR) for spatial
functional data dispersed into groups. I derived Gibbs samplers to infer the models. Application on
simulated surfaces illustrates the surface approximation using the BSSR model. Then, application on
real data in a handwritten digit recognition framework shows the potential benefit of the proposed BMSSR
model for Bayesian surface clustering. The BMSSR can be extended to be used for supervised surface
classification. This can be performed without difficulty by modeling each class by a BMSSR model and
then applying the Bayes rule to assign a new unlabeled surface to the class corresponding to the highest
posterior probability. One future work might also concern the assessment of the performance of the
Bayesian mixture model in the case where the data (e.g. the handwritten character images) are sparsely
sampled by introducing missing data as in Nguyen et al. (2014). Since the BMSSR is a latent (missing)
data model, it can be applied directly without data imputation unlike other competitors. Then, another
interesting perspective is to derive a Bayesian non-parametric model by relying on Dirichlet Process
mixture models where the number of mixture components can be directly inferred from the data.
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[5] Marius Bartcus, Faicel Chamroukhi, and Hervé Glotin. Unsupervised whale song decomposition
with Bayesian non-parametric Gaussian mixture. In Proceedings of the NIPS4B workshop, Neural
Information Processing Systems (NIPS), pages 205–211, Nevada, USA, 2013

[6] M. Bartcus, F. Chamroukhi, and H. Glotin. Clustering Bayésien Parcimonieux Non-Paramétrique. In
Extraction et Gestion des Connaissances (EGC), Atelier CluCo : Clustering et Co-clustering, pages
3–13, Rennes, France, Jan 2014

64

http://arxiv.org/pdf/1501.03347.pdf


I initiated this research direction in 2012, with the beginning of the PhD thesis of Marius Bartcus, for
whom I was the principal supervisor. In this research I investigate the mixture models for multivariate
data in a fully Bayesian framework. It is structured into two parts. The first one corresponds to the in-
vestigation of what can be called parametric Bayesian mixtures and their inference using mainly Bayesian
sampling, with a particular focus on the finite parsimonious mixtures which offer a great modeling flexi-
bility. The second one however addresses the problem from a non-parametric perspective by investigating
the Dirichlet process Mixture derivation for Bayesian mixtures which can be interpreted as an infinite
mixture model, with particularly the derivation of new Dirichlet process parsimonious mixtures. This
research has lead, until this day, to the following publications: [J-10] [C-1] [C-2] [C-4] [C-3] [C-6] [C-5]
and an application paper [J-17] is in preparation for submission to a specialized journal.

5.1 Introduction

In this axis, I consider the problem of Bayesian inference for fitting multivariate Gaussian mixtures. The
framework of Bayesian inference was already introduced in the second part of the previous chapter dedi-
cated to the Bayesian models for spatial functional data. In this Chapter, I revisit the classical problem
of fitting Gaussian mixtures from multivariate data and I’ll focus on the parsimonious mixtures which
are promoted to fit flexible structures to high dimensional data and can be considered as a dimensionality
reduction method. The angle of approach compared to the previous Chapter is different though, since
here I will be placed mainly in the Bayesian non-parametric framework where the number of mixture
components is unbounded, that is, by considering the infinite mixture modeling using Dirichlet Process
mixture models or by equivalence the Chinese Restaurant Process mixtures. The considered application
is clustering which is one of the essential tasks in statistics and machine learning. Model-based cluster-
ing, that is the clustering approach based on the parametric finite mixture model (McLachlan and Peel.,
2000), is one of the most popular and successful approaches in cluster analysis (McLachlan and Basford,
1988; Banfield and Raftery, 1993; Fraley and Raftery, 2002). The finite mixture model decomposes the
density of the observed data as a weighted sum of a finite number of K component densities. Most
often, the used model for multivariate real data is the finite Gaussian mixture model (GMM) in which
each mixture component is Gaussian. This chapter will be focusing on Gaussian mixture modeling for
multivariate real data. In Banfield and Raftery (1993) and Celeux and Govaert (1995), the authors devel-
oped a parsimonious GMM clustering approach by exploiting an eigenvalue decomposition of the group
covariance matrices of the GMM components, which provides a wide range of very flexible models with
different clustering criteria. It was also demonstrated in Fraley and Raftery (2002) that the parsimonious
mixture model-based clustering framework provides very good results in density estimation as well as in
cluster and discriminant analyses. In model-based clustering using GMMs, the parameters of the Gaus-
sian mixture are usually estimated in a maximum likelihood estimation (MLE) framework by maximizing
the observed data likelihood. This is usually performed by the EM algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 2008) or EM extensions (McLachlan and Krishnan, 2008). The parameters of
the parsimonious Gaussian mixture models can also be estimated in a MLE framework by using the EM
algorithm (Celeux and Govaert, 1995). However, a possible issue in the MLE approach using the EM al-
gorithm for normal mixtures is that it may fail due to singularities or degeneracies, as highlighted namely
in Stephens (1997); Snoussi and Mohammad-Djafari (2001, 2005); Fraley and Raftery (2005) and Fraley
and Raftery (2007). The Bayesian estimation methods for mixture models have lead to intensive research
in the field for dealing with the problems encountered in MLE for mixtures (Diebolt and Robert, 1994;
Escobar and West, 1994; Robert, 2007; Richardson and Green, 1997; Stephens, 1997; Bensmail et al.,
1997; Bensmail and Meulman, 2003; Marin et al., 2005; Gelman et al., 2003) which rely on a Bayesian
formulation of the the mixture model. They allow to avoid these problems by replacing the MLE by the
maximum a posterior (MAP) estimator. This is namely achieved by introducing a regularization over
the model parameters via prior parameter distributions, which are assumed to be uniform in the case of
MLE. The MAP estimation for the Bayesian Gaussian mixture is performed by maximizing the posterior
parameter distribution. This can be performed, in some situations by an EM-MAP scheme as in Fraley
and Raftery (2005) and Fraley and Raftery (2007) where the authors proposed an EM algorihtm for
estimating Bayesian parsimonious Gaussian mixtures. However, the common estimation approach in the
case of Bayesian mixtures is still the one based on Bayesian sampling such as Markov Chain Monte Carlo
(MCMC), namely Gibbs sampling (Diebolt and Robert, 1994; Stephens, 1997; Bensmail et al., 1997)
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when the number of mixture components K is known, or by reversible jump MCMC introduced by Green
(1995) as in Richardson and Green (1997) and Stephens (1997), when this one is unknown. The principle
of Bayesian inference using MCMC was described in Section 4.3.1.
The flexible eigenvalue decomposition of the group covariance matrix described previously was also ex-
ploited in Bayesian parsimonious model-based clustering by Bensmail et al. (1997); Bensmail and Meul-
man (2003) where the authors used a Gibbs sampler for the model inference. For these model-based
clustering approaches, the number of mixture components is usually assumed to be known. Another
issue in the finite mixture model-based clustering approach, including the MLE approach as well as the
MAP approach, is therefore the one of selecting the optimal number of mixture components, that is the
problem of model selection. The model selection is in general performed through a two-fold strategy by se-
lecting the best model from pre-established inferred model candidates. For the MLE approach, the choice
of the optimal number of mixture components can be performed via penalized log-likelihood criteria such
as the Bayesian Information Criterion (BIC) (Schwarz, 1978), the Akaike Information Criterion (AIC)
(Akaike, 1974), the Approximate Weight of Evidence (AWE) criterion (Banfield and Raftery, 1993), or
the Integrated Classification Likelihood criterion (ICL) (Biernacki et al., 2000), etc. For the MAP ap-
proach, this can still be performed via modified penalized log-likelihood criteria such as a modified version
of BIC as in (Fraley and Raftery, 2007) computed for the posterior mode, and more generally the Bayes
factors (Kass and Raftery, 1995) as in Bensmail et al. (1997) for parsimonious mixtures. Bayes factors are
indeed the natural Bayesian criterion for model selection and comparison in the Bayesian framework and
for which the criteria such as BIC, AWE, etc represent indeed approximations. There is also Bayesian
extensions for mixture models that analyze mixtures with unknown number of components, for example
as mentioned before the one of Richardson and Green (1997) using RJMCMC and the one of Stephens
(2000a, 1997) using the birth and death process. They are referred to as fully Bayesian mixture models
(Richardson and Green, 1997) as they consider the number of mixture components as a parameter to be
inferred from the data, jointly with the mixture model parameters, based on the posterior distributions.

However, these standard finite mixture models, including the non-Bayesian and the Bayesian ones, are
parametric and may not be well adapted in the case of unknown and complex data structure. Recently,
the Bayesian-non parametric (BNP) formulation of mixture models, that goes back to Ferguson (1973)
and Antoniak (1974), have took much attention as a nonparametric alternative for formulating mixtures.
The BNP methods (Robert, 2007; Hjort et al., 2010) have indeed recently become popular due to their
flexible modeling capabilities and advances in inference techniques, in particular for mixture models, by
using namely MCMC sampling techniques (Neal, 2000; Rasmussen, 2000) or variational inference ones
(Blei and Jordan, 2006). BNP methods for clustering, including Dirichlet Process Mixtures (DPM) and
Chinese Restaurant Process (CRP) mixtures (Ferguson, 1973; Antoniak, 1974; Pitman, 1995; Wood and
Black, 2008; Samuel and Blei, 2012) which can be represented as infinite Gaussian mixture models as in
Rasmussen (2000), provide a principled way to overcome the issues in standard model-based clustering
and classical Bayesian mixtures for clustering. They are fully Bayesian approaches that offer a principled
alternative to jointly infer the number of mixture components (i.e clusters) and the mixture parameters,
from the data. By using general processes as priors, they allow to avoid the problem of singularities and
degeneracies of the MLE, and to simultaneously infer the optimal number of clusters from the data, in
a one-fold scheme, rather than in a two-fold approach as in standard model-based clustering. They also
avoid assuming restricted functional forms and thus allow the complexity and accuracy of the inferred
models to grow as more data is observed. They also represent a good alternative to the difficult problem
of model selection in parametric mixture models. Note that the term non-parametric does not mean that
there are no parameters, it rather means that one would have more and more parameters, as more data
are observed.

In this chapter, I present a new BNP formulation of the Gaussian mixture with the eigenvalue de-
composition of the group covariance matrix of each Gaussian component which has proven its flexibility
in cluster analysis for the parametric case (Banfield and Raftery, 1993; Celeux and Govaert, 1995; Fra-
ley and Raftery, 2002; Bensmail et al., 1997). We develop new Dirichlet Process mixture models with
parsimonious covariance structure, which results in Dirichlet Process Parsimonious Mixtures (DPPM).
They represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixture models.
The proposed DPPM models are Bayesian parsimonious mixture models with a Dirichlet Process prior
and thus provide a principled way to overcome the issues encountered in the parametric Bayesian and
non-Bayesian case and allow to automatically and simultaneously infer the model parameters and the
optimal model structure from the data, from different models, going from simplest spherical ones to the
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more complex standard general one. We develop a Gibbs sampling technique for maximum a posteriori
(MAP) estimation of the various models and provide an unifying framework for model selection and
models comparison by using namely Bayes factors, to simultaneously select the optimal number of mix-
ture components and the best parsimonious mixture structure. The proposed DPPM are more flexible
in terms of modeling and their use in clustering, and automatically infer the number of clusters from the
data.

5.1.1 Personal contribution

My contribution in this direction is two-fold. The first one consists in investigating Bayesian mixtures
and their inference using mainly MCMC sampling, with a particular focus on the finite parsimonious
mixtures which offer great modeling flexibilities. The second one, however, addresses the problem from a
non-parametric perspective by investigating the Dirichlet process mixtures. I developed a Bayesian non-
parametric formulation for the parsimonious mixture models. By relying on Dirichlet Process mixtures,
or by equivalence the Chinese Restaurant Process mixtures, I introduced Dirichlet Process Parsimonious
mixture models (DPPMs), which provide a flexible framework for modeling different data structures as
well as a good alternative to tackle the problem of model selection. I derive a Gibbs sampler to infer the
models and use Bayes Factors for Bayesian model comparison. Applications and comparisons on several
data sets highlight the effectiveness of the proposed nonparametric parsimonious mixture models as a
good nonparametric alternative for the parametric parsimonious models. The models have also shown
very encouraging performance in a challenging problem of unsupervised bioacoustic signals decomposition
application.

This chapter is organized as follows. Section 5.2 describes and discusses previous work on model-based
clustering. Then, section 5.3 presents the proposed models and the learning technique. In section 5.3.5,
we give experimental results to evaluate the proposed models on simulated data and real data. Finally,
Section 5.4 is devoted to a discussion and concluding remarks.

5.2 Finite mixture model model-based clustering

Let X = (x1, . . . ,xn) be a sample of n i.i.d observations in Rd, and let z = (z1, . . . , zn) be the corre-
sponding unknown cluster labels where zi ∈ {1, . . . ,K} represents the cluster label of the ith data point
xi, K being the possibly unknown number of clusters.
Parametric Gaussian clustering, also called model-based clustering (McLachlan and Basford, 1988; Fraley
and Raftery, 2002), is based on the finite GMM (McLachlan and Peel., 2000) in which the probability
density function of the data is given by:

p(xi|θ) =

K∑
k=1

πk N (xi|θk) (5.1)

where the πk’s are the mixing proportions, θk = (µk,Σk) are respectively the mean vector and the covari-
ance matrix for the kth Gaussian component density and θ = (π1, . . . , πK−1,µ

T
1 , . . . ,µ

T
K , vech(Σ1)T , . . . , vech(ΣK)T )T

is the GMM parameter vector. From a generative point of view, the generative process of the data for the
finite mixture model can be stated as follows. First, a mixture component zi is sampled independently
from a Multinomial distribution given the mixing proportions π = (π1, . . . , πK). Then, given the mixture
component zi = k, and the corresponding parameters θk, the individual xi is generated independently
from a Gaussian with parameters θk, that is:

zi ∼ M(π) (5.2)

xi|θzi ∼ N (xi|θzi). (5.3)

The mixture model parameters θ is usually estimated in a Maximum Likelihood Estimation (MLE)
framework by maximizing the observed data likelihood (5.4):

L(θ|X) =

n∏
i=1

K∑
k=1

πk N (xi|θk). (5.4)
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via the EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2008) or EM extensions (McLach-
lan and Krishnan, 2008).

5.2.1 Bayesian model-based clustering

As mentioned in the introduction, the MLE approach using the EM algorithm for normal mixtures may
fail in some situations due to singularities or degeneracies (Stephens, 1997; Fraley and Raftery, 2005,
2007). The Bayesian approach of mixture models avoids the problems associated with the MLE via a
MAP estimation framework by maximizing the posterior parameter distribution

p(θ|X) = p(θ)L(θ|X), (5.5)

p(θ) being a chosen prior distribution over the model parameters θ. The prior distribution in general
takes the following form for the GMM:

p(θ) = p(π|α)p(µ|Σ,µ0, κ0)p(Σ|µ,Λ0, ν) = p(π|α)

K∏
k=1

p(µk|Σk)p(Σk).

where (α,µ0, κ0,Λ0, ν0) are hyperparameters. A common choice for the GMM is to assume conjugate
priors, that is Dirichlet distribution for the mixing proportions as in Richardson and Green (1997) and
Ormoneit and Tresp (1998), and a multivariate normal Inverse-Wishart prior distribution for the Gaus-
sian parameters, that is a multivariate normal for the means and an Inverse-Wishart for the covariance
matrices, for example as in Bensmail et al. (1997), Fraley and Raftery (2005) and Fraley and Raftery
(2007).

From a generative point of view, to generate data from the Bayesian GMM, a first step is to sample the
model parameters from the prior, that is to sample the mixing proportions from their conjugate Dirichlet
prior distribution, and the mean vectors and the covariance matrices of the Gaussian components from
the corresponding conjugate multivariate normal Inverse-Wishart prior. Then, the generative procedure
remains the same as in the previously described generative process for the non-Bayesian finite mixture,
and is summarized by the following steps:

π|α ∼ D(α)

zi|π ∼ M(π) (5.6)

θzi |G0 ∼ G0

xi|θzi ∼ N (xi|θzi)

where α are hyperparameters of the Dirichlet prior distribution, and G0 is a prior distribution for the
parameters of the Gaussian component, that is a multivariate Normal Inverse-Wishart:

Σk ∼ IW(ν0,Λ0) (5.7)

µk|Σk ∼ N (µ0,
Σ

κ0
) (5.8)

where the IW stands for the Inverse-Wishart distribution.
The parameters θ of the Bayesian Gaussian mixture are estimated by MAP estimation by maximizing

the posterior parameter distribution (5.5). The MAP estimation can still be performed by EM, namely
in the case of conjugate priors where the prior distribution is only considered for the parameters of the
Gaussian components, as in Fraley and Raftery (2005) and Fraley and Raftery (2007). However, in
general, the common estimation approach in the case the Bayesian GMM described above, is the one
using Bayesian sampling such as MCMC sampling techniques, namely the Gibbs sampler (Geyer, 1991;
Neal, 1993; Diebolt and Robert, 1994; Bensmail et al., 1997; Ormoneit and Tresp, 1998; Stephens, 1997).

5.2.2 Parsimonious Gaussian mixture models

The GMM clustering has been extended to parsimonious GMM clustering (Banfield and Raftery, 1993;
Celeux and Govaert, 1995) by exploiting an eigenvalue decomposition of the group covariance matrices,
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which provides a wide range of very flexible models with different clustering criteria. In these parsimonious
models, the group covariance matrix Σk for each cluster k is decomposed as

Σk = λkDkAkD
T
k (5.9)

where λk = |Σk|1/d, Dk is an orthogonal matrix of eigenvectors of Σk and Ak is a diagonal matrix
with determinant 1 whose diagonal elements are the normalized eigenvalues of Σk in a decreasing order.
As described in Celeux and Govaert (1995), the scalar λk determines the volume of cluster k, Dk its
orientation and Ak its shape. Thus, this decomposition leads to several flexible models going from
simplest spherical models to the complex general one and hence is adapted to various clustering situations.

The parameters θ of the parsimonious Gaussian mixture models are estimated in a MLE framework
by using the EM algorithm. The details of the EM algorithm for the different parsimonious finite GMMs
are given in Celeux and Govaert (1995). The parsimonious GMMs have also took much attention under
the Bayesian prospective. For example, in Bensmail et al. (1997), the authors proposed a fully Bayesian
formulation for inferring the previously described parsimonious finite Gaussian mixture models. This
Bayesian formulation was applied in model-based cluster analysis (Bensmail et al., 1997; Bensmail and
Meulman, 2003). The model inference in this Bayesian formulation is performed in a MAP estimation
framework by using MCMC sampling techniques, see for example (Bensmail et al., 1997; Bensmail and
Meulman, 2003). Another Bayesian regularization for the parsimonious GMM was proposed by Fraley
and Raftery (2005, 2007) in which the maximization of the posterior can still be performed by the EM
algorithm in the MAP framework (EM-MAP). Here we consider the parsimonious GMMs (PGMMs)
mainly in a Bayesian non-parametric framework as well see in what follows, instead of into a finite
(Bayesian) mixture. This as will see helps namely to tackle the problem of model selection from non-
parametric prospective.

Model selection in finite mixture models Finite mixture model-based clustering requires to specify
the number of mixture components (i.e., clusters) and, in the case of parsimonious models, the type of the
model. The main issues in this parametric model are therefore the one of selecting the number of mixture
components (clusters), and possibly the type of the model, that fit at best the data. This problem can
be tackled by penalized log-likelihood criteria such as BIC (Schwarz, 1978) or penalized classification
log-likelihood criteria such as AWE (Banfield and Raftery, 1993) or ICL (Biernacki et al., 2000), etc, or
more generally by using Bayes factors (Kass and Raftery, 1995) which provide a general way to select
and compare models in (Bayesian) statistical modeling, namely in Bayesian mixture models.

5.3 Dirichlet Process Parsimonious Mixtures

The Bayesian and non-Bayesian finite mixture models described previously are however in general para-
metric and may not be well adapted to represent complex and realistic data sets. Recently, the Bayesian-
non parametric (BNP) mixtures, in particular the Dirichlet Process Mixture (DPM) (Ferguson, 1973;
Antoniak, 1974; Wood and Black, 2008; Samuel and Blei, 2012) or by equivalence the Chinese Restau-
rant Process (CRP) mixture (Aldous, 1985; Pitman, 2002; Samuel and Blei, 2012), which can be seen as
an infinite mixture model (Rasmussen, 2000), provide a principled way to overcome the issues in standard
model-based clustering and classical Bayesian mixtures for clustering. They are fully Bayesian approaches
and offer a principled alternative to jointly infer the number of mixture components (i.e clusters) and the
mixture parameters, from the data. BNP mixture approaches for clustering assume general process as
prior on the infinite possible partitions, which is not restrictive as in classical Bayesian inference. Such a
prior can be a Dirichlet Process (Ferguson, 1973; Antoniak, 1974; Samuel and Blei, 2012) or, by equiva-
lence, a Chinese Restaurant Process (Pitman, 2002; Samuel and Blei, 2012). In the next section, we rely
on the Dirichlet Process Mixture (DPM) formulation to derive the proposed Bayesian non-parametric
formulation of the parsimonious models.

5.3.1 Dirichlet Process Parsimonious Mixtures

A Dirichlet Process (DP) (Ferguson, 1973) is a distribution over distributions and has two parameters,
the concentration parameter α0 > 0 and the base measure G0. We denote it by DP(α,G0). Assume
there is a parameter θ̃i following a distribution G, that is θ̃i|G ∼ G. Modeling with DP means that we
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assume that the prior over G is a DP, that is, G is itself generated from a DP: G ∼ DP(α,G0). This can
be summarized by the following generative process:

θ̃i|G ∼ G, ∀i ∈ 1, . . . , n (5.10)

G|α,G0 ∼ DP(α,G0)· (5.11)

The DP has two properties (Ferguson, 1973). First, random distributions drawn from DP, that is G ∼
DP(α,G0), are discrete. Thus, there is a strictly positive probability of multiple observations taking
identical values within the set (θ̃1, · · · , θ̃n). Suppose we have a random distribution G drawn from a DP
followed by repeated draws (θ̃1, . . . , θ̃n) from that random distribution, Blackwell and MacQueen (1973)
introduced a Pólya urn representation of the joint distribution of the random variables (θ̃1, . . . , θ̃n), that
is

p(θ̃1, . . . , θ̃n) = p(θ̃1)p(θ̃2|θ̃1)p(θ̃3|θ̃1, θ̃2) . . . p(θ̃n|θ̃1, θ̃2, . . . , θ̃n−1), (5.12)

which is obtained by marginalizing out the underlying random measure G:

p(θ̃1, . . . , θ̃n|α,G0) =

∫ ( n∏
i=1

p(θ̃i|G)

)
dp(G|α,G0) (5.13)

and results in the following Pólya urn representation for the calculation of the predictive terms of the
joint distribution (5.12):

θ̃i|θ̃1, ...θ̃i−1 ∼ α0

α0 + i− 1
G0 +

i−1∑
j=1

1

α0 + i− 1
δθ̃j (5.14)

∼ α0

α0 + i− 1
G0 +

Ki−1∑
k=1

nk
α0 + i− 1

δθk (5.15)

where Ki−1 is the number of clusters after i − 1 samples, nk denotes the number of times each of the
parameters {θk}∞k=1 occurred in the set {θ̃i}ni=1. The DP therefore places its probability mass on a
countability infinite collection of points, also called atoms, that is an infinite mixture of Dirac deltas
(Ferguson, 1973; Sethuraman, 1994; Samuel and Blei, 2012):

G =

∞∑
k=1

πkδθk θk|G0 ∼ G0, k = 1, 2, ..., (5.16)

where πk represents the probability assigned to the kth atom, and the set satisfy
∑∞
k=1 πk = 1, and

θk is the location or value of that component (atom). These atoms are drawn independently from the
base measure G0. Hence, according to the DP process, the generated parameters θ̃i exhibit a clustering
property, that is, they share repeated values with positive probability where the unique values of θ̃i
shared among the variables are independent draws for the base distribution G0 (Ferguson, 1973; Samuel
and Blei, 2012). The Dirichlet process therefore provides a very interesting approach for a clustering
perspective, when we do not have a fixed number of clusters, in other words having an infinite mixture,
say K tends to infinity. Consider a set of observations (x1, . . . ,xn) to be clustered. Clustering with DP
adds a third step to the DP (5.11), that is we assume that the random variables xi, given the distribution
parameters θ̃i which are generated from a DP, are generated from a conditional distribution f(.|θ̃i). This
is the DP mixture (DPM) model (Antoniak, 1974; Escobar, 1994; Wood and Black, 2008; Samuel and
Blei, 2012). The DPM adds therefore a third step to the DP, that is the of generating random variables
xi given the distribution parameters θ̃i. The generative process of the DP Mixture (DPM) is therefore
as follows:

G|α,G0 ∼ DP(α,G0) (5.17)

θ̃i|G ∼ G (5.18)

xi|θ̃i ∼ f(xi|θ̃i) (5.19)

where f(xi|θ̃i) is a cluster-specific density, for example a multivariate Gaussian density in the case of DP
multivariate Gaussian mixture, in which θ̃i is composed of a mean vector and a covariance matrix. In that
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case, the base measure G0 corresponds to the prior parameters distribution which may be a multivariate
normal Inverse-Wishart conjugate prior. When K tends to infinity, it can be shown that the finite mixture
model (5.1) - (5.6) converges to a Dirichlet process mixture model (Ishwaren and Zarepour, 2002; Neal,
2000; Rasmussen, 2000). The Dirichlet process has a number of properties which make inference based
on this nonparametric prior computationally tractable. It also has a interpretation in term of the CRP
mixture (Pitman, 2002; Samuel and Blei, 2012) which explicitly shows its suitability to clustering thanks
to the integration of the hidden component labels zi in the generative process. Indeed, the second property
of the DP, that is the fact that random parameters drawn from a DP share identical values and thus
exhibit a clustering property, connects the DP to the CRP. Consider a random distribution drawn from
a DP G ∼ DP (α,G0) followed by repeated draws from that random distribution θ̃i ∼ G, ∀i ∈ 1, . . . , n.
The structure of the shared values defines a partition of the integers from 1 to n, and the distribution of
this partition is a CRP (Ferguson, 1973; Samuel and Blei, 2012). This is defined in the following section

5.3.2 Chinese Restaurant Process parsimonious mixtures

Consider the unknown cluster labels z = (z1, . . . , zn) where each value zi is an indicator random variable
that represents the label of the unique value θzi of θ̃i such that θ̃i = θzi for all i ∈ {1, . . . , n}. The CRP
provides a distribution on the infinite partitions of the data, that is a distribution over the positive integers
1, . . . , n. Consider the following joint distribution of the unknown cluster assignments (z1, . . . , zn):

p(z1, . . . , zn) = p(z1)p(z2|z1) . . . p(zn|z1, z2, . . . , zn−1)· (5.20)

From the Pólya urn distribution (5.15), each predictive term of the joint distribution (5.20) can be
computed as:

p(zi = k|z1, ..., zi−1;α0) =
α0

α0 + i− 1
δ(zi,Ki−1 + 1) +

Ki−1∑
k=1

nk

α0 + i− 1
δ(zi, k)· (5.21)

where nk =
∑i−1
j=1 δ(zj , k) is the number of indicator random variables taking the value k after i − 1

observations, and Ki−1 +1 is the previously unseen value. From this distribution, one can therefore allow
assigning new data to possibly previously unseen (new) clusters as the data are observed, after starting
with one cluster. The distribution on partitions induced by the sequence of conditional distributions
in Eq. (5.21) is commonly referred to as the Chinese Restaurant Process (CRP). It can be interpreted
as follows. Suppose there is a restaurant with an infinite number of tables and in which customers are
entering and sitting at these tables. We assume that customers are social, so that the ith customer
sits at table k with probability proportional to the number of already seated customers nk (k ≤ Ki−1
being a previously occupied table), and may choose a new table (k > Ki−1, k being a new table to be
occupied) with a probability proportional to a small positive real number α, which represents the CRP
concentration parameter.

In clustering with the CRP, customers correspond to data points and tables correspond to clusters.
In CRP mixture, the prior CRP(z1, . . . , zi−1;α) (5.21) is completed with a likelihood with parameters
θk for each table (cluster) k (i.e., a multivariate Gaussian likelihood with mean vector and covariance
matrix in the GMM case), and a prior distribution (G0) for the parameters. For example, in the GMM
case, one can use a conjugate multivariate normal Inverse-Wishart prior distribution for the mean vectors
and the covariance matrices. This process therefore corresponds to the fact that the ith customer sits at
table Zi = k, chooses a dish (the parameter θzi) from the prior of that table (cluster). The CRP mixture
can be summarized according to the following generative process.

zi ∼ CRP(z1, . . . , zi−1;α) (5.22)

θzi |G0 ∼ G0 (5.23)

xi|θzi ∼ f(.|θzi)· (5.24)

where the CRP distribution is given by Eq. (5.20), G0 is a base measure (the prior distribution) and
f(xi|θzi) is a cluster-specific density. In the DPM and CRP mixtures with multivariate Gaussian compo-
nents, the parameters θ of each cluster density are composed of a mean vector and a covariance matrix.
In that case, a common base measure G0 is a multivariate normal Inverse-Wishart conjugate prior.
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We note that in the proposed DP parsimonious mixture, or by equivalence, CRP parsimonious mix-
ture, the cluster covariance matrices are parametrized in terms of an eigenvalue decomposition to provide
more flexible clusters with possibly different volumes, shapes and orientations. In terms of a CRP inter-
pretation, this can be seen as a variability of dishes for each table (cluster). We indeed use the eigenvalue
value decomposition described in section 5.2.2 which until now has been considered only in the case of
parametric finite mixture model-based clustering (eg. see Celeux and Govaert (1995) and Banfield and
Raftery (1993)), and Bayesian parametric finite mixture model-based clustering (eg. see Bensmail et al.
(1997), Bensmail and Meulman (2003), Fraley and Raftery (2005), and Fraley and Raftery (2007).) We
investigate twelve parsimonious models and implemented and experimented the following nine models,
covering the three families of the mixture models: the general, the diagonal and the spherical family.
The parsimonious models therefore go from the simplest spherical one to the more general full model.
Table 5.1 summarizes the considered parsimonious Gaussian mixture models, the corresponding prior
distribution for each model and the corresponding number of free parameters for a mixture model with
K components for data of dimension d. We used conjugate priors, that is Dirichlet distribution for the

Model Type Prior Applied to # free parameters

λI Spherical IG λ υ + 1

λkI Spherical IG λk υ + d

λA Diagonal IG diag. elements of λA υ + d

λkA Diagonal IG diag. elements of λkA υ + d+K − 1

λDADT General IW Σ = λDADT υ + ω

λkDADT General IG and IW λk and Σ = DADT υ + ω +K − 1

λDkADT
k General IG diag. elements of λA υ +Kω − (K − 1)d

λkDkADT
k General IG diag. elements λkA υ +Kω − (K − 1)(d− 1)

λkDkAkDT
k General IW Σk = λkDkAkDT

k υ +Kω

Table 5.1: Considered Parsimonious models, the associated prior for the covariance structure and number

of free parameters where υ = (K − 1) +Kd and ω = d(d+ 1)/2.

mixing proportions (Richardson and Green, 1997; Ormoneit and Tresp, 1998), and a multivariate Normal
for the mean vectors and and an Inverse-Wishart or an Inverse-Gamma prior for the covariance matrix
depending on the parsimonious model as in (Fraley and Raftery, 2007) and Bensmail et al. (1997).

5.3.3 Bayesian inference via Gibbs sampling

Given a sample of n i.i.d observations X = (x1, . . . ,xn) modeled by one of the proposed Dirichlet process
parsimonious mixture models (DPPMs), the aim is to infer the number K of latent clusters underlying
the observed data, their parameters Θ = (θ1, . . . ,θK) and the latent cluster labels z = (z1, . . . , zn). We
developed an MCMC Gibbs sampling technique, as in Neal (2000), Rasmussen (2000), and Wood and
Black (2008) for the Bayesian inference of the nonparametric parsimonious mixture models.

Recall that, as presented in Section 4.3.1 the Gibbs sampler for mixtures performs in an iterative
way as follows. Given an initial mixture parameters θ(0), and the prior over the missing labels z (here

the CRP), the Gibbs sampler draws the missing labels z(t) from their posterior distribution p(z|X,θ(t))
at each iteration t, which is in this case a Multinomial distribution whose parameters are the posterior
component probabilities. Then, given the completed data and the prior distribution p(θ) over the mixture

parameters, the Gibbs sampler generates the mixture parameters θ(t+1) from the corresponding posterior
distribution p(θ|X, z(t+1)), which is in this conjugate prior case a multivariate Normal Inverse-Wishart, or
a Normal-Inverse-Gamma distribution, depending on the parsimonious model. This Bayesian sampling
procedure produces namely an ergodic Markov chain of samples (θ(t)) with a stationary distribution

p(θ|X). Therefore, after initial M burn-in samples in N Gibbs samples, the variables (θ(M+1), ...,θ(N)),
can be considered to be approximately distributed according to the posterior distribution p(θ|X). The
Gibbs sampler consists in sampling the couple (Θ, z) from their corresponding posterior distribution.
The posterior distribution for θk given all the other variables is given by

p(θk|z,X,Θ−k, α;H) ∝
∏

i|Zi=k

f(xi|Zi = k;θk)p(θk;H) (5.25)

where Θ−k = (θ1, . . . ,θk−1,θk+1, . . . ,θKi−1) and p(θk;H) is the prior distribution for θk, that is G0,

72



5.3 Dirichlet Process Parsimonious Mixtures

with H being the hyperparameters of the model. The cluster labels zi are similarly sampled from the
posterior distribution which is given, up to a constant, by:

p(zi = k|z−i,X,Θ, α) ∝ f(xi|zi; Θ)p(zi|z−i;α) (5.26)

where z−i = (z1, . . . , zi−1, zi+1, . . . , zn), and p(zi|z−i;α) is the prior predictive distribution corresponds
which to the CRP distribution computed as in Equation (5.21). The prior distribution, and the resulting
posterior distribution, for each of the considered models, are close to those in Bensmail et al. (1997) and
are provided in detail in [J-10].

Sampling the hyperparameter α of the DPPM

The number of mixture components in the models depends on the concentration hyperparameter α of
the Dirichlet Process (Antoniak, 1974). We therefore choose to sample it to avoid fixing an arbitrary
value for it. We follow the method introduced by Escobar and West (1994) which consists in sampling
it by assuming a prior Gamma distribution α ∼ G(a, b) with a shape hyperparameter a > 0 and scale
hyperparameter b > 0. Then, a variable η is introduced and sampled conditionally on α and the number
of clusters Ki−1, according to a Beta distribution, that is, η|α,Ki−1 ∼ B(α+1, n). The resulting posterior
distribution for the hyperparameter α is given by:

p(α|η,K) ∼ ϑηG (a+Ki−1, b− log (η)) + (1− ϑη)G (a+Ki−1 − 1, b− log (η))

where the weights ϑη = a+Ki−1−1
a+Ki−1−1+n(b−log(η)) . Finally, after a sufficiently large number of samples, the

retained solution is the one corresponding to the posterior mode of the number of mixture components,
that is the one that appears the most frequently during the sampling.

Complexity The cost of the method is mainly related to the sampling of the labels zi and hence to the
sample size and the number of components, and model parameters θi. More specifically, the complexity
related to each Gibbs sample is proportional to the current value of the number of mixture components K
and hence varies randomly from one iteration to another. Since asymptotically K tends to α log(n) when
n tends to infinity (Antoniak, 1974), therefore, each sample requires O(αn log(n)) operations for sampling
the class labels zi. The parameter simulation (the mean vector and the covariance matrix) requires in
the worst case (when the covariance matrix is full, that is a non-parsimonious model) approximatively
O
(
α log(n)

(
d+ d3

))
. This gives us a complexity in O

(
αn log(n)d3

)
.

5.3.4 Bayesian model comparison via Bayes factors

This section provides the used strategy for model comparison, that is, the selection of the best model
from the different parsimonious models. We use Bayes factors (Kass and Raftery, 1995; Basu and Chib,
2003) which provide a general way to compare models in (Bayesian) statistical modeling, and has been
widely studied in the case of mixture models (Kass and Raftery, 1995; Bensmail et al., 1997; Gelfand and
Dey, 1994; Carlin and Chib, 1995; Basu and Chib, 2003). Suppose that we have two model candidates
M1 and M2, if we assume that the two models have the same prior probability p(M1) = p(M2), the Bayes
factor is given by

BF12 =
p(X|M1)

p(X|M2)
(5.27)

which corresponds to the ratio between the marginal likelihoods of the two models M1 and M2. It is a
summary of the evidence for model M1 against model M2 given the data X. The marginal likelihood
p(X|Mm) for model Mm, m ∈ {1, 2}, also called the integrated likelihood, is given by

p(X|Mm) =

∫
p(X|θm,Mm)p(θm|Mm)dθm (5.28)

where p(X|θm,Mm) is the likelihood of model Mm with parameters θm and p(θm|Mm) is the prior
density of the mixture parameters θm for model Mm. As it is difficult to compute analytically the
marginal likelihood (5.28), several approximations have been proposed to approximate it. One of the
most used approximations is the Laplace-Metropolis approximation (Lewis and Raftery, 1994) given by

p̂Laplace(X|Mm) = (2π)
νm
2 |Ĥ| 12 p(X|θ̂m,Mm)p(θ̂m|Mm) (5.29)
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where θ̂m is the posterior estimation of θm (posterior mode) for model Mm, νm is the number of free

parameters of the mixture model Mm as given in Table 5.1, and Ĥ is minus the inverse Hessian of the
function log(p(X|θ̂m,Mm)p(θ̂m|Mm)) evaluated at the posterior mode of θm, that is θ̂m. The matrix Ĥ
is asymptotically equal to the posterior covariance matrix (Lewis and Raftery, 1994), and is computed as
the sample covariance matrix of the posterior simulated sample. We note that, in the proposed DPPM
models, as the number of components K is itself a parameter in the model and is changing during the
sampling, which leads to parameters with different dimension, we compute the Hessian matrix Ĥ in Eq.
(5.29) by taking the posterior samples corresponding to the posterior mode of K. Once the estimation of
Bayes factors is obtained, it can be interpreted as described in Table 5.2 as suggested by Jeffreys (1961),
see also Kass and Raftery (1995).

BF12 2 log BF12 Evidence for model M1

< 1 < 0 Negative (M2 is selected)

1− 3 0− 2 Not bad

3− 12 2− 5 Substantial

12− 150 5− 10 Strong

> 150 > 10 Decisive

Table 5.2: Model comparison using Bayes factors.

5.3.5 Experiments

In [J-10][C-2](Bartcus, 2015), the proposed DPPMs was applied and evaluated by performing experiments
on both simulated and real data, including complex data from a challenging bioacoustic application. We
assess their flexibility in terms of modeling, their use for clustering and inferring the number of clusters
from the data. We show how the proposed DPPM approach is able to automatically and simultaneously
select the best model with the optimal number of clusters by using the Bayes factors. We also perform
comparisons with the finite model-based clustering approach of Bensmail et al. (1997), , which will be
abbreviated as PGMM approach. Note that also the one in Fraley and Raftery (2007) was considered.
We also use the Rand index to evaluate and compare the provided partitions, and the misclassification
error rate when the number of estimated components equals the actual one.

For the simulations, we consider several situations of simulated data, from different models, and
with different levels of cluster separations, in order to assess the capability of the proposed approach
to retrieve the actual partition with the actual number of clusters. We also assess the stability of our
proposed DPPMs models regarding the choice of the hyperparameters values, by considering several
situations and varying them.

Simulation results: Varying the clusters shapes, orientations, volumes and separation In
this experiment, we apply the proposed models on simulated data simulated according to different models,
and with different level of mixture separation, going from poorly separated mixtures to very-well separated
mixtures. To simulate the data, we first consider an experimental protocol close to the one used by Celeux
and Govaert (1995). We performed extensive experiments involving all the models and many Monte
Carlo simulations for several data structure situations. Furthermore, for each type of model structure,
we consider three different levels of mixture separation, that is: poorly separated, well separated, and
very-well separated mixture. We compare the proposed DPPMs to the parametric PGMM approach in
model-based clustering Bensmail et al. (1997) based on the finite parsimonious mixtures. In summary,
the simulation results are very satisfactory for all the considered situations. The proposed DPPMs, in
almost all the situations (except for one situation) retrieve the actual model, with the actual number of
clusters. We also observed that the selected DPPM model, has the highest log-marginal likelihood value,
compared to the finite PGMM alternative. Furthermore, we also observe that the solutions provided by
the proposed DPPM are, in some cases more parsimonious than those provided by the PGMM, and, in
the other cases, the same as those provided by the PGMM.

Also in terms of misclassification error, the proposed DPPM models, compared to the PGMM ones,
provide partitions with the lower miscclassification error, for situations with poorly, well or very-well
separated clusters, and for clusters with equal and different volumes (except for one situation). On the
other hand, for the DPMM models, the evidence of the selected model, compared to the majority of
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the other alternatives is, according to Table 5.2, in general decisive. Indeed, the value 2 log BF12 of the
Bayes Factor between the selected model, and the other models, is more than 10, which corresponds to
a decisive evidence for the selected model. Also, in terms of evidence of the selected model against the
more competitive one, for the situations with very bad mixture separation, with clusters having the same
volume, the evidence is not bad (0.3). However, for all the other situations, the optimal model is selected
with an evidence going from an almost substantial evidence (a value of 1.7), to a strong and decisive
evidence, especially for the models with different cluster volumes. We can also conclude that the models
with different cluster volumes may work better in practice. This was also highlighted by Celeux and
Govaert (1995) for the finite parsimonious models in the MLE framework.

Stability with respect to the variation of the hyperparameters values In order to examine
the effect of the choice of the hyperparameters values of the mixture on the estimations, we considered
two-class situations identical to those used in the parametric parsimonious mixture approach proposed
in Bensmail et al. (1997). In order to assess the stability of the models with respect to the values of
the hyperparameters, we consider four situations with different hyperparameter values. The obtained log
marginal likelihood values for the four models for each of the situations of the hyperparameters show that,
for all the situations, the selected model is the actual model with the correct number of clusters. Also,
the Bayes factor values (2 log BF), between the selected model, and the more competitive one, for each
of the four situations, according to Table 5.2, correspond to a decisive evidence of the selected model.
These results confirm that the DPPM are quite stable with respect to the variation of the hyparameters
values.

Then, we performed experiments on several real data sets and provide numerical results in terms of
comparisons of the Bayes factors (via the log marginal likelihood values) and as well the Rand index and
the misclassification error rate for data sets with known actual partition.

Experiments on benchmarks To confirm the results previously obtained on simulated data, we have
conducted several experiments on freely available well-known real data sets: Iris, Old Faithful Geyser,
Crabs and Diabetes (also Trees, Wine etc). We compare the proposed DPPM models to the PGMM
models. For the four data sets, the proposed DPPMs they outperform the alternative finite mixture
approach in terms of the Bayes factor value (marginal likelihoods) as well in terms of classification error
or Rand index values. The best model in always selected with the actual number of clusters (For Iris,
the DPPM approach selects two components as well as the PGMM alternative) and the majority of
the parsimonious models (even those which are not selected), retrieve in general the correct number of
clusters. Also, the evidence of the selected DPPM models, compared to the other ones, for the four real
data sets, is significant. The evidence of the selected model, according to Table 5.2 is indeed strong for
Old Faithful geyser data, and very decisive for Crabs, Diabetes and Iris data. Also, the model selection
by the proposed DPMM for these latter three data sets, is made with a greater evidence, compared to the
PGMM approach. For illustration, Figure (5.1) shows the Diabetes data set, the optimal model partition
provided by the DPPM model (λkDkADT

k ) and the distribution of the number of clusters K. We can
observe that the partition is quite well defined (the misclassification rate in this case is 17.24± 2.47) and
the posterior mode of the number of clusters equals the actual number of clusters (K = 3).
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Figure 5.1: Diabetes data set in the space of the components 1 (glucose area) and 3 (SSPG) and the

actual partition (left), the optimal partition obtained by the DPPM model λkDkADT
k (middle) and the

empirical posterior distribution for the number of mixture components (right).
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Challenging application to real-world bioacoustic data We also applied the proposed DPPMs
to a real dataset in the framework of a challenging problem of humpback whale song decomposition.
The analysis of such data are the core of CNRS MASTODONS SABIOD project1. Humpback whales
produce songs with a specific structure and the study of that songs is very useful for bio-acousticians and
scientists to namely understand how do whales communicate (possibly according to which vocabulary)
and to have an idea about their geographical origin. The analysis of such complex signals that aims
at discovering the call units (which can be considered as a kind of whale alphabet), can be seen as a
problem of unsupervised classification as in Pace et al. (2010) to automatically retrieve possible call units.
We therefore reformulate the problem of whale song decomposition as a unsupervised non-parametric
classification problem. Contrary to the approach used in Pace et al. (2010), in which the number of
states (call units in this case) has been fixed manually, here, we apply the DPPM to automatically find
possible call units in the whale song, and automatically infer the number of such song units. The used data
are available in the framework of our SABIOD project publicly. They consist of pre-extracted features
(mainly MFCC parameters) of 8.6 minutes of a Humpback whale song recordings (51336 observations)
produced at few meters distance from the whale in La Reunion - Indian Ocean by the “Darewin” group
in 2013. The results obtained by the BNP parsimonious models on these difficult data, are, according to
experts very satisfactory. The models are indeed able to find quite satisfactory decomposition compared
to the literature in the application field, as well as compared to the finite parsimonious mixture, which
select decomposition with large number of components (sometime more than 50) which is not plausible.
For the proposed DPPMs however, the decomposition consists in a plausible number of few clusters (not
much more that 10 in general) which may correspond to likely call units. The obtained results clearly
highlighted the interest of using parsimonious Bayesian non-parametric modeling. For illustration, for
example Figure 5.2 shows the spectrograms of two signal portions of 15 seconds each (the algorithm was
applied on the whole data set) and the corresponding obtained partition with the parsimonious diagonal
model λkA. We can see that the partition for the two portions is quite satisfactory, and among the
obtained classes, there is at least four clearly informative call units for the first example and at least
three for the second example. The states 1, 2, 8 and 11 would correspond to up and down sweeps. State
9 corresponds to silence. The seventh state is also the silence that generally ends the ninth state. Also
upon visual inspection, it can be seen that for the second example, the states 4 and 8 are clearly different
and may correspond to two different call units. This is also the case for the states 7 and 8 for the first
example. So the results are very encouraging to continue exploring this data from a BNP prospective.

Figure 5.2: Obtained song units by applying or DPPM model with the parametrization λkA (diagonal)

to two different signals with top: the spectrogram of the part of the signal starting at 280 seconds and

it’s corresponding partition, and bottom those for the part of signal starting at 295 seconds.

1Scaled Acoustic BIODiversity: http://sabiod.univ-tln.fr/data_samples.html
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5.4 Conclusion

5.4 Conclusion

In this chapter I presented Bayesian nonparametric parsimonious mixture models for clustering. They
are based on an infinite Gaussian mixture with an eigenvalue decomposition of the cluster covariance
matrix and Dirichlet Process prior, or by equivalence a Chinese Restaurant Process prior. This allows
deriving several flexible models and avoids the problem of model selection encountered in the standard
maximum likelihood-based and Bayesian parametric Gaussian mixture. We also described a Bayesian
model comparison framework to automatically select the best model with the best structure by using
Bayes factors. Experiments on simulated data highlighted that the proposed DPPMs represent a good
nonparametric alternative to the standard parametric Bayesian and non-Bayesian finite mixtures. They
simultaneously and accurately estimate partitions with the optimal number of clusters and the best
structure from the data. We also applied the proposed approach on real data sets. The obtained results
show the interest of using the Bayesian parsimonious clustering models and the potential benefit of using
them in practical applications. A future work related to this proposal may concern other parsimonious
models such us those recently proposed by Biernacki and Lourme (2014) based on a variance-correlation
decomposition of the group covariance matrices, which are stable and visualizable and have desirable
properties. Also, until now we have only considered the problem of clustering. A perspective of this
work is to extend it to the case of model-based co-clustering (Govaert and Nadif, 2013) with block
mixture models, which consists in simultaneously cluster individuals and variables, rather that only
individuals. The nonparametric formulation of these models may represent a good alternative to select
the number of latent blocks or co-clusters. Note that, while the DPPMs model assume that data are i.i.d
(exchangeable), they provided quite satisfactory results in the analysis of the bioacoustc sequential data.
Thus, this application opens a perspective on the extension of the DPPM models to the sequential case,
say further integrating them into a Markovian framework.
In [C-1][C-3], we investigated the BNP formulation for the standard HMM, that is the HDP-HMM in this
application of unsupervised learning from bioacoustic data and the results have been reveled improved,
which is promising for the Markovian perspective of the DPPMs.
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I initiated this research direction very recently (in May 2015) to investigate mixture of experts (MoE)
for continuous data, in the case where the expert components are non-normal, that is, do not follow the
Normal distribution. MoE being a popular framework for modeling heterogeneity in data in the computer
science field particularly machine learning, as well as in statistics. Indeed, the previously developed models
in my research, as well as those classically used in learning for the analysis of continuous data, the models
are very often based on the normal hypothesis regarding the distribution of the data or a group of the
data. However, for a set of data containing a group or groups of observations with asymmetric behavior,
heavy tails or atypical observations, the use of normal experts may be unsuitable and can unduly affect the
fit of the MoE model. In this research I attempt to overcome these (well-known) limitations of modeling
with the normal distribution. I proposed three non-normal derivations including two robust mixture of
experts (MoE) models. The proposed models are suitable to accomodate data which exhibit additional
features such as skewness, heavy-tails and which may be affected by atypical data. I derived dedicated
EM and ECM algorithms for model fitting. This research has lead to the following pre-publications
[J-12][J-13][J-14] ([J-12] also includes all the developed MoE models in this framework).

6.1 Introduction

Mixture of experts (MoE) introduced by (Jacobs et al., 1991) are widely studied in statistics and machine
learning. They consist in a fully conditional mixture model where both the mixing proportions, known
as the gating functions, and the component densities, known as the experts, are conditional on some
predictors. MoE have been investigated, in their simple form, as well as in their hierarchical form
(Jordan and Jacobs, 1994) (e.g., Section 5.12 of McLachlan and Peel. (2000)) for regression and model-
based cluster and discriminant analyses and in different application domains. A complete review of the
MoE models can be found in Yuksel et al. (2012). For continuous data, which I consider here in the
context of non-linear regression and model-based cluster analysis, MoE usually use normal experts, that
is, expert components following the Gaussian distribution. Along this chapter, I will call it the normal
mixture of experts, abbreviated as NMoE. However, it is well-known that the normal distribution is
sensitive to outliers. Moreover, for a set of data containing a group or groups of observations with heavy
tails or asymmetric behavior, the use of normal experts may be unsuitable and can unduly affect the fit
of the MoE model. In this proposal, I attempt to overcome these limitations in MoE by proposing more
adapted and robust mixture of experts models which can deal with possibly skewed, heavy-tailed and
atypical data.

Recently, the problem of sensitivity of NMoE to outliers have been considered by Nguyen and McLach-
lan (2016) where the authors proposed a Laplace mixture of linear experts (LMoLE) for a robust model-
ing of non-linear regression data. The model parameters are estimated by maximizing the observed-data
likelihood via a minorization-maximization (MM) algorithm. Here, I propose alternative MoE mod-
els, by relaying on other non-normal distributions that generalize the normal distribution, that is, the
skew-normal, t-, and the skew-t distributions. I call these proposed NNMoE models, respectively, the
skew-normal MoE (SNMoE), the t MoE (TMoE), and the skew-t MoE (STMoE). Indeed, in these last
years, the use of the skew-normal distribution, firstly proposed by Azzalini (1985, 1986), has been shown
beneficial in dealing with asymmetric data in various theoretic and applied problems. This has been
studied in the finite mixture literature by namely Lin et al. (2007b) for modeling asymmetric univariate
data with the univariate skew-normal mixture. On the other hand, the t distribution provides a natural
robust extension of the normal distribution to model data with possible outliers. This has been integrated
to develop the t mixture model proposed by Mclachlan and Peel (1998) for robust cluster analysis of mul-
tivariate data. Recently, Bai et al. (2012) proposed a robust mixture modeling in the regression context
on univariate data, by using a univariate t-mixture model. Moreover, in many practical problems, the
robustness of t mixtures may however be not sufficient in the presence of asymmetric observations. To
deal with this issue, Lin et al. (2007a) proposed the univariate skew-t mixture model which allows for ac-
commodation of both skewness and thick tails in the data, by relying on the skew-t distribution recently
introduced by Azzalini and Capitanio (2003). For the general multivariate case using t, skew-normal
and skew-t mixtures, one can refer to Mclachlan and Peel (1998); Peel and Mclachlan (2000), Pyne et al.
(2009), (Lin, 2010), Lee and McLachlan (2013b), Lee and McLachlan (2013a), Lee and McLachlan (2014),
and recently, the unifying framework for previous restricted and unrestricted skew-t mixtures, using the
CFUST distribution (Lee and McLachlan, 2015). The inference in the previously described approaches is
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performed by maximum likelihood estimation via expectation-maximization (EM) or extensions (Demp-
ster et al., 1977; McLachlan and Krishnan, 2008), in particular the expectation conditional maximization
(ECM) algorithm (Meng and Rubin, 1993). For the Bayesian framework, Frühwirth-Schnatter and Pyne
(2010) have considered the Bayesian inference for both the univariate and the multivariate skew-normal
and skew-t mixtures. For the regression context, the robust modeling of regression data has been stud-
ied namely by Wei (2012) who considered a t-mixture model for regression analysis of univariate data,
as well as by Bai et al. (2012) who relied on the M-estimate in mixture of linear regressions using the
t-distribution. In the same context of regression, recently Song et al. (2014) proposed the mixture of
Laplace regressions, which has been then extended by Nguyen and McLachlan (2016) to the case of
mixture of experts, by introducing the Laplace mixture of linear experts (LMoLE). More recently, Zeller
et al. (2015) introduced the scale mixtures of skew-normal distributions for robust mixture regressions.
However, unlike our proposed NNMoE models, the regression mixture models of Wei (2012), Bai et al.
(2012), Song et al. (2014), Zeller et al. (2015) do not consider conditional mixing proportions, that is,
mixing proportions depending on some input variables, as in the case of mixture of experts, which I
investigate here. In addition, the models of Wei (2012), Bai et al. (2012) and Song et al. (2014) do not
consider both the problem of robustness to outliers and the one to deal with possibly asymmetric data.
Indeed, here I consider the mixture of experts framework for non-linear regression problems and model-
based clustering of regression data, and I attempt to overcome the limitations of the NMoE model in
dealing with asymmetric, heavy-tailed data and which may contain outliers. I investigate the use of the
skew-normal, t and skew t distributions for the experts, rather than the commonly used normal distribu-
tion. First, the skew-normal mixture of experts (SNMoE) is proposed to accommodate data with possible
asymmetric behavior. For heavy tailed or possibly noisy data, that is, data with atypical observations, I
first propose the t-mixture of experts model (TMoE) to handle the issues regarding namely the sensitivity
of the NMoE to outliers. Finally, I propose the skew-t mixture of experts model (STMoE) which allows
for accommodation of both skewness and heavy tails in the data and which is also robust to outliers.
These models correspond to extensions of the unconditional mixture of skew-normal (Lin et al., 2007b),
t (Mclachlan and Peel, 1998; Wei, 2012), and skew t (Lin et al., 2007a) mixture models, to the mixture
of experts (MoE) framework, where the mixture means are regression functions and the mixing pro-
portions are covariate-varying. For the models inference, I develop dedicated expectation-maximization
(EM) and expectation conditional maximization (ECM) algorithms to estimate the parameters of the
proposed models by monotonically maximizing the observed data log-likelihood. The EM algorithms are
indeed very popular and successful estimation algorithms for mixture models in general and for mixture
of experts in particular. Moreover, the EM algorithm for MoE has been shown by Ng and McLachlan
(2004) to be monotonically maximizing the MoE likelihood. The authors have showed that the EM (with
IRLS in this case) algorithm has stable convergence and the log-likelihood is monotonically increasing
when a learning rate smaller than one is adopted for the IRLS procedure within the M-step of the EM
algorithm. They have further proposed an expectation conditional maximization (ECM) algorithm to
train MoE, which also has desirable numerical properties. The MoE has also been considered in the
Bayesian framework, for example one can cite the Bayesian MoE (Waterhouse et al., 1996; Waterhouse,
1997) and the Bayesian hierarchical MoE (Bishop and Svensén, 2003). Beyond the Bayesian parametric
framework, the MoE models have also been investigated within the Bayesian non-parametric framework.
We cite for example the Bayesian non-parametric MoE model (Rasmussen and Ghahramani, 2001) and
the Bayesian non-parametric hierarchical MoE approach of Shi et al. (2005) using Gaussian Processes
experts for regression. For further account on Bayesian MoE for regression, the reader can be referred
to for example the book of Shi and Choi (2011). In this chapter, I investigate semi-parametric models
under the maximum likelihood estimation framework.

6.1.1 Personal contribution

To overcome the limitations of modeling with the normal mixture of experts (NMoE), I introduced three
new non-normal mixture of experts (NNMoE) that can better accommodate data exhibiting non-normal
features, including asymmetry, heavy-tails, and the presence of outliers. The proposed models are the
skew-normal MoE [J-12] and the robust t MoE [J-12] [J-13] and skew t MoE [J-12] [J-14], respectively
named SNMoE, TMoE and STMoE. I developed dedicated E(C)M algorithms to estimate the parameters
of the proposed models by monotonically maximizing the observed data log-likelihood. I describe how the
presented models can be used in prediction in regression as well as in model-based clustering of regression
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data. Numerical experiments carried out on simulated data show the effectiveness and the robustness
of the proposed models in terms of modeling non-linear regression functions as well as in model-based
clustering. Then, to show their usefulness for practical applications, the proposed models have been
applied to the real-world data of tone perception for musical data analysis, and the one of temperature
anomalies for the analysis of climate change data. The obtained results are very satisfactory compared
to standard NMoE and the alternative mixture models.

The remainder of this chapter is organized as follows. In Section 6.1.2 I briefly recall the MoE
framework, the NMoE model and its maximum-likelihood estimation via EM. In Section 6.2, I present
the SNMoE model and in Section 6.2.2 I present its inference technique using the ECM algorithm. Then,
in Section 6.3 I present the TMoE model and derive its parameter estimation technique using the EM
algorithm in Section 6.3.2. Then, in Section 6.4, I present the STMoE model and in Section 6.4.3 the
parameter estimation technique using the ECM algorithm. In Section 6.5, I also show how the model
selection can be performed for these NNMoE models. I then investigate in Section 6.5 the use of the
proposed models for fitting non-linear regression functions as well for prediction on future data. I also
show in Section 6.5 how the models can be used in a model-based clustering prospective. In Section 6.6,
I perform experiments to assess the proposed models. Finally, in Section 6.7, conclusions are drawn and
a future work

6.1.2 Mixture of experts for continuous data

Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1994) are used in a variety of contexts
including regression, classification and clustering. Here I consider the MoE framework for fitting (non-
linear) regression functions and clustering of univariate continuous data . The univariate MoE model
assumes that each of the observed pairs of data (x, y) where y ∈ R is the response for some covariate x ∈
Rp, is generated from one of K parametric regression functions with conditional density fk(y|x;Ψk) where
(k = 1, . . . ,K) governed by a hidden categorical random variable Z indicating from which component
each observation is generated. Furthermore, MoE for regression analysis (Jacobs et al., 1991; Jordan
and Jacobs, 1994) explore the relationship between the component membership variable Z as function of
some predictors r ∈ Rq. More specifically, the model of the responses Z, known as the gating network in
the context of MoE, is a multinomial logistic model and is defined by:

P(Z = k|r;α) = πk(r;α) =
exp (αTk r)∑K
`=1 exp (αT` r)

(6.1)

where αk ∈ Rq is the coefficient vector associated with r and α = (αT1 , . . . ,α
T
K−1)T is the parameter

vector of the logistic model, with αK being the null vector. Thus, the MoE model decomposes the
nonlinear regression model density f(y|x) into a convex weighted sum of K regression component models
fk(y|x) and can be defined by:

f(y|x;Ψ) =

K∑
k=1

πk(r;α)fk(y|x;Ψk) (6.2)

where the πk’s are covariate-varying mixing proportions. The model parameter vector is given by
Ψ = (π1, . . . , πK−1,Ψ

T
1 , . . . ,Ψ

T
K)T , Ψk being the parameter vector of the kth component density. Thus,

the MoE model consists in a fully conditional mixture model where both the mixing proportions (the
gating functions) and the component densities (the experts) are conditional on some covariate variables
(respectively r and x).

6.1.3 The normal mixture of experts model and its MLE

In the case of mixture of experts for regression, it is usually assumed that the experts fk(y|x;Ψk) are
normal. A K-component normal mixture of experts (NMoE) (K > 1) has the following formulation:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α)N
(
y;µ(x;βk), σ2

k

)
(6.3)
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which involves, in the semi-parametric case, component means defined as parametric (non-)linear re-
gression functions µ(x;βk). The NMoE model parameters are estimated by maximizing the observed
data log-likelihood given an i.i.d sample of n observations (y1, . . . , yn) with their respective associated
covariates (x1, . . . ,xn) and (r1, . . . , rn):

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)N
(
yi;µ(x;βk), σ2

k

)
(6.4)

by using the EM algorithm (Dempster et al., 1977; Jacobs et al., 1991; Jordan and Jacobs, 1994; Jordan
and Xu, 1995; Ng and McLachlan, 2004; McLachlan and Krishnan, 2008). The E-Step at the mth iteration
of the EM algorithm for the NMoE model requires the calculation of the following posterior probability
that the observation (yi,xi, ri) belongs to expert k, given a parameter estimation Ψ (m):

τ
(m)
ik = P(Zi = k|yi,xi, ri;Ψ (m)) =

πk(r;α(m))N
(
yi;µk(xi;β

(m)
k ), σ2

k
(m)
)

f(yi|ri,xi;Ψ (m))
. (6.5)

Then, the M-step calculates the parameter vector update Ψ (m+1) by maximizing the well-known Q-
function, that is the expected complete-data log-likelihood:

Ψ (m+1) = arg max
Ψ∈Ω

Q(Ψ ;Ψ (m)) (6.6)

where Ω is the parameter space. For example, in the case of normal mixture of linear experts (NMoLE)
where each expert’s mean has the flowing linear form:

µ(x;βk) = βTk x, (6.7)

where βk ∈ Rp is the vector of regression coefficients of component k, the updates for each of the expert
component parameters consist in analytically solving a weighted Gaussian linear regression problem and
are given by:

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik yixi, (6.8)

σ2
k
(m+1)

=

∑n
i=1 τ

(m)
ik

(
yi − βTk

(m+1)
xi

)2
∑n
i=1 τ

(m)
ik

· (6.9)

For the mixing proportions, the parameter vector update α(m+1) cannot however be obtained in a closed
form. It is calculated by Iteratively Reweighted Least Squares (IRLS) (Jacobs et al., 1991; Jordan and
Jacobs, 1994; Chen et al., 1999a; Green, 1984)[C-14][J-1].

However, the normal distribution is not adapted to deal with asymmetric and heavy tailed data. It is
also known that the normal distribution is sensitive to outliers. In the proposal, I first propose to address
the issue regarding the skewness, by proposing the skew-normal mixture of experts (SNMoE). Then, I
propose a robust fitting of the MoE, which is adapted to heavy-tailed data, by using the t distribution,
that is, the t mixture of experts (TMoE). Finally, the proposed skew-t mixture of experts (STMoE) allows
for simultaneously accommodating asymmetry and heavy tails in the data and is also robust to outliers.

6.2 The skew-normal mixture of experts model

6.2.1 The model

The skew-normal mixture of experts (SNMoE) model uses the skew-normal distribution as density for the
expert components. As introduced by Azzalini (1985, 1986), a random variable Y follows a univariate
skew-normal distribution with location parameter µ ∈ R, scale parameter σ2 ∈ (0,∞) and skewness
parameter λ ∈ R if it has the density

f(y;µ, σ2, λ) =
2

σ
φ(
y − µ
σ

)Φ

(
λ(
y − µ
σ

)

)
(6.10)
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where φ(.) and Φ(.) denote, respectively, the probability density function (pdf) and the cumulative
distribution function (cdf) of the standard normal distribution. It can be seen from (6.10) that when the
skewness parameter λ = 0, the skew-normal reduces to the normal distribution.

The presented skew-normal mixture of experts (SNMoE) extends the skew-normal mixture model
(Lin et al., 2007b) to the case of mixture of experts framework, by considering conditional distributions
for both the mixing proportions and the means of the mixture components. The SNMoE is therefore a
MoE model with skew-normal experts and is defined as follows. Let SN(µ, σ2, λ) denotes a skew-normal
distribution with location parameter µ, scale parameter σ and skewness parameter λ. A K-component
SNMoE is then defined by:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α)SN
(
y;µ(x;βk), σ2

k, λk
)

(6.11)

where each expert component k has indeed a skew-normal distribution, whose density is defined by (6.10).
The parameter vector of the model is Ψ = (αT1 , . . . ,α

T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T with Ψk = (βTk , σ

2
k, λk)T the

parameter vector for the kth skewed-normal expert component. It is obvious to see that if the skewness
parameter λk = 0 for each k, the SNMoE model (6.11) reduces to the NMoE model (6.3).

Before going on the model inference, I first present its stochastic and hierarchical representations,
which will serve to derive the ECM algorithm for maximum likelihood parameter estimation. The SNMoE
model is characterized as follows.

Let U and E be independent univariate random variables following the standard normal distribution
N(0, 1) with pdf φ(.). Given some covariates xi and ri, a random variable Yi is said to follow the SNMoE
model (6.11) if it has the following representation:

Yi = µ(xi;βzi) + δziσzi |Ui|+
√

1− δ2zi σziEi. (6.12)

In (6.12), |U | denotes the magnitude of U and δzi =
λzi√
1+λ2

zi

where Zi ∈ {1, . . . ,K} is a categorical

variable Zi which follows the multinomial distribution, that is:

Zi|ri ∼ Mult(1;π1(ri;α), . . . , πK(ri;α)) (6.13)

where each of the probabilities πzi(ri;α) = P(Zi = zi|ri) is given by the logistic function (6.1). In this
incomplete data framework, Zi represents the hidden label of the component generating the ith observa-
tion. The stochastic representation (6.12) of the SNMoE leads to the following hierarchical representation,
which, as it will be presented in Section 6.2.2, greatly facilitates the model inference.

By introducing the binary latent component-indicators Zik such that Zik = 1 iff Zi = k, a hierarchical
model for the SNMoE can be derived from its stochastic representation (6.12) and is as follows

Yi|ui, Zik = 1,xi ∼ N
(
µ(xi;βk) + δk|ui|, (1− δ2k)σ2

k

)
,

Ui|Zik = 1 ∼ N(0, σ2
k), (6.14)

Zi|ri ∼ Mult (1;π1(ri;α), . . . , πK(ri;α))

where Zi = (Zi1, . . . , ZiK) and δk = λk√
1+λ2

k

. In this hierarchical representation, in addition to the hidden

component labels Zi, the variables Ui are also hidden. This hierarchical incomplete data representation
facilitates the inference scheme by using the ECM algorithm.

6.2.2 Maximum likelihood estimation via the ECM algorithm

The unknown parameter vector Ψ of the SNMoE model can be estimated by maximizing the observed-
data log-likelihood. Given an observed i.i.d sample of n observations (y1, . . . , yn) with their respective
associated covariates (x1, . . . ,xn) and (r1, . . . , rn), under the SNMoE model (6.11), the observed data
log-likelihood for the parameter vector Ψ is given by:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)SN
(
y;µ(x;βk), σ2

k, λk
)
. (6.15)
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The maximization of this log-likelihood in this incomplete data framework can not be performed in a
closed form. It can be performed via EM-type algorithms (McLachlan and Krishnan, 2008). More specif-
ically, I propose a dedicated Expectation Conditional Maximization (ECM) algorithm to monotonically
maximize (6.15). The ECM algorithm (Meng and Rubin, 1993) is an EM variant that mainly aims at ad-
dressing the optimization problem in the M-step of the EM algorithm. In ECM, the M-step is performed
by several conditional maximization (CM) steps by dividing the parameter space into sub-spaces. The
parameter vector updates are then performed sequentially, one coordinate block after another in each
sub-space.

Deriving the ECM algorithm requires the definition of the complete-data log-likelihood. From the hi-
erarchical representation (6.14) of the SNMoE, the complete-data log-likelihood of Ψ , where the complete-
data are {yi, zi, ui,xi, ri}ni=1, is given by:

logLc(Ψ) = logLc(α) +

K∑
k=1

logLc(Ψk), (6.16)

with

logLc(α) =

n∑
i=1

K∑
k=1

Zik log πk(ri;α),

logLc(Ψk) =

n∑
i=1

Zik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k)− d2ik

2(1− δ2k)
+

δk dik ui

(1− δ2k)σk
− u2

i

2(1− δ2k)σ2
k

]
,

where dik = yi−µ(xi;βk)
σk

. Then, the proposed ECM algorithm for the SNMoE model performs as follows.

It starts with an initial parameter vector Ψ (0) and alternates between the E- and CM- steps until a
convergence criterion is satisfied.

E-Step The E-Step of the ECM algorithm for the SNMoE calculates the Q-function, that is the con-
ditional expectation of the complete-data log-likelihood (6.16), given the observed data {(yi,xi, ri)}ni=1

and a current parameter estimation Ψ (m), m being the current iteration:

Q(Ψ ;Ψ (m)) = E
[

logLc(Ψ)|{yi,xi, ri}ni=1;Ψ (m)
]

= Q1(α;Ψ (m)) +

K∑
k=1

Q2(Ψk;Ψ (m)), (6.17)

with

Q1(α;Ψ (m)) =

n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α), (6.18)

Q2(Ψk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k) +

δk dik e
(m)
1,ik

(1− δ2k)σk
−

e
(m)
2,ik

2(1− δ2k)σ2
k

− d2ik
2(1− δ2k)

]
(6.19)

for k = 1, . . . ,K, where the required conditional expectations are given by:

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

e
(m)
1,ik = EΨ (m) [Ui|Zik = 1, yi,xi, ri] ,

e
(m)
2,ik = EΨ (m)

[
U2
i |Zik = 1, yi,xi, ri

]
.

The τ
(m)
ik ’s represent the posterior distribution of the hidden component labels Zi and correspond to the

posterior memberships of the observed data. The conditional expectations e
(m)
1,ik and e

(m)
2,ik correspond to

the posterior distribution of the hidden variables Ui and U2
i , respectively. From (6.17), (6.18), and (6.19),

it follows that the Q-function is calculated by analytically calculating these conditional expectations as
shown in [J-12].
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M-Step Then, the M-step calculates the parameter vector Ψ (m+1) as in (6.6), that is by maximizing the

Q-function (6.17) with respect to Ψ . This can be performed by separately maximizing Q1(α;Ψ (m)) with

respect to logistic parameters α and, for each component k (k = 1, . . . ,K), the function Q(Ψk;Ψ (m)) with
respect to the skew-normal expert parameters Ψk where Ψk = (βTk , σ

2
k, λk)T . I adopt the ECM extension

of the EM algorithm. The M-step in this case consists of four conditional-maximization (CM)-steps,
corresponding to the decomposition of the parameter vector Ψ into four sub-vectors Ψ = (α,β,σ,λ)T .
Thus, this leads to the following CM steps.

CM-Step 1 Calculate α(m+1) by maximizing Q1(α;Ψ (m)): α(m+1) = arg maxαQ1(α;Ψ (m)). Unlike
in standard skew-normal mixture model and skew-normal regression mixture model, this maximization in
the case of the proposed SNMoE does not exist in closed form. It is performed iteratively by Iteratively
Reweighted Least Squares (IRLS).

The Iteratively Reweighted Least Squares (IRLS) algorithm: The IRLS algorithm is used to

maximize Q1(α,Ψ (m)) given by (6.18) with respect to the parameter α in the M step at each iteration
m of the ECM algorithm. The IRLS consists in starting with a vector α(0), and, at the l + 1 iteration,
updating the estimation of α as follows:

α(l+1) = α(l) −
[∂2Q1(α,Ψ (m))

∂α∂αT

]−1
α=α(l)

∂Q1(α,Ψ (m))

∂α

∣∣∣
α=α(l)

(6.20)

where ∂2Q1(α,Ψ
(m))

∂α∂αT
and ∂Q1(α,Ψ

(m))
∂α are respectively the Hessian matrix and the gradient vector of

Q1(α,Ψ (m)). At each IRLS iteration the Hessian and the gradient are evaluated at α = α(l) and
are computed similarly as in [J-1][J-2]. The parameter update α(m+1) is taken at convergence of the
IRLS algorithm (6.20). Then, for k = 1 . . . ,K,

CM-Step 2 Calculate β
(m+1)
k by maximizing Q2(Ψk;Ψ (m)) given by (6.19) w.r.t βk. Here I focus

on the common linear case for the experts where each expert-component mean function is the one of a
linear regression model and has the form (6.7). It can be easily shown that the maximization problem
for this resulting skew-normal mixture of linear of experts (SNMoLE) can be solved analytically and has
the following solution:

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik

(
yi − δ(m)

k e
(m)
1,ik

)
xi. (6.21)

CM-Step 3: Calculate σ2
k
(m+1)

by maximizing Q2(Ψk;Ψ (m)) given by (6.19) w.r.t σ2
k. Similarly to the

update of βk, the analytic solution of this problem is given by:

σ2
k
(m+1)

=

∑n
i=1 τ

(m)
ik

[(
yi − βTk

(m+1)
xi

)2
− 2δ

(m+1)
k e

(m)
1,ik(yi − βTk

(m+1)
xi) + e

(m)
2,ik

]
2
(

1− δ2k
(m)
)∑n

i=1 τ
(m)
ik

· (6.22)

CM-Step 4 Calculate λ
(m+1)
k by maximizing Q2(Ψk;Ψ (m)) given by (6.19) w.r.t λk, with βk and σ2

k

fixed at β
(m+1)
k and σ2

k
(m+1)

, respectively. This consists in solving the following equation in λk (recall

that δk = λk√
1+λ2

k

) to obtain λ
(m+1)
k (k = 1, . . . ,K) as the solution of:

σ2
k
(m+1)

δk(1−δ2k)

n∑
i=1

τ
(m)
ik +(1+δ2k)

n∑
i=1

τ
(m)
ik (yi−βTk

(m+1)
xi) e

(m)
1,ik−δk

n∑
i=1

τ
(m)
ik

[
e
(m)
2,ik+

(
yi − βTk

(m+1)
xi

)2 ]
= 0·

(6.23)
This scalar equation can be solved with a root finding algorithm, such as Brent’s method (Brent, 1973).

Then, given the update of the skewness parameter λ
(m+1)
k , the update of δk is calculated as δ

(m+1)
k =

λ
(m+1)
k√

1+λ2
k;(m+1)

.
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It is obvious to see that when the skewness parameter λk = δk = 0 for all k, the parameter updates for
the SNMoE corresponds to those of the standard NMoE. Hence, compared to the standard NMoE, the
SNMoE model is characterized by an additional flexibility feature, that is the one to be handle possibly
skewed data. However, while the SNMoE model is tailored to model the skewness in the data, it may be
not adapted to handle data containing groups or a group with heavy-tailed distribution. The NMoE and
the SNMoE may thus be affected by outliers. In the next section, I address the problem of sensitivity
of normal mixture of experts to outliers and heavy tails. I first propose a robust mixture of experts
modeling by using the t distribution.

6.3 The t mixture of experts model

The proposed t mixture of experts (TMoE) model is based on the t distribution, which is known as a
robust generalization of the normal distribution. The use of the t distribution for mixture components
has been indeed shown to be more robust than the normal distribution to handle outliers in the data and
accommodate data with heavy tailed distribution. This has been shown in terms of density modeling
and cluster analysis for multivariate data (Mclachlan and Peel, 1998; Peel and Mclachlan, 2000) as well
as for univariate data (Lin et al., 2007a) and regression mixtures (Bai et al., 2012; Wei, 2012; Ingrassia
et al., 2012). The t-distribution with location parameter µ ∈ R, scale parameter σ2 ∈ (0,∞) and degrees
of freedom ν ∈ (0,∞) has the probability density function

f(y;µ, σ2, ν) =
Γ(ν+1

2 )
√
νπ Γ(ν2 )

(
1 +

d2y
ν

)− ν+1
2

, (6.24)

where d2y =
(
y−µ
σ

)2
denotes the squared Mahalanobis distance between y and µ (σ being the scale

parameter), and Γ is the Gamma function given by Γ(u) =
∫∞
0
xu−1e−x dx.

6.3.1 The model

The proposed t mixture of experts model extends the t mixture model, first proposed by Mclachlan and
Peel (1998); Peel and Mclachlan (2000) for multivariate data, as well as the regression mixture model
using the t-distribution as in (Bai et al., 2012), Wei (2012), and Ingrassia et al. (2012) to the MoE
framework. Wei (2012); Bai et al. (2012); Ingrassia et al. (2012) considered the t-mixture model for the
regression context on univariate data where the component means are (linear) regression functions of
the form µ(x;βk). However, this model do not explicitly model the mixing proportions as function the
predictors; They are assumed to be constant.

The proposed TMoE is a MoE model with t-distributed experts and is defined as follows. Let
tν(µ, σ2, ν) denotes a t distribution with location parameter µ, scale parameter σ and degrees of freedom
ν, whose density is given by (6.24). A K-component TMoE model is then defined by:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α) tνk
(
y;µ(x;βk), σ2

k, νk
)
. (6.25)

The parameter vector of the TMoE model is given by Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T where Ψk =

(βTk , σ
2
k, νk)T is the parameter vector for the kth t expert component which has a t distribution. One can

see that when the robustness parameter νk →∞ for each expert k, the TMoE model (6.25) approaches
the NMoE model (6.3).

The stochastic representation for the t mixture of experts (TMoE) is as follows. Let E be a univariate
random variable following the standard normal distribution E ∼ φ(.). Suppose that, conditional on
the hidden variable Zi = zi, a random variable Wi is distributed as Gamma(

νzi
2 ,

νzi
2 ). Then, given the

covariates (xi, ri), a random variable Yi is said to follow the TMoE model (6.25) if it has the following
representation:

Yi = µ(xi;βzi) + σzi
Ei√
Wzi

, (6.26)

where the categorical variable Zi conditional on the covariate ri follows the multinomial distribution
(6.13).
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Similarly to the case of the previously presented SNMoE model, the stochastic representation (6.26) leads
to the following hierarchical representation of the TMoE, which facilitates the model inference as it will
be presented in Section 6.3.2.

The hierarchical representation of the TMoE model is written as:

Yi|wi, Zik = 1,xi ∼ N

(
µ(xi;βk),

σ2
k

wi

)
,

Wi|Zik = 1 ∼ Gamma
(νk

2
,
νk
2

)
(6.27)

Zi|ri ∼ Mult (1;π1(ri;α), . . . , πK(ri;α)) .

This hierarchical representation involving the hidden variables Zi and Wi facilitates the ML inference of
model parameters Ψ via the EM or the ECM algorithm.

6.3.2 Maximum likelihood estimation

Given an i.i.d sample of n observations, the unknown parameter vector Ψ can be estimated by maximizing
the observed-data log-likelihood, which, under the TMoE model, is given by:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)tνk
(
y;µ(x;βk), σ2

k, νk
)
. (6.28)

To perform this maximization, I first use the EM algorithm and then describe an ECM extension (Meng
and Rubin, 1993) as in Liu and Rubin (1995) for a single t distribution and as in Mclachlan and Peel
(1998) and Peel and Mclachlan (2000) for the mixture of t-distributions.

6.3.3 MLE via the EM algorithm

To maximize the log-likelihood function (6.28), the EM algorithm for the TMoE model starts with an

initial parameter vector Ψ (0) and alternates between the E- and M- steps until convergence. The E-
step computes the expected completed data log-likelihood (the Q-function) and the M-Step maximizes
it. From the hierarchical representation of the TMoE (6.27), the complete data consist of the responses
(y1, . . . , yn) and their corresponding predictors (x1, . . . ,xn) and (r1, . . . , rn), as well as the latent variables
(w1, . . . , wn) in (6.27) and the latent labels (z1, . . . , zn). Thus, the complete-data log-likelihood of Ψ is
given by:

logLc(Ψ) = logL1c(α) +

K∑
k=1

[
logL2c(Ψk) + logL3c(νk)

]
, (6.29)

where

logL1c(α) =

n∑
i=1

K∑
k=1

Zik log πk(ri;α), (6.30)

logL2c(Ψk) =

n∑
i=1

Zik

[
− 1

2
log(2π)− 1

2
log(σ2

k)− 1

2
wid

2
ik

]
, (6.31)

logL3c(νk) =

n∑
i=1

Zik

[
− log Γ

(νk
2

)
+
(νk

2

)
log
(νk

2

)
+
(νk

2
− 1
)

log(wi)−
(νk

2

)
wi

]
. (6.32)

E-Step The E-Step of the EM algorithm for the TMoE calculates the Q-function, that is the conditional
expectation of the complete-data log-likelihood (6.44), given the observed data and a current parameter

estimation Ψ (m). It can be seen from (6.30), (6.31) and (6.32) that computing the Q-function, given by:

Q(Ψ ;Ψ (m)) = Q1(α;Ψ (m)) +

K∑
k=1

[
Q2(θk,Ψ

(m)) +Q3(νk,Ψ
(m))

]
, (6.33)
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where θk = (βTk , σ
2
k)T and

Q1(α;Ψ (m)) =

n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α),

Q2(θk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− 1

2
log(2π)− 1

2
log(σ2

k)− 1

2
w

(m)
ik d2ik

]
.

Q3(νk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− log Γ

(νk
2

)
+
(νk

2

)
log
(νk

2

)
−
(νk

2

)
w

(m)
ik +

(νk
2
− 1
)
e
(m)
1,ik

]
requires the following conditional expectations:

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

w
(m)
ik = EΨ (m) [Wi|yi, Zik = 1,xi, ri] ,

e
(m)
1,ik = EΨ (m) [log(Wi)|yi, Zik = 1,xi, ri] ·

These required conditional expectations are calculated analytically as given in [J-12][J-13].

M-Step In the M-step, as it can be seen from (6.33), the Q-function can be maximized by independently

maximizing Q1(α;Ψ (m)), and, for each k, Q2(θk;Ψ (m)), Q3(νk;Ψ (m)), with respect to α, θk and νk,
respectively. Thus, on the (m + 1)th iteration of the M-step, the model parameters are updated as
follows.

M-Step 1 Calculate α(m+1) by maximizing Q1(α;Ψ (m)) w.r.t α. This can be performed iteratively
via IRLS (6.20) as for the mixture of SNMoE.

M-Step 2 Calculate θ
(m+1)
k by maximizing Q2(θk;Ψ (m)) w.r.t θk = (βTk , σ

2
k)T . This is achieved by

first maximizing Q2(Ψk;Ψ (m)) with respect to βk and then with respect to σ2
k. For the t mixture of

linear experts (TMoLE) case where the expert means are of the form (6.7), this maximization can be
performed analytically and provides the following updates:

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik w

(m)
ik xix

T
i

]−1
n∑

i=1

τ
(q)
ik w

(m)
ik yixi, (6.34)

σ2
k
(m+1)

=
1∑n

i=1 τ
(m)
ik

n∑
i=1

τ
(m)
ik w

(m)
ik

(
yi − βT

k

(m+1)
xi

)2
. (6.35)

Here, I note that, following Kent et al. (1994) in the case of ML estimation for single component t
distribution and Mclachlan and Peel (1998); Peel and Mclachlan (2000) for mixture of multivariate t

distributions, the EM algorithm can be modified slightly by replacing the divisor
∑n
i=1 τ

(m)
ik in (6.35) by∑n

i=1 τ
(m)
ik w

(m)
ik . The modified algorithm may converge faster than the conventional EM algorithm. This

is was also observed in practice for the proposed TMoE.

M-Step 3 Calculate ν
(m+1)
k by maximizing Q3(νk;Ψ (m)) w.r.t νk. The degrees of freedom update

ν
(m+1)
k is therefore obtained by iteratively solving the following equation for νk:

−ψ
(νk

2

)
+log

(νk
2

)
+1+

1∑n
i=1 τ

(m)
ik

n∑
i=1

τ
(m)
ik

(
log(w

(m)
ik )− w(m)

ik

)
+ψ

(
ν
(m)
k + 1

2

)
− log

(
ν
(m)
k + 1

2

)
=0.

(6.36)
This scalar non-linear equation can be solved with a root finding algorithm, such as Brent’s method
(Brent, 1973).

It can be seen that, as mentioned previously, if the number of degrees of freedom νk approaches ∞
for all k, then the parameter updates for the TMoE model are exactly those of the NMoE model (since
wik tends to 1 in this case). The TMoE model constitutes therefore a robust generalization of the NMoE
model that is able to model data with density heaving longer tails than those of the NMoE model.

After deriving the EM algorithm for the TMoE parameter estimation, now I described an ECM
extension.
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6.4 The skew t mixture of experts model

6.3.4 MLE via the ECM algorithm

Following the ECM extension of the EM algorithm for a single t distribution proposed by Liu and Rubin
(1995) and the one of the EM algorithm for the t-mixture model (Mclachlan and Peel, 1998; Peel and
Mclachlan, 2000), the EM algorithm for the TMoE model can also be modified to give an ECM version
by adding an additional E-Step between the two M-steps 2 and 3. This additional E-step consists in

taking the parameter vector Ψ with θk = θ
(m+1)
k instead of Ψ

(m)
k , that is

Q2(νk;Ψ (m)) = Q2(νk;α(m),θ
(m+1)
k , ν

(m)
k ).

Thus, the M-Step 3 in the above is replaced by a Conditional-Maximization (CM)-Step in which the

degrees of freedom update (6.36) is calculated with the conditional expectation w
(m)
ik and e

(m)
1,ik computed

with the updated parameters β
(m+1)
k and σ2

k
(m+1)

respectively given by (6.34) and (6.35).

The SNMoE presented before allows to deal with asymmetric data. The TMoE handles the problem
of heavy tailed data possibly affected by outliers. Now, I propose the skew t mixture of experts (STMoE)
model which attempts to simultaneously accommodate heavy tailed data with possible outliers and with
asymmetric distribution.

6.4 The skew t mixture of experts model

The proposed skew t mixture of experts (STMoE) model is a MoE model in which the expert components
have a skew-t density, rather than the standard normal one as in the NMoE model, or the previously
presented skew-normal and t ones as in the SNMoE and the TMoE, respectively.

The skew t distribution

The skew t distribution, introduced by Azzalini and Capitanio (2003) in 2003, can be characterized as
follows. Let U be an univariate random variable with a standard skew-normal distribution U ∼ SN(0, 1, λ)
(which can be shortened as U ∼ SN(λ)) with pdf given by (6.10). Then, let W be an univariate random
variable independent of U and following the Gamma distribution: W ∼ Gamma(ν2 ,

ν
2 ). A random variable

Y having the following representation:

Y = µ+ σ
U√
W

(6.37)

follows the skew t distribution ST(µ, σ2, λ, ν) with location parameter µ, scale parameter σ, skewness
parameter λ and degrees of freedom ν, whose density is defined by:

f(y;µ, σ2, λ, ν) =
2

σ
tν(dy) Tν+1

(
λ dy

√
ν + 1

ν + d2y

)
(6.38)

where dy = y−µ
σ and tν(.) and Tν(.) respectively denote the pdf and the cdf of the standard t distribution

with degrees of freedom ν.

6.4.1 The model

The proposed skew t mixture of experts (STMoE) model extends the univariate skew t mixture model,
which was first introduced by Lin et al. (2007a), to the MoE framework. In the skew-t mixture model,
the mixing proportions and the expert means are constant, that is, they are not function of predictors. In
the proposed STMoE, I consider skew-t expert components with regression mean functions, and covariate
varying mixing proportions. A K-component mixture of skew t experts (STMoE) is therefore defined by:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α) ST(y;µ(x;βk), σ2
k, λk, νk)· (6.39)
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The parameter vector of the STMoE model is Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T where Ψk = (βTk , σ

2
k, λk, νk)T

is the parameter vector for the kth skew t expert component whose density is defined by

f
(
y|x;µ(x;βk), σ2, λ, ν

)
=

2

σ
tν(dy(x)) Tν+1

(
λ dy(x)

√
ν + 1

ν + d2y(x)

)
(6.40)

where dy(x) = y−µ(x;βk)
σ . It can be seen that, when the robustness parameter νk → ∞ for each k, the

STMoE model (6.39) reduces to the SNMoE model (6.11). On the other hand, if the skewness parameter
λk = 0 for each k, the STMoE model reduces to the TMoE model (6.25). Moreover, when νk →∞ and
λk = 0 for each k, it approaches the standard NMoE model (6.3). This therefore makes the STMoE
flexible as it generalizes the previously described models to accommodate situations with asymmetry,
heavy tails, and outliers.

The STMoE model is characterized as follows. Suppose that conditional on a categorical variable
zi ∈ {1, . . . ,K} representing the hidden label of the component generating the ith observation and
following the multinomial distribution (6.13), a random variable has the following representation:

Yi = µ(xi;βzi) + σzi
Ei√
Wi

(6.41)

where Ei and Wi are independent univariate random variables with, respectively, a standard skew-normal
distribution Ei ∼ SN(λzi), and a Gamma distribution Wi ∼ Gamma(

νzi
2 ,

νzi
2 ), and xi and ri are some

given covariate variables. Then, the variable Yi is said to follow the STMoE defined by (6.39).
From the hierarchical representation of the skew t distribution, a hierarchical model for the proposed

STMoE model (6.39) can be derived from its stochastic representation (6.41) and is as follows:

Yi|ui, wi, Zik = 1,xi ∼ N

(
µ(xi;βk) + δk|ui|,

1− δ2k
wi

σ2
k

)
,

Ui|wi, Zik = 1 ∼ N

(
0,
σ2
k

wi

)
, (6.42)

Wi|Zik = 1 ∼ Gamma
(νk

2
,
νk
2

)
Zi|ri ∼ Mult

(
1;π1(ri;α), . . . , πK(ri;α)

)
.

The variables Ui and Wi are hidden in this hierarchical representation, which facilitates the inference
scheme and will be used to derive the maximum likelihood estimation of the STMoE model parameters
Ψ by using the ECM algorithm.

6.4.2 Identifiability of the STMoE model

Jiang and Tanner (1999) have established that ordered, initialized, and irreducible MoEs are identifiable.
Ordered implies that there exist a certain ordering relationship on the experts parameters Ψk such
that (αT1 ,Ψ

T
1 )T ≺ . . . ≺ (αTK ,Ψ

T
K)T ; initialized implies that αK , the parameter vector of the Kth

logistic proportion, is the null vector, and irreducible implies that Ψk 6= Ψk′ for any k 6= k′. For
the proposed STMoE, which generalizes the previously seen MoE models, ordered implies that there
exist a certain ordering relationship such that (βT1 , σ

2
1 , λ1, ν1)T ≺ . . . ≺ (βTK , σ

2
K , λK , νK)T ; initialized

implies that wK is the null vector, as assumed in the model, and finally, irreducible implies that if
k 6= k′, then one of the following conditions holds: βk 6= βk′, σk 6= σk′, λk 6= λk′ or νk 6= νk′. Then,
we can establish the identifiability of ordered and initialized irreducible STMoE models by applying
Lemma 2 of Jiang and Tanner (1999), which requires the validation of the following nondegeneracy
condition. The set {ST(y;µ(x;β1), σ2

1 , λ1, ν1), . . . ,ST(y;µ(x;β4K), σ2
4K , λ4K , ν4K)} contains 4K linearly

independent functions of y, for any 4K distinct quadruplet (µ(x;βk), σ2
k, λk, νk) for k = 1, . . . , 4K. Thus,

via Lemma 2 of Jiang and Tanner (1999) we have any ordered and initialized irreducible STMoE is
identifiable.

6.4.3 Maximum likelihood estimation via the ECM algorithm

The unknown parameter vector Ψ of the STMoE model is estimated by maximizing the following
observed-data log-likelihood given an observed i.i.d sample of n observations, that is, the responses
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(y1, . . . , yn) and the corresponding predictors (x1, . . . ,xn) and (r1, . . . , rn):

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)ST(y;µ(xi;βk), σ2
k, λk, νk)· (6.43)

This is performed iteratively by a dedicated ECM algorithm. The complete data consist of the obser-
vations, as well as the latent variables (u1, . . . , un) and (w1, . . . , wn) and the latent component labels
(z1, . . . , zn). Then, from the hierarchical representation of the STMoE (6.42), the complete-data log-
likelihood of Ψ is given by:

logLc(Ψ) = logL1c(α) +

K∑
k=1

[
logL2c(θk) + logL3c(νk)

]
(6.44)

where θk = (βTk , σ
2
k, λk)T ,

logL1c(α) =

n∑
i=1

K∑
k=1

Zik log πk(ri;α),

logL2c(θk) =

n∑
i=1

Zik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k)− wi d

2
ik

2(1− δ2k)
+
wi ui δk dik
(1− δ2k)σk

− wi u
2
i

2(1− δ2k)σ2
k

]
,

logL3c(νk) =

n∑
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Zik

[
− log Γ

(νk
2

)
+
(νk

2

)
log
(νk

2

)
+
(νk

2

)
log(wi)−

(νk
2

)
wi

]
·

The ECM algorithm for the STMoE model starts with an initial parameter vector Ψ (0) and alternates
between the E- and CM- steps until convergence.

E-Step The E-Step of the CEM algorithm for the STMoE calculates the Q-function, that is the condi-
tional expectation of the complete-data log-likelihood (6.44), given the observed data {yi,xi, ri}ni=1 and

a current parameter estimation Ψ (m) given by:

Q(Ψ ;Ψ (m)) = Q1(α;Ψ (m)) +

K∑
k=1

[
Q2(θk,Ψ

(m)) +Q3(νk,Ψ
(m))

]
, (6.45)

where

Q1(α;Ψ (m)) =

n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α),

Q2(θk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k)−

w
(m)
ik d2ik

2(1− δ2k)
+
δk dik e

(m)
1,ik

(1− δ2k)σk
−

e
(m)
2,ik

2(1− δ2k)σ2
k

]
,

Q3(νk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− log Γ

(νk
2

)
+
(νk

2

)
log
(νk

2

)
−
(νk

2

)
w

(m)
ik +

(νk
2

)
e
(m)
3,ik

]
.

From (6.44), it can be seen that computing the Q-function only requires the following conditional expec-
tations:

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

w
(m)
ik = EΨ (m) [Wi|yi, Zik = 1,xi, ri] ,

e
(m)
1,ik = EΨ (m) [WiUi|yi, Zik = 1,xi, ri] ,

e
(m)
2,ik = EΨ (m)

[
WiU

2
i |yi, Zik = 1,xi, ri

]
,

e
(m)
3,ik = EΨ (m) [log(Wi)|yi, Zik = 1,xi, ri] ·

These conditional expectations are calculated analytically as shown in [J-12][J-14], except for e
(m)
3,ik for

which I adopted a one-step-late (OSL) approach as described in Lee and McLachlan (2014), rather than
using a Monte Carlo approximation as in Lin et al. (2007a). I also mention that, for the multivariate
skew t mixture models, recently Lee and McLachlan (2015) presented a series-based truncation approach,
which exploits an exact representation of this conditional expectation and which can also be used here.
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M-Step The M-step maximizes the Q-function (6.45) with respect to Ψ and provides the parameter

vector update Ψ (m+1). From (6.45), it can be seen that the maximization of Q can be performed by
separately maximizing Q1 with respect to the parameters α of the mixing proportions, and for each expert
k (k = 1, . . . ,K), Q2 with respect to (βTk , σ

2
k)T and λk, and Q3 with respect to νk. The maximization

of Q2 and Q3 is carried out by conditional maximization (CM) steps by updating (βk, σ
2
k) and then

updating (λ, νk) with the given updated parameters. This leads to the following CM steps. On the
(m+ 1)th iteration of the M-step, the STMoE model parameters are updated as follows.

CM-Step 1 Calculate the parameter α(m+1) maximizing the function Q1(α;Ψ (m)) given by (6.34) by
using IRLS (6.20). Then, for k = 1 . . . ,K,

CM-Step 2 Calculate (β
T (m+1)
k , σ2

k
(m+1)

)T by maximizing Q2(θk;Ψ (m)) w.r.t (βTk , σ
2
k)T . For the skew-

t mixture of linear experts (STMoLE) case, where the expert means are linear regressors, that is, of the
form (6.7), this maximization can be performed in a closed form and provides the following updates:

β
(m+1)
k =

[ n∑
i=1

τ
(q)
ik w

(m)
ik xix

T
i

]−1
n∑

i=1

τ
(q)
ik

(
w

(m)
ik yi − e(m)

1,ikδ
(m+1)
k

)
xi, (6.46)

σ2
k
(m+1)

=

∑n
i=1 τ

(m)
ik

[
w

(m)
ik

(
yi − βT

k

(m+1)
xi

)2
− 2δ

(m+1)
k e

(m)
1,ik(yi − βT

k

(m+1)
xi) + e

(m)
2,ik

]
2
(

1− δ2k
(m)
)∑n

i=1 τ
(m)
ik

· (6.47)

CM-Step 3 The skewness parameters λk are updated by maximizing Q2(θk;Ψ (m)) w.r.t λk, with

βk and σ2
k fixed at the update β

(m+1)
k and σ2

k
(m+1)

, respectively. It can be easily shown that the

maximization to obtain λ
(m+1)
k (k = 1, . . . ,K) consists in solving the following equation in λk (recall we

have δk = λk√
1+λ2

k

):

δk(1− δ2k)

n∑
i=1

τ
(m)
ik + (1 + δ2k)

n∑
i=1

τ
(m)
ik

d
(m+1)
ik e

(m)
1,ik

σ
(m+1)
k

− δk
n∑

i=1

τ
(m)
ik

[
w

(m)
ik d2ik

(m+1)
+

e
(m)
2,ik

σ2
k
(m+1)

]
= 0· (6.48)

CM-Step 4 Similarly, the degrees of freedom νk are updated by maximizing Q3(νk;Ψ (m)) w.r.t νk with

βk and σ2
k fixed at β

(m+1)
k and σ2

k
(m+1)

, respectively. An update ν
(m+1)
k is calculated as solution of the

following equation in νk:

− ψ
(νk

2

)
+ log

(νk
2

)
+ 1 +

∑n
i=1 τ

(m)
ik

(
e
(m)
3,ik − w

(m)
ik

)
∑n
i=1 τ

(m)
ik

= 0. (6.49)

The two scalar non-linear equations (6.48) and (6.49) can be solved similarly as in the TMoE model, that
is, with a root finding algorithm, such as Brent’s method (Brent, 1973).

As mentioned before, one can see that, when the robustness parameter νk →∞ for all the components,
the parameter updates for the STMoE model correspond to those of the SNMoE model. On the other
hand, when the skewness parameters λk = 0, the STMoE parameter updates correspond to those of the
TMoE model. Finally, when both the degrees of freedom νk →∞ and the skewness parameters λk = 0,
we obtain the parameter updates of the standard NMoE model. The STMoE therefore provides a more
general framework for inferring flexible MoE models.

6.5 Prediction, clustering and model selection with the non-

normal MoE

Prediction The goal in regression is to be able to make predictions for the response variable(s) given
some new value of the predictor variable(s) on the basis of a model trained on a set of training data.
In regression analysis using mixture of experts, the aim is therefore to predict the response y given new
values of the predictors (x, r), on the basis of a MoE model characterized by a parameter vector Ψ̂
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inferred from a set of training data, here, by maximum likelihood via E(C)M. These predictions can be
expressed in terms of the predictive distribution of y, which is obtained by substituting the maximum
likelihood parameter Ψ̂ into (6.2) to give:

f(y|x, r; Ψ̂) =

K∑
k=1

πk(r; α̂)fk(y|x; Ψ̂k).

Using f , we might then predict y for a given set of x’s and r’s as the expected value under f , that is
by calculating the prediction ŷ = EΨ̂ (Y |r,x). I thus need to compute the expectation of the mixture of
experts model. It is easy to show (see for example Section 1.2.4 in Frühwirth-Schnatter (2006)) that the
mean and the variance of a mixture of experts distribution are respectively given by

EΨ̂ (Y |r,x) =

K∑
k=1

πk(r; α̂n)EΨ̂ (Y |Z = k,x), (6.50)

VΨ̂ (Y |r,x) =

K∑
k=1

πk(r; α̂n)
[

(EΨ̂ (Y |Z = k,x))2 + VΨ̂ (Y |Z = k,x)
]
−
[
EΨ̂ (Y |r,x)

]2
, (6.51)

where EΨ̂ (Y |Z = k,x) and VΨ̂ (Y |Z = k,x) are respectively the component-specific (expert) means and
variances. The calculations of the mean and the variance, for each of the developed MoE models, are
derived respectively in [J-12] and [J-13][J-14].

Model-based clustering The MoE models can also be used for a model-based clustering perspective
to provide a partition of the regression data into K clusters. Model-based clustering using the NNMoE
consists in assuming that the observed data {xi, ri, yi}ni=1 are generated from a K component mixture
of, respectively, skew-normal, t or skew t experts, with parameter vector Ψ . The mixture components
can be interpreted as clusters and hence each cluster can be associated with a mixture component. The
problem of clustering therefore becomes the one of estimating the MoE parameters Ψ , which is performed
here by using dedicated EM algorithms. Once the parameters are estimated and we get Ψ̂ , the provided
posterior component memberships τik given by

τik(Ψ̂) =
πk(r; Ψ̂)fk

(
yi|ri,xi; Ψ̂

)
∑K

k′=1 πk′(r; α̂)fk′
(
yi|ri,xi; Ψ̂k′

) (6.52)

represent a fuzzy partition of the data. A hard partition of the data can then be obtained from the
posterior memberships by applying the Bayes’ optimal allocation rule, that is, by maximizing the pos-
terior component memberships to assign each observation to a cluster: ẑi = arg maxKk=1 τ̂ik(Ψ̂) where ẑi
represents the estimated cluster label for the ith observation.

Model selection One of the issues in mixture model-based clustering is model selection. The problem
of model selection for the NNMoE models presented here in their general forms, is equivalent to the one of
choosing the optimal number of experts K, the degree p of the regression and the degree q for the logistic
regression. The optimal value of (K, p, q) can be computed by using some model selection criteria such
as AIC, BIC, ICL, which are used here. The AIC and BIC are are penalized observed data log-likelihood
criteria which can be defined as functions to be maximized and are respectively given by: AIC(K, p, q) =

logL(Ψ̂) − ηΨ log(n)
2 , BIC(K, p, q) = logL(Ψ̂) − ηΨ log(n)

2 . The ICL criterion consists in a penalized

complete-data log-likelihood and can be expressed as follows: ICL(K, p, q) = logLc(Ψ̂) − ηΨ log(n)
2 . In

the above, logL(Ψ̂) and logLc(Ψ̂) are respectively the incomplete (observed) data log-likelihood and
the complete data log-likelihood, obtained at convergence of the E(C)M algorithm for the corresponding
mixture of experts model and ηΨ is the number of free model parameters. The number of free parameters
ηΨ is given by ηΨ = K(p+ q + 3)− q − 1 for the NMoE model, ηΨ = K(p+ q + 4)− q − 1 for both the
SNMoE and the TMoE models, and ηΨ = K(p+ q + 5)− q − 1 for the STMoE model.

However, note that in MoE it is common to use mixing proportions modeled as logistic transforma-
tion of linear functions of the covariates, that is the covariate vector in (6.1) is given by ri = (1, ri)

T

(corresponding to q = 2), ri being an univariate covariate variable. This is also adopted in this work.
Moreover, for the case of linear experts, that is when the experts are linear regressors with parameter
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vector βk for which the corresponding covariate vector xi in (6.7) is given by xi = (1, xi)
T (corresponding

to p = 2), xi being an univariate covariate variable, the model selection reduces to choosing the number
of experts K. Here I mainly consider this linear case with linear components to consider comparisons
with approaches that considered the linear case, but for the non-linear (polynomial) case (the equations
are given) and the code is also implemented.

6.6 Experiments

In [J-12] [J-13][J-14] I evaluated the performance of proposed EM algorithms for the three NNMoE models
in terms of modeling, robustness to outliers and clustering, on both simulated and real data sets.
The simulations showed that the three models provide estimates which converge to the true parameters.
In addition, the estimated fitted mean curves, mixing proportions, and obtained partitions are very close
to the true counterparts for all the situations, including when the data are generated according to the
model in question, or according to the standard Normal one. This supports the fact that the proposed
algorithms perform well and the corresponding proposed models are good generalizations of the normal
mixture of experts (NMoE).

Robustness of the NNMoE I examined the robustness of the proposed models to outliers versus the
standard NMoE one. For that, I considered each of the four models for data generation and inference,
where the data include , with a probability c a class of outliers for c = 0%, 1%, 2%, 3%, 4%, 5%. I
considered the same class of outliers as in Nguyen and McLachlan (2016), that is the predictor x is
generated uniformly over the interval (−1, 1) and the response y is set the value −2. As a criterion of
evaluation of the impact of the outliers on the quality of the results, I considered the MSE between the
true regression mean function and the estimated one.
When there is no outliers (c = 0%), the error of the TMoE is less than those of the other models, for
the four situations, that is including the case where the data are not generated according to it, which is
somewhat surprising. This includes the case where the data are generated according to the NMoE model,
for which the TMoE error is slightly less than the one of the NMoE model. Then, it can be seen that
when there is outliers, the TMoE model outperforms the other models for almost all the situations, except
the one in which the data are generated according to the STMoE model. When the data do not contain
outliers and are generated from the STMoE, this one indeed outperforms the NMoE and SNMoE models.
For the situation when there is no outliers and the data are generated according to the TMoE or the
STMoE, these two models may provide quasi-identical results. In the case of presence of outliers in data
generated from the STMoE, this one outperforms the NMoE and SNMoE models for all the situations,
and outperforms the TMoE for the majority of situations, namely when the number of the outliers is
more than 2%. Also, for all the situations with outliers, as expected, the TMoE and STMoE models
always provide the best results. These two models are indeed much more robust to outliers compared to
the normal and skew-normal ones because the expert components in these two models follow a robust
distribution, that is the t distribution for the TMoE, and the skew t distribution for the STMoE. The
NMoE and SNMoE are sensitive to outliers. When there is outliers, the SNMoE behavior is comparable
to the one of the NMoE. But the SNMoE is more adapted to skewed data compared to the standard
NMoE model. However, when the number of outliers is increasing, the increase in the error of the NMoE
and SNMoE model is more pronounced compared to the one of the TMoE and STMoE models. The
error for both the TMoE and STMoE may indeed slightly increase, remain stable or even decrease in
some situations. This supports the expected robustness of the TMoE and STMoE models.

Figure 6.1 shows an example of results obtained on a data set simulated according to the NMoE model
and contain c = 5% of outliers. In this example, we clearly see that the NMoE is severely affected by
the outliers and provides a rough fit especially for the red component. However, both the TMoE and the
STMoE model are clearly robust and provide a precise fit.

Application to two real-world data sets I considered an application to two real-world data sets:
the tone perception data set and the temperature anomalies data set (see for for example [J-12][J-13][J-14]
for more detailed description of the data).
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Figure 6.1: Fitted MoE to a data set of n = 500 observations generated according to the NMoE model

and including 5% of outliers (x; y = −2), with NMoE fit (left), TMoE fit (midde) and STMoE fit (right).

Tone perception data set The first analyzed data set is the real tone perception data set1 which
goes back to Cohen (1984). It was recently studied by Bai et al. (2012) and Song et al. (2014) by using
robust regression mixture models based on, respectively, the t distribution and the Laplace distribution.
To apply the proposed MoE models, we set the response yi(i = 1, . . . , 150) as the “strech ratio” variables
and the covariates xi = ri = (1, xi)

T where xi is the “tuned” variable of the ith observation. For the
original data I obtain a good fit with all the models; The NMoE and SNMoE are quasi-identical, and
differ very slightly from those of the TMoE and STMoE, which are very similar. The two regression lines
may correspond to correct tuning and tuning to the first overtone, respectively, as analyzed in Bai et al.
(2012). I also performed a model selection procedure on this data set to choose the best number of MoE
components for a number of components between 1 and 5. I used BIC, AIC, and ICL. The NMoE model
overestimates the number of components. AIC performs poorly for all the models. BIC provides the
correct number of components for the three proposed models. ICL too estimated the correct number of
components for both the SNMoE and STMoE models, but hesitates between 2 (the correct number) and
3 components for the TMoE model.
I also examined the sensitivity of the MoE models to outliers based on this real data set. For this, I adopt
the same scenario used in Bai et al. (2012) and Song et al. (2014) (the last and more difficult scenario) by
adding 10 identical pairs (0, 4) to the original data set as outliers in the y-direction, considered as high
leverage outliers. In this situation, the normal and the skew-normal mixture of experts provide almost
identical fits and are sensitive to outliers. However, in both cases, compared to the normal regression
mixture result in Bai et al. (2012), and the Laplace regression mixture and the t regression mixture results
in Song et al. (2014), the fitted NMoE and SNMoE model are affected less severely by the outliers. This
may be attributed to the fact that the mixing proportions here are depending on the predictors, which
is not the case in these regression mixture models, namely the ones of Bai et al. (2012) and Song et al.
(2014). However, as it can be seen on Figure 6.2 the TMoE and the STMoE provide robust fits, which
are quasi-identical to the fit obtained on the original data without outliers. Moreover, I notice that, as
showed in Song et al. (2014), for this situation with outliers, the t mixture of regressions fails; The fit
is affected severely by the outliers. However, the proposed TMoE and STMoE, the ten high leverage
outliers have no impact on the fitted experts.

Temperature anomalies data set

This real-world data set2 relates climate change analysis. The data consist of n = 135 yearly mea-
surements of the global annual temperature anomalies (in degrees C) computed using data from land
meteorological stations for the period of 1882− 2012. The response yi(i = 1, . . . , 135) is set as the tem-
perature anomalies and the covariates xi = ri = (1, xi)

T where xi is the year of the ith observation. These
data have been analyzed earlier by Hansen et al. (1999, 2001) and recently by Nguyen and McLachlan
(2016) by using the Laplace mixture of linear experts (LMoLE). The four models are successfully applied
on the data set and provide very similar results. These results are also similar to those found by Nguyen
and McLachlan (2016) who used a Laplace mixture of linear experts. Both the TMoE and STMoE fits

1Source: http://artax.karlin.mff.cuni.cz/r-help/library/fpc/html/tonedata.html
2source: from Ruedy et al., http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
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Figure 6.2: Fitting MoLE to the tone data set with ten added outliers (0, 4). Left: NMoE fit, Middle:

TMoE fit and Right: STMoE fit. The predictor x is the actual tone ratio and the response y is the

perceived tone ratio.

provide a degrees of freedom more than 17, which tends to approach a normal distribution. On the other
hand, the regression coefficients are also similar to those found by Nguyen and McLachlan (2016) who
used a Laplace mixture of linear experts. I performed a model selection procedure on the temperature
anomalies data set to choose the best number of MoE components from values between 1 and 5. Except
the result provided by AIC for the NMoE model which overestimates the number of components, all the
others results provide evidence for two components in the data.

6.7 Conclusion

In this chapter, I proposed new non-normal MoE models, which generalize the normal MoE. They are
based on the skew-normal, t and skew t distribution and are respectively the SNMoE, TMoE, and
STMoE. The SNMoE model is suggested for non-symmetric data, the TMoE for data with possibly
outliers and heavy tail, and the STMoE is suggested for both possibly non-symmetric, heavy tailed and
noisy data. I developed EM-type algorithms to infer each of the proposed models and described the use
of the models in non-linear regression and prediction as well as in model-based clustering. The developed
models are successfully applied on simulated and real data sets. The results obtained on simulated data
confirm the good performance of the models in terms of density estimation, non-linear regression function
approximation and clustering. In addition, the simulation results provide evidence of the robustness of
the TMoE and STMoE models to outliers, compared to the normal alternative models. The proposed
models were also successfully applied to two different real data sets, including a situation with outliers.
The model selection using information criteria tends to promote using BIC and ICL against AIC which
may perform poorly in the analyzed data. The obtained results support the potential benefit of the
proposed approaches for practical applications.

In this chapter, I only considered the MoE in their standard (non-hierarchical) version. One inter-
esting future direction is therefore to extend the proposed models to the hierarchical mixture of experts
framework (Jordan and Jacobs, 1994). Furthermore, a natural future extension of this work is to consider
the case of MoE for multiple regression on multivariate data rather than simple regression on univariate
data.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion

The previous chapters presented my research during the last five years as well as my ongoing research on
the problems of statistical learning of flexible models for complex data analysis. This involved research in
statistics in the related fields of classification, high dimensional and functional data analysis, statistical
signal processing, machine learning and pattern recognition, and in the field of statistical inference. The
focus in the latter field has been on the methodology and applications of latent data models, particularly
mixture models, and on maximum likelihood estimation via EM algorithms as well as maximum a poste-
riori estimation via Bayesian sampling, including in the Bayesian non-parametric paradigm. A particular
attention was given to the statistical methodology and its computational aspects, which constitute a
common theme of my research.

7.2 Perspectives

Each part of the manuscript ends with a part where the perspectives and extensions related to the
described work are presented. So the perspectives I open here are not taking back (I hope anyway) these
developments but instead, propose perspectives less correlated with my previous work.
So beyond the previously discussed perspectives related to each Chapter, here I provide some future
avenues I will pursue in the future. They relate some already effectively started ones or others I intend
to start in the near future.

7.2.1 Advanced mixtures for complex data (My ongoing CNRS research leave

project)

My research on model-based cluster and discriminant analyses extend my interests to further investigating
the subject by including (Bayesian) model-based co-cluster and discriminant analyses as well as feature
and model selection in unsupervised classification of high dimensional data including functional data. The
developed BNP approach for parsimonious models might also be investigated for the recently developed
parsimonious models based on a variance-correlation decomposition of the group covariance matrices
(Biernacki and Lourme, 2014) which have more desirable properties compared to the flexible parsimonious
GMMs baed rather on an eigenvalue decomposition.

These perspectives mainly relate my CNRS research leave I was awarded this year starting from the
first of September and which I will spend in the Probability and Statistics team of the lab of mathematics
Paul-Painlevé UMR CNRS 8524 in Lille where I will work with mainly Pr. Christope Biernacki. The de-
scription of the project is available here http://chamroukhi.univ-tln.fr/FChamroukhi-projet-delegation-CNRS.
pdf. Possible applications relate namely computational biology (gene expression data), which also in-
volves feature selection and classification challenges, as well as text classification in the discrete case for
example.
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7.2.2 LEarning from biG cOmplex FunctIonal daTa - LegoFit (2015 - an

ANR proposal)

This perspective is actually ongoing and consists in the ANR (french research agency) proposal LEarning
from biG cOmplex FunctIonal daTa - “LegoFit” I initiated and submitted this year. I’m the Principal
Investigator of the project. LegoFit is an academic research project that aims at developing models and
algorithms for transforming big data into knowledge. The considered data are massive functional data
with complex hidden structure. The key tenet of the proposal is to develop an original probabilistic
methodology that links between statistical learning and functional data analysis (FDA) at large scale.
The proposal will be focused on the field of Functional Data Analysis (FDA). Two pilot applications are
considered. The first one is in collaboration with the leader AIRBUS and concerns large scale time series
data of aircraft condition monitoring. The second one concerns massive transportation data derived from
vehicle sharing systems (bikes and car) and is in collaboration with IFSTTAR, the national leader institute
on transportation research. The proposal will be focused on the field of Functional Data Analysis (FDA).
The overall scientific objective of this project is therefore to significantly improve the automatic analysis
and decision making from massive data available as (discretized) values of smooth functions and to apply
them in the framework of two main pilot applications. This mainly involves tackling the problems of
functional regression, classification and clustering. Particularly, we will focus on the unsupervised context
in which some information/data may be missing or hidden and therefore the data completeness is of great
interest. A special focus will be given to non-linear dynamical functions that may be subject to multiple
changes in regime. We propose to address these issues from a probabilistic prospective through specific
latent models with sound statistical framework. In some circumstances, an a priori available knowledge
on the data, including on its structure, has to be taken into account as it is likely to improve the models
accuracy. In LegoFit this will be formulated within a Bayesian learning framework. A particular focus
will be attributed to the non-parametric Bayesian approaches for functional data to provide more flexible
and generic probabilistic models adapted to big data. The scalability of the developed algorithms will also
be central to the project. The main scientific originality of our proposal covers therefore the development
of new statistical learning and data analysis techniques for big data with functional complex structure,
and scaling them up. The main questions involved in the proposal form a scientific breakthrough for the
partners of the project. We have structured our project around the following tasks for the analysis of big
functional data with complex hidden structure:

• Task 1: Model-based clustering and discrimination

• Task 2: Model-based co-clustering

• Task 3: Model-based (co)-clustering under topographic considerations

• Task 4: Bayesian non-parametric clustering

• Task 5: Computational scalability of the proposed algorithms

• Task 6: Two pilot applications for the validation of the proposed methods: AIRBUS data and
IFSTTAR data

The consortium is composed of four research units: LSIS (project coordinator, PI Faicel Chamroukhi),
LIPN, IFSTTAR-GRETTIA, LIPADE and AIRBUS Research and Technology. It gathers experts in the
area of statistical learning, data analysis, computer science and signal and image processing, one industrial
leader in aircraft condition monitoring applications, and the national leader institute on transportation
research.

7.2.3 Non-normal mixture modeling

The framework of non-normal mixture modeling is receiving increasing attention in these recent years
in particular, the skew normal and skew t-mixture models, are emerging as promising extensions to
the traditional normal and t-mixture models (Lin et al., 2007b,a; Lin, 2010; Pyne et al., 2009; Lee
and McLachlan, 2013b,a, 2014, 2015) This what led me to develop the mixture of experts with more
flexible parametric expert components that can better accommodate data exhibiting non-normal features,
including asymmetry, heavy-tails, and the presence of outliers. In the future, I intend to pursue this
direction by further investigating the non-normal mixture modeling framework for potentially functional
data and in a more flexible hierarchical setting, such as hierarchical mixture of experts, as well us possibly
into a BNP framework to provide a non-parametric framework for model inference and selection.
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7.2.4 Feature selection in model-based clustering

Until now in the problem of model-based clustering, I was mainly focusing on classifying individuals. To
deal with high dimensional problems, I either tackled the problem by parsimonious models through the
re-parametrization the cluster-specific covariance matrix, or directly performed the classification in the
input data space via functional data models. There is another known and quite new framework to deal
with the issue of unsupervised classification of high dimensional data in model-based clustering, that is
the one of feature selection in clustering which in general consists in classifying individuals while figuring
out and keeping only variables which describe at best the individuals. These last years this problem took
an important interest in the community (Law et al., 2004; Raftery and Dean, 2006; Zhou et al., 2009;
Maugis et al., 2009b,a; Witten and Tibshirani, 2010; Celeux et al., 2011) I intend to investigate it as it
opens interesting challenges in modeling as well the computational aspects related to inference.

7.2.5 Bayesian latent variable models for sparse representations

My research in Bayesian inference for unsupervised data classification with the focus on dealing with
high dimensional data, extended my interests to Bayesian inference for unsupervised data representation,
particularly Bayesian leaning of sparse representations. Some work concerning this perspective is already
ongoing and relates a not filled Master internship position I proposed few months ago. The problem of
finding sparse representations of a “signal” given a dictionary of possibly overcomplete basis vectors is an
important task in several scientific domains including signal processing, computer vision and for many
application area such as signal and image compression/restoration, object recognition, etc (Olshausen and
Field, 1996, 1997, 2004)(Dobigeon and Tourneret, 2010). Several methods have been proposed for sparse
coding, for example the ones based on l1-norm regularized regression known as the LASSO (Tibshirani,
1996), also often referred to as Basis Pursuit (BP) (Chen et al., 1999b), FOCUS (Gorodnitsky and
Bhaskar, 1997), as well as explicitly formulated Bayesian methods for finding sparse representations (Wipf,
2006) namely l1-norm Bayesian sparse representations (Lin, 2008) and (Dobigeon and Tourneret, 2010)
where, roughly, the sparse codes are modeled by as Bernoulli-Gaussian processes, or related Bayesian
pursuit algorithms (Herzet and Drémeau, 2014; Drémeau and Herzet, 2011). The Bayesian inference
framework for finding sparse representations offers a principled general framework for sparse coding as
in many cases, cost error functions related to deterministic sparse coding approaches are particular cases
for maximum a posteriori (MAP) criteria of corresponding Bayesian models. The Bayesian algorithms
for sparse coding allow therefore for taking explicitly and in a principled way a prior knowledge on a
formulated probabilistic model to encourage sparsity and they include namely latent data models (e.g. see
(Wipf, 2006)). The statistical inference for the resulting Bayesian regularized models is tackled by using
dedicated statistical inference tools, that is, MCMC as for example in Dobigeon and Tourneret (2010)
as well as from a usual frequentist-like point of view by using Variational Bayes EM as in Drémeau and
Herzet (2011).

One of the fast and efficient developed approaches for sparse representations if the Predictive Sparse
Decomposition (PSD) (Kavukcuoglu et al., 2008; Kavukcuoglu, 2011) which jointly learns a dictionary
and approximates the sparse representations by a predictive function (rather than computing exact sparse
representations). A first avenue to derive efficient Bayesian sparse representations might be to formulate
the PSD in a Bayesian framework which leads to a Bayesian Predictive Sparse Decomposition (BPSD).
Then, the BPSD might be reformulated as a latent variable model by integrating a mixture prior over
the codes in order to control the sparsity into a probabilistic way. This may lead to a MAP criterion
which may be solved by an EM-type algorithm. I also would be interested in applying them to images
and/or sounds representation for recognition.

7.2.6 Unsupervised learning of feature hierarchies: Deep learning

My research in the field of classification of multivariate data is on deriving flexible models that provide
accurate partitions of unlabeled data or make prediction for future data based on labeled data. In both
cases, the input data are assumed to be (hopefully) well-constructed features so that the main focus is
on the classification. However, the focus on providing representations that represent at best the data is
without doubt beneficial to (easily achieve) the classification task. Good representations indeed eliminate
irrelevant variabilities of the input data, while preserving the information that is useful for the final task
(e.g. recognition or prediction). This generates challenges regarding learning representations and one
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family of methods is for example the one stated before, that is, sparse coding techniques where the
purpose is to produce sparse representations in an unsupervised way. One recent successful and very
popular technique is the one based on hierarchical neural networks, known as deep learning which aim to
produce deep feature hierarchies as proposed by Hinton and Salakhutdinov (2006); Hinton et al. (2006);
Bengio and LeCun (2007); Ranzato et al. (2008); Bengio (2009). Deep architectures for producing high
level representations consist, roughly, in stacking unsupervised neural network modules on top of each
other so that the input of each module is the output of the one at the level just below. This gives them
the ability to capture high-level dependencies in the data and the learned representations provide very
accurate classification results when using standard classification techniques such as a Support Vector
Classifier or even a logistic regression. However, one main question is, at least from a probabilistic point
of view is why do they work. Deep networks have been developed as biologically plausible models for
approximating “humans” in recognizing objects and hence have already at least biological foundations
to explain how do they work. Very recently, Patel et al. (2015), introduced a probabilistic theory of deep
learning that seems to answer the question from a probabilistic point of view. The power of such models in
representations with both biological and probabilistic foundations greatly motivates me to investigate the
deep learning in the future. I namely want to develop a platform to KOGITATE - KnOwledGe, learnIng
and arTificiAl InTElligence http://cogiter.univ-tln.fr/ which is namely dedicated to learning latent
data models and deep feature hierarchies for artificial intelligence problems.
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[J-2] F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. A hidden process regression model for func-
tional data description. Application to curve discrimination. Neurocomputing, 73(7-9):1210–1221,
2010. URL http://chamroukhi.univ-tln.fr/papers/chamroukhi_neucomp_2010.pdf
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manœuvres d’aiguillage. In Workshop Surveillance, Sûreté et Sécurité des Grands Systèmes 3SGS’08,
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monieuses pour des données fonctionnelles et des données multidimensionnelles. Séminaire du Lab-
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Intelligence lab, Télécom-ParisTech, October 2009a

[S-9] F. Chamroukhi. Diagnostic par suivi de point de fonctionnement. Journée des doctorants Heudiasyc,
July 2009b. Compiègne
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Verlag, 1985. Lecture Notes in Math. 1117.

J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering Clusters in Motion Time-Series Data. In
Proceedings of the 2003 IEEE computer society conference on Computer vision and pattern recognition
(CVPR), pages 375–381, Los Alamitos, CA, USA, 2003.

K. Altun, B. Barshan, and O. Tuncel. Comparative study on classifying human activities with miniature
inertial and magnetic sensors. Pattern Recognition, 43:3605–3620, October 2010.

A. Antoniadis, J. Berruyer, and R. Carmona. Rgression non linaire et applications. Economica, 1992.
A. Antoniadis, X. Brossat, J. Cugliari, and J.-M. Poggi. Functional Clustering using Wavelets. Interna-

tional Journal of Wavelets, Multiresolution and Information Processing, 11(1), 2013.
Charles E. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric

Problems. The Annals of Statistics, 2(6):1152–1174, 1974.
F. Attal, M. Dedabrishvili, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat. Physical human

activity recognition using wearable sensors. Sensors, 2015. URL http://chamroukhi.univ-tln.fr/

papers/Sensors-2015.pdf. submitted.
A. Azzalini. A class of distributions which includes the normal ones. Scandinavian Journal of Statistics,

pages 171–178, 1985.
A. Azzalini. Further results on a class of distributions which includes the normal ones. Scandinavian

Journal of Statistics, pages 199–208, 1986.
A. Azzalini and A. Capitanio. Distributions generated by perturbation of symmetry with emphasis on a

multivariate skew t distribution. Journal of the Royal Statistical Society, Series B, 65:367–389, 2003.
Xiuqin Bai, Weixin Yao, and John E. Boyer. Robust fitting of mixture regression models. Computational

Statistics & Data Analysis, 56(7):2347 – 2359, 2012.
Jeffrey D. Banfield and Adrian E. Raftery. Model-Based Gaussian and Non-Gaussian Clustering. Bio-

metrics, 49(3):803–821, 1993.
M. Bartcus. Bayesian non-parametric parsimonious mixtures for model-based clustering. Ph.D. thesis,
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S. Frühwirth-Schnatter. Finite Mixture and Markov Switching Models (Springer Series in Statistics).
Springer Verlag, New York, 2006.
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